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Abstract

Many tropical coastal areas experience severe soil erosion due to heavy rainfall, espe-

cially after deforestation. Glomalin-related soil protein (GRSP), the product of

arbuscular mycorrhizal fungi (AMF), improves soil structure and soil organic carbon

(SOC) sequestration with vegetation restoration. Therefore, the contribution of GRSP

to soil property improvement in a tropical coastal area was studied for four different

restoration practices: a barren land (BL, unrestored control), a Eucalyptus exserta

planted forest (EF), a mixed broadleaved forest (MF), and a secondary natural forest

(SF). Results showed that vegetation restoration practices increased easily-

extractable GRSP (EE-GRSP) and total GRSP (T-GRSP) by 3.9–12.3- and 1.9–

4.6-times, respectively, compared with BL. The proportions of EE-GRSP/SOC and T-

GRSP/SOC were 1.6%–2.0% and 6.5%–15.8%. The concentrations of GRSP, SOC,

and the GRSP/SOC ratio were similar or greater under MF than under SF. 13C NMR

analysis showed that the relatively easily degradable O-alkyl-C of SOC was signifi-

cantly higher under MF than under EF and SF, while the recalcitrant aromatic-C or

alkyl-C were highest under SF or EF, respectively. A significantly positive relationship

was found between the GRSP/SOC ratio and aromatic-C, and between GRSP and

soil aggregate stability. Our study indicates that GRSP contributes to a large propor-

tion of SOC, and benefits SOC sequestration through increasing soil aggregate stabil-

ity and recalcitrant SOC. Among these artificial or naturally growing forest areas, a

mixed forest restoration practice with native tree species provides a promising resto-

ration strategy for heavily eroded land restoration, in particular improving soil aggre-

gation and SOC sequestration.
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1 | INTRODUCTION

Forests cover one-third of the World's total land area and store over

one-half of the global soil organic carbon (SOC), playing a crucial role

in the global carbon (C) cycle (Kuuluvainen & Gauthier, 2018; Zhu

et al., 2017). Forest ecosystems can be successfully managed to

increase C sequestration by restoring vegetation, but if improperly

managed it can decrease SOC stock through vegetation degradation

(Tang et al., 2018). Most C, mainly in the form of SOC, is stored in soil

rather than plants. Therefore, even a small change of the SOC pool in

forest ecosystems could have far-reaching effects on the global C

cycle. Reforestation and afforestation are common practices that can

contribute to offsetting CO2 emissions because the growth of plants

sequesters atmospheric CO2 and stores it in plants and soil. As a

result, large afforestation and reforestation programmes have been

undertaken worldwide with an area estimated at 26.7 million ha

converted between 2000 and 2019 (FAO, 2020). The afforested/

reforested forest area in China increased was annually by 2 million ha

between 1990 and 2000, and by 3 million ha from 2000 to the pre-

sent. Worldwide afforestation has resulted in an estimated total emis-

sion reduction of 4.4 million t CO2 equivalent (FAO, 2020; Zhou

et al., 2017).

Studies have shown that arbuscular mycorrhizal fungi (AMF) play

an important role in forest restoration in eroded areas with infertile

soils at the early-middle restoration stage (Asmelash et al., 2016;

Wang et al., 2019). AMF colonize approximately 80% of terrestrial

vascular plants (Smith & Read, 2008) and contribute to plant vigour by

improving nutrient uptake and enhancing their survival in adverse soil

(Asmelash et al., 2016; Bonfim et al., 2013). AMF improves the stabil-

ity of soil aggregates because of their rich hyphae (Morris

et al., 2019). AMF have also been proven to contribute to soil C accu-

mulation because aboveground plants allocate approximately 4%–

20% of photosynthates to belowground symbiotic AMF (Bago

et al., 2000). Also, AMF deposit slow-cycling organic products, such as

chitin and glomalin, into the soil (Smith & Read, 2008). The latter is an

important SOC component (Treseder et al., 2007) that contributes to

the mitigation of multiple soil degradation problems (Singh

et al., 2020).

Glomalin, a hydrophobic glycoprotein, is more properly referred

to as glomalin-related soil protein (GRSP) (Rillig, 2004). In general,

GRSP contains 3%–5% of N and �20%–59% C which accounts for up

to 40% of SOC (He et al., 2010; Lovelock et al., 2004; Schindler

et al., 2007). GRSP accumulates with soil chronosequence (Kumar

et al., 2018; Rillig et al., 2001) and enriches soil with recalcitrant

aromatic-C that can reside underground for decades (Schindler

et al., 2007; Wang et al., 2020). Hence, GRSP could benefit ecological

restoration by affecting soil biotic and abiotic factors including soil

physical properties, microbial activities, and soil nutrients, etc. (Liu

et al., 2020; Qiao et al., 2019; Singh et al., 2020). However, studies

are limited for grasslands (Liu et al., 2019), farmlands (Welemariam

et al., 2018), monocultures (Santos & Scotti, 2018), and temperate for-

ests (Qiao et al., 2019), and little is known about tropical coastal for-

ests where soil erosion is heavy.

The restoration of trees is urgent because the canopy cover may

decline by 223 million ha globally by 2050, with the vast majority of

this loss in the tropical areas (Bastin et al., 2019). In the early-1950s,

tens of thousands of hectares of soil had been degraded in the tropi-

cal coastal area in southern China due to severe erosion after massive

deforestation (Ren et al., 2007). Studies have found that GRSP

increased with vegetation recovery time in forests (Qiao et al., 2019)

and grasslands (Liu et al., 2019) in the Loess Plateau of northwest

China. However, whether GRSP has also accumulated, given the

timing of forest restoration in the tropical coastal erosion area of

southern China is not clear. Several restoration activities have been

conducted to improve the severely eroded lands since the 1950s in

southern China. The purpose of our study was to reveal the accumula-

tion pattern of GRSP and its contribution to SOC sequestration under

the four study forest restoration practices. A series of restoration

programmes have been undertaken in the tropical coastal area of

southern China. These restoration activites started in 1959 and can

be grouped into the following ctegories: (1) barren land (BL); (2) Euca-

lyptus exserta plantation forest (EF); (3) mixed broadleaved forest

(MF); and (4) secondary natural forest (SF), representing the unre-

stored control. There have been two different restoration practices

and a future scenario can be recognixed. Previous studies of these

restored forests have shown that vegetation biomass production and

SOC stock had markedly increased (Wu et al., 2021; Zhang

et al., 2019) with the restoration processes. As to the production of

AMF, its contribution to SOC and information on GRSP are not clear;

it can be assumed accumulation of the latter varied with the restora-

tion practices. GRSP variations could affect SOC accumulation

(GRSP/SOC ratio), and consequently the relationships between GRSP

and the recalcitrant SOC or the stability of soil aggregates in these

restored forests. The objectives of our study were therefore to test

the following hypotheses: (1) GRSP would be varied with forest resto-

ration practices; (2) the proportion of GRSP in SOC would also vary

with forest restoration practices; and (3) GRSP would be beneficial to

soil C accumulation or sequestration by improving soil aggregates

and/or the proportion of recalcitrant SOC. Answers to these ques-

tions will enhance our understanding of the roles of GRSP and SOC in

forest restoration and could improve strategies.

2 | MATERIALS AND METHODS

2.1 | Study sites and soil sampling

This study explored a series of restoration practice scenarios

(Figure 1) in tropical coastal forest ecosystems near the Xiaoliang Sta-

tion (2 L�2704900N, 110�5401800E, 10 m above sea level) in southwest

Guangdong, China. The area has a typical tropical monsoon climate

with a contrasting dry season (October–April) and wet season (May–

September). The annual mean temperature is 23�C and the annual

precipitation is about 2000 mm. The climax vegetation in this area has

been a monsoon evergreen broadleaved forest with a declined due to

logging in the 1950s (Figure 1). The zonal soil is a kind of latosol,

1542 ZHANG ET AL.
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which has developed from granite and has endured heavy erosion

since the 1950s in a harsh hydrothermal habitat (Ren et al., 2007; Wu

et al., 2021). For instance, with a monthly mean <20% soil moisture,

the maximum monthly mean 0–20 cm surface temperature in the bare

soil in July is 47.5�C, which is 17�C higher than the ambient air tem-

perature. Soil total C and nitrogen concentrations at 0–20 cm depth

are only 0.6% and 0.03%, respectively (Ren et al., 2007).

A series of afforestation practices have been conducted since

1959 on the barren land (BL), although the harsh habitat makes natu-

ral vegetation restoration difficult. We selected 3.7 ha of BL that had

undergone no human interference since 1959 and were assigned this

as the vegetation restoration control. Only a few herbaceous plants or

xeric shrubs, including Dicranopteris pedata and Eriachne pallescens,

are to be found, mainly scattered and growing in ditches, because the

topsoil has been completely eroded (Ren et al., 2007).

One initial restoration programme was undertaken in the BL with

E. exserta plantations (7.7 ha) the timber harvested every 5–8 years

beginning in the early-1960s (Figure 1). Half of the E. exserta planta-

tion area (3.8 ha) was clear-cut in 1974 and a total of 312 species

were replanted from 1974 to 2016 by yearly species replacement to

build a mixed forest (MF), with an average of 14.6 tree species

remaining in 20 � 20 m sample plots in 2016 (Wu et al., 2021). Most

plants (replanting with native spcies) in this MF were not directly

planted because of the extremely eroded barren soil, a successful

growth of pioneer Eucalyptus was required, so it took decades (Ren

et al., 2007; Wang et al., 2017; Wu et al., 2021). This MF can then

develop into a secondary natural evergreen broadleaved forest that is

similar to the undisturbed secondary natural forest (SF) (Ren

et al., 2007). Our study includes sites that experienced one of four

restoration practices or treatments: (1) barren land (BL) as the unre-

stored control; (2) E. exserta plantation forest (EF); (3) planted mixed

broadleaved forest (MF); and (4) typical secondary natural forest

(SF) (Figure 1). See Ren et al. (2007) and Table 1 for detailed informa-

tion about soil and microbial properties in this study site.

Based on the simple random sampling method (Kershaw Jr.

et al., 2017), we set up five plots (20 � 20 m) as replicated sampling

plots for each restoration treatment. The five replication sampling

plots were randomly located apart >50 m distance from each other.

Seven soil cores (2.5 cm diameter at 10 cm depth) from each replicate

plot were randomly collected and mixed as one composite sample

(�1.0 kg) for further analysis in June 2016 after the surface litter and

humus were removed. A total of 20 (four restoration practices � five

replicates) samples were thus collected for the measurement of soil

aggregates, GRSP, and soil C chemical composition, etc. Each sample

was then divided into two parts or subsamples, one was for aggre-

gates analysis, and the other was passed through a 2-mm mesh sieve

for AMF, GRSP, and SOC analysis.

2.2 | Determination of glomalin-related soil
proteins

Both the easily extracted GRSP (EE-GRSP) and total GRSP (T-GRSP)

were measured by a modified method mentioned by Zhang

et al. (2014) based on the Bradford protein assay (Wright &

Upadhyaya, 1998). Briefly, EE-GRSP or T-GRSP was extracted by

8 mL of 20 mmol L�1 sodium citrate (pH = 7.0) or 50 mmol L�1 of

sodium citrate (pH = 8.0) from 1.00 g air-dried soil. Then the extrac-

tions were autoclaved for 30 (EE-GRSP) or 60 (T-GRSP) minutes at

121�C and centrifuged at 10,000 � g for 10 min. The T-GRSP extrac-

tion process was performed four times for each sample and then all of

the supernatants were pooled together and stored at 4�C before the

Bradford analysis. The optical density (OD) value of the GRSP was

measured at 595 nm using bovine serum albumin (BSA) as the stan-

dard with an enzyme microplate reader (Thermo Multiskan FC, USA).

2.3 | Determinations of soil organic carbon
concentration and soil physicochemical properties

Concentrations of SOC and other soil physicochemical properties

were measured using the methods described by Liu et al. (1996).

Briefly, the SOC concentration was tested by titration with FeSO4

(0.2 mol L�1) after dichromate oxidation (Liu et al., 1996), soil total

nitrogen (total N) was measured by the micro-Kjedahl method, and

soil total phosphorus (total P) was determined using a microplate

reader after samples were digested with nitric acid. The concentration

F IGURE 1 Status of forest restoration practices at different times
near the Xiaoliang Station in the southwest of Guangdong Province,
China. The squares with different colours represent different forests
becauseince photos before 2016 were not available. Note: The photos
or squares sizes of these naturally or artificial forests do not represent
the actual areas [Colour figure can be viewed at
wileyonlinelibrary.com]
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of nitrate-nitrogen (NO3
�-N) was tested after cadmium reduction to

nitrate, followed by the sulfanilamide-NAD reaction, while ammonium

nitrogen (NH4
+-N) was determined by the indophenol blue method

followed by colorimetry. Soil available phosphorus (available P) was

extracted by an acid-ammonium fluoride solution, followed by color-

imetry at 700 nm (Liu et al., 1996).

2.4 | SOC chemical composition measurement

The chemical compositions of SOC were measured by 13C cross-

polarization magic angle spinning (CPMAS) nuclear magnetic

resonance (NMR). In brief, 8 g air-dried soil was pretreated with a

hydrofluoric acid solution (HF) eight times as described in Mathers

et al. (2003). The NMR signals were collected on an AVANCE III spec-

trometer (Bruker Ascend™ 300 WB, Bruker, Karlsruhe, Germany) as

described in Zhang et al. (2017) with a minor modification of 12,000

scans. The area below each spectrum was integrated and separated

into four different C functional groups based on their chemical shift

values, including alkyl-C (0–50 ppm), O-alkyl-C (50–110 ppm),

aromatic-C (110–160 ppm), and carbonyl-C (160–220 ppm) groups

(Mao et al., 2000; Ono et al., 2011). Unfortunately, the soil C concen-

tration in the BL was too low to obtain useful NMR signals.

2.5 | Determination of soil water-stable aggregates

Soil aggregates were measured by the wet sieve method according to

Cambardella & Elliott (1993), dividing into four classes of particular

sizes: <0.053 mm, 0.053–0.25 mm, 0.25–2.00 mm, and >2.00 mm

with a grainsize analyzer (DM200-III, Damon, Shanghai, China).

Briefly, a 200 g air-dried soil sample was gently placed on the first

sieve (2.00 mm) and then capillary rewetted with distilled water and

incubated for 5 min. The sieves were then placed into a bucket with

pre-poured distilled water for mechanical wet sieving. The sieves

oscillated at a frequency of 50 cycles per minute for 30 min. The

materials on the sieves were washed gently into pre-weighed alumi-

num specimen boxes, dried at 105�C, and weighed after cooling down

(Blaud et al., 2017). The mean weight diameter (MWD) was used to

evaluate the stability of soil aggregates and was calculated as follows

(Zhang & Horn, 2001):

MWD¼
Xnþ1

n¼1

ri�1þ ri
2

�mi ,

Where: ri is the aperture of the ith mesh (mm), r0 = r1 and rn = rn+1; mi

is the fraction of aggregation remaining on the ith sieve; and n is the

number of the soil aggregate size fractions (representing <0.053 mm,

0.053–0.25 mm, 0.25–2.00 mm, and >2.00 mm).

2.6 | Determinations of soil microbial biomass,
arbuscular mycorrhizal fungal biomass, and diversity

Soil microbial and AMF biomass were characterized using the phos-

pholipid fatty acid (PLFA) method as described in Frostegård &

Bååth (1996) with minor modifications. Selected PLFA biomarkers

were used to represent different soil microbes (Li et al., 2020) and the

specific biomarker 16:1ω5 was used as the AMF biomarker (Zhang

et al., 2020). Microbial and AMF biomass was calculated as nmol g�1

based on the internal standard (19:0) concentration. AMF diversity

was analyzed by high-throughput sequencing on an Illumina

HiSeq2000 platform as described in Zhang et al. (2021). AMF

α-diversity was calculated by the Shannon-Wiener index. Neverthe-

less, the α-diversity could not be determined in the BL due to the low

DNA concentration of AMF.

2.7 | Statistical analysis

Statistical analyses were conducted after all data (means ± SE, n = 5)

had been checked for normal distribution and homogeneity. Using

TABLE 1 Soil nutrient and microbial indexes among the four study forest restoration practices

BL EF MF SF

Total N (mg g�1) 0.35 ± 0.03 d† 1.03 ± 0.06 c 2.15 ± 0.09 b 3.02 ± 0.08 a

Total P (mg g�1) 0.09 ± 0.01 c 0.10 ± 0.01 c 0.18 ± 0.01 b 0.43 ± 0.01 a

NO3
�-N (mg kg�1) 2.64 ± 0.33 c 1.22 ± 0.24 c 14.86 ± 1.24 b 36.99 ± 2.58 a

NH4
+-N (mg kg�1) 3.30 ± 0.09 b 11.21 ± 0.71 b 38.20 ± 3.43 a 31.14 ± 4.37 a

Available P (mg kg�1) 0.50 ± 0.20 c 2.39 ± 0.31 b 5.98 ± 0.35 a 6.98 ± 0.70 a

AMF diversity _‡ 1.56 ± 0.13 b 1.83 ± 0.11 b 2.37 ± 0.05 a

AMF biomass (nmol g�1) 0.04 ± 0.02 c 0.18 ± 0.02 c 0.57 ± 0.15 b 1.08 ± 0.08 a

Microbial biomass (nmol g�1) 7.40 ± 0.99 b 10.52 ± 0.67 b 32.83 ± 4.90 a 38.14 ± 3.43 a

Abbreviations: AMF, arbuscular mycorrhizal fungi; BL, barren land; EF, Eucalyptus forest; MF, mixed broadleaved forest; NH4
+-N, ammonium nitrogenl;

NO3
�-N, nitrate nitrogen; SF, secondary natural forest; Total N, soil total nitrogen; total P, soil total phosphorus

†Different lower-case letters in the same row represent significant differences among the four study forest restoration practices (p < 0.05)
‡Data did not obtain due to the AMF being scarce in the BL

1544 ZHANG ET AL.
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SPSS 24.0 statistical software (IBM, Armonk, NY, USA), one-way

ANOVA was applied to compare the significant difference (p < 0.05)

in soil nutrient variables, GRSPs, soil aggregates, and soil C chemical

compositions among different restoration treatments. Linear regres-

sions were used to develop the relationship between the proportion

of GRSP (GRSP/SOC) and the percentage of different soil C chemical

groups, and between the concentrations of GRSP and SOC. Correla-

tion analyses were used to test the relationship between GRSP and

different soil aggregates.

3 | RESULTS

3.1 | Soil physicochemical properties, the
concentrations of SOC and GRSP

The concentrations of soil total N, total P, NO3
�-N, NH4

+-N, and

available P were significantly increased as forest restoration prog-

ressed (Table 1). Similarly, the SOC concentration was also signifi-

cantly enhanced with the vegetation restoration process. In particular,

the SOC concentration in the forest restoration practices (EF, MF, and

SF) was 5 to 13-times higher than that in the BL (p < 0.05, Figure 3a).

The EE-GRSP concentration ranged from 0.14 to 1.91 mg g�1 dry

soil and was significantly increased by 3.9 to 12.3-times from EF to SF

compared with the BL (p < 0.05, Figure 2a). Similarly, T-GRSP concen-

tration also increased (p < 0.05) with forest restoration, and its highest

concentration (7 mg g�1) was found in the SF, which was 4.6-times

higher than that in the BL (Figure 2a). The ratio of EE-GRSP to T-GRSP

(EE-GRSP/T-GRSP, 0.1–0.3) increased from BL to MF (p < 0.05),

whereas decreased slightly from MF to SF (p > 0.05, Figure 2b).

3.2 | Soil organic carbon chemical composition and
aggregate stability

The 13C NMR analysis showed that SOC had a relatively high percent-

age of O-alkyl-C (�40% of the total), alkyl-C (�32% of the total), and

carbonyl-C (�22% of the total) groups, while the percentage of

aromatic-C was relatively low (�5.02% of the total, Figure 3b) in all of

these restoration sites. The percentage of the relatively easily degrad-

able carbonyl-C was similar in all these restoration sites, and the per-

centage of the relatively easily degradable O-alkyl-C was higher in the

MF than in other restoration treatments. However, the relative per-

centages of the recalcitrant alkyl-C and recalcitrant aromatic-C were

highest in the SF and EF, respectively (Figure 3b).

The proportion of large macroaggregates (> 2 mm) increased,

whereas the proportions of other aggregate sizes (0.25–2 mm, 0.053–

0.25 mm, and <0.053 mm) decreased with the forest restoration

(p < 0.05, Table 2). Significantly greater aggregate stability among res-

toration treatments ranked as SF ≈ MF > EF > BL based on the MWD

values (Table 2). Among different aggregate sizes for the same forest

restoration treatment, significantly greater aggregate proportions

were ranked in descending order as 0.25–2 mm > 0.053–0.25 mm >

(<0.053 mm) ≈ (>2 mm) under BL, and as (>2 mm) > 0.25–

2 mm > 0.053–0.25 mm ≈ (<0.053 mm) under EF, MF, and SF

(Table 2).

F IGURE 2 Easily extracted glomalin-related soil protein (EE-GRSP), total GRSP (T-GRSP), and the ratio of EE-GRSP/T-GRSP among the four
study forest restoration practices. BL, barren land; EF, eucalyptus forest; MF, mixed broadleaved forest; SF, secondary natural forest. The insert
plot is the relative increase of different restoration practices compared to the barren land. Different lower-cases represent significant differences
among the forest restoration practices (p < 0.05)

ZHANG ET AL. 1545
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3.3 | Relationships between GRSP and SOC, soil
carbon chemical composition, and soil aggregate
stability

Averagely EE-GRSP and T-GRSP accounted for 1.7% and 9.6% of

SOC, respectively (Figure 4a), when 37% of C in GRSP (Lovelock

et al., 2004) was adopted. There were no significant differences in

the proportion of EE-GRSP to SOC among all of the vegetation res-

toration treatments (Figure 4a). The proportion of T-GRSP to SOC

significantly decreased with forest restoration, and the lowest and

highest proportions were found in the SF and BL, respectively

(Figure 4a). Regression analyses showed that both EE-GRSP and T-

GRSP had a strongly positive relationship with SOC (p < 0.01,

Figure 4b). Both EE-GRSP and T-GRSP were significantly positively

correlated with the proportion of large macroaggregates (>2 mm)

and MWD, but significantly negatively correlated with aggregates

with smaller particle sizes (0.25–2 mm, 0.053–0.25 mm, and

<0.053 mm) (Table 2).

Different percentages of soil C chemical composition displayed

different correlations with the ratio of GRSP to SOC (EE-GRSP/SOC

and T-GRSP/SOC). Specifically, the percentage of the recalcitrant

aromatic-C or recalcitrant alkyl C increased or decreased with the

ratio of T-GRSP/SOC (Figure 5a,c), but neither of them exhibited any

relationship to the ratio of EE-GRSP/SOC (Figure 5a,c). In addition,

TABLE 2 Soil aggregate relative proportion in the four study restoration sites and the correlations between the relative proportion of soil
aggregates and GRSP content

> 2 mm† 0.25–2 mm 0.053–0.25 mm <0.053 mm MWD

BL 9.24 ± 2.75 c,‡ 52.19 ± 4.86 a,x 27.04 ± 0.97 a,y 12.54 ± 2.40 a,z 1.16 ± 0.13 c

EF 58.24 ± 5.63 b,x 23.79 ± 3.38 b,y 13.63 ± 1.95 b,yz 4.32 ± 0.66 b,z 3.78 ± 0.30 b

MF 79.03 ± 0.71 a,x 13.72 ± 2.44 cd,y 4.78 ± 0.97 c,z 2.46 ± 1.11 b,z 4.86 ± 0.05 a

SF 72.69 ± 2.01 a,x 22.36 ± 1.04 bc,y 3.95 ± 0.94 c,z 1.10 ± 0.16 b,z 4.62 ± 0.11 a

EE-GRSP 0.81** �0.68** �0.72** �0.69** 0.89**

T-GRSP 0.72** �0.66** �0.83** �0.75** 0.79**

Abbreviations: BL, barren land; EF, Eucalyptus forest; MF, mixed broadleaved forest; MWD, mean weight diameter; SF, secondary natural forest
†>2 mm, 0.25–2 mm, 0.053–0.25 mm and <0.053 mm are different soil aggregates size
‡a, b and c represent significant differences among the study forest restoration practices for the same aggregate size (p < 0.05), and x, y and z represent

significant differences among aggregate sizes for the same forest restoration practice (p < 0.05). ** represent p < 0.01

F IGURE 3 The concentrations of SOC (panel a) and the relative percentage of different soil chemical groups (panel b) among the four study
forest restoration practices. BL, barren land; EF, eucalyptus forest; MF, mixed broadleaved forest; SF, secondary natural forest. The insert plot is
the relative increase in restoration practices compared to the barren land. Different lower-case letters (a,b,c,d) represent the significant difference
of different soil chemical groups in the same forest restoration practice (p < 0.05); while bars of the same colour in panel B sharing different
letters (x,y,z) indicate the significant difference in the relative proportion of the same functional group among different forest restoration
practices (p < 0.05). The soil carbon concentration in the BL was too low to obtain useful NMR signals [Colour figure can be viewed at
wileyonlinelibrary.com]
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neither the percentage of the easily degradable O-alkyl C nor

carbonyl-C showed any significant relationship with the ratio of T-

GRSP/SOC (Figure 5b,d).

4 | DISCUSSION

4.1 | Changes in GRSP concentration among the
four study forest restoration practices

The increases of T-GRSP with forest restoration practices probably

resulted from the tradeoff between the production of GRSP by AMF

and the microbial decomposition of GRSP, because both the AMF and

microbial biomass increased from BL to SF (Table 1). Specifically, only

a few kinds of herbaceous plants and small xeric shrubs grew in the

ditches in BL, where the topsoil had been completely eroded (Ren

et al., 2007). Therefore, the degree of AMF colonization in the BL

would not be intensive due to a scarcer root system over there. In

contrast, AMF could be preserved and propagated by E. exserta in the

EF since AMF can promote E. exserta growth (Adjoud et al., 1996).

Similarly, AMF biomass increased in the MF and SF, as did GRSP

(Table 1 and Figure 2a). The similar GRSP concentration under MF

and SF partly revealed that the restoration was effective after

40 years of plantation with mixed broadleaved tree species after the

cutting down of E. exserta trees in the EF. This was in coincidence

with previous studies, which showed that AMF increased with the

increase of plant diversity and biomass production (Hiiesalu

et al., 2014). It is also in line with the fact that higher GRSP was accu-

mulated in forest soil than in herb or shrub soil (Singh et al., 2016;

Singh et al., 2018). Soil microorganisms under MF and SF would prefer

to use the easily decomposable soil organic matter rather than the rel-

atively recalcitrant T-GRSP, although the decomposition rate could

also be increased with restoration due to an increase of the total

microbial biomass.

EE-GRSP is composed of the newly produced or readily

decomposed GRSP in soil (Steinberg & Rillig, 2003). The increase of

EE-GRSP could be attributed to the increased AMF (exuding more

GRSP) because EE-GRSP was significantly correlated with AMF bio-

mass (Figure S1) or the increased microbial biomass (more T-GRSP

decomposed as EE-GRSP) with the progression of restoration

(Table 1). The increased ratio of EE-GRSP/T-GRSP from BL to MF

indicated that the restoration process increased the fraction of labile

GRSP. However, the ratio of EE-GRSP/T-GRSP slightly decreased in

the SF compared with MF (Table 1), which suggested that restoration

climax could be beneficial for the sequestration of recalcitrant GRSP

reserves. Considering the different stability of different fractions of

GRSP, we speculate that although EE-GRSP and T-GRSP have

already reached the maximum value under MF, it is probably still not

enough for benefiting the reservation of the recalcitrant GRSP in this

forest.

In this study, the increased AMF biomass could well explain the

changes in GRSP during the forest restoration process because it sig-

nificantly positively correlated with both EE-GRSP and T-GRSP

(Figure S1). It should, however, be noted that although it is a good

indicator of AMF biomass, the PLFA biomarker 16:1 ω5 also includes

bacterial taxa (Ngosong et al., 2012). In addition, the AMF diversity

increased with the forest restoration as the GRSP (Table 1), which

supported our first hypothesis.

F IGURE 4 The proportion of EE-GRSP and T-GRSP in SOC among the four study forest restoration practices (panel a), and the relationship
of EE-GRSP and T-GRSP to the SOC content (panel b). BL, barren land; EF, eucalyptus forest; MF, mixed broadleaved forest; SF, secondary
natural forest. The insert plot is the relative increase in restoration practices compared to the barren land. Different lower-case letters above bars
of the same filling colour represent significant differences among different forest restoration practices (p < 0.05)
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4.2 | Changes in soil organic carbon, chemical
composition, and soil aggregates among the four study
forest restoration practices

SOC significantly increased with forest restoration (Figure 3a), which

is in line with previous studies (Li et al., 2012; Liu et al., 2018). The

increase of SOC is mainly derived from the input of plant residues to

the soil with restoration age (Post & Kwon, 2000). The similar SOC in

the MF and SF restoration practices (Figure 3a) was in line with a

meta-analysis result which showed that the secondary and primary

tropical forest had a similar capacity to sequestrate SOC, because soil

carbon in tropical forests can be accumulated rapidly and is resilient

to land-use change (Martin et al., 2013). In addition, studies in the

same site found that plant biomass and soil C sequestration capacity

under MF and SF were comparable (Tang et al., 2018; Zhang

et al., 2019). This was probably because the relevant C input and out-

put were equally. Nevertheless, this aspect requires further study

because we have only observed that soil microbial biomass (partly

representing decomposition capacity, Table 1) in MF was comparable

with that in the SF.

Soil MWD also increased with forest restoration (Table 2). The

increased SOC and plant diversity was the possible underlying mecha-

nism that improved soil aggregate stability in the process of vegeta-

tion restoration in this study area (Wei et al., 2013). Furthermore, the

hyphae of AMF would facilitate the formation of soil aggregates

(Morris et al., 2019), which was supported by our AMF diversity and

biomass results (Table 1). These results indicated that the restoration

of vegetation could improve the formation and stabilization of soil

macroaggregates, and hence, improve the stability of soil structure

and soil C storage.

The solid-state 13C NMR spectra of SOC showed a similar recalci-

trant C percentage (aromatic-C + alkyl-C) in the EF and SF

(Figure 3b). The reasons for the relatively higher recalcitrant C per-

centages in the EF and SF were different because the aromatic-C in

F IGURE 5 The correlation of the relative proportions of each soil chemical composition and the proportion of GRSP in SOC among the four
study forest restoration practices. The trendline is present if significant (p < 0.05)
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the EF was higher than in the other two restoration practices,

whereas the SF had a higher proportion of alkyl-C than the other two

forests (Figure 3b). In the EF, the rich aromatic-C probably derived

from the eucalyptus leaves because they were rich in aromatic hydro-

carbon, as a large amount of aromatic-C could be returned to the soil

through fallen leaves (Rodriguez et al., 2012). In contrast, SF had the

highest microbial biomass among all of the restoration sites (Table 1).

As soil microorganisms would prefer to use labile C rather than the

resistant components, the recalcitrant C could be deposited and grad-

ually sequestrated in soil. Our results were also supported by the

results of SOC density fractionation analysis, which showed that the

proportions of recalcitrant C in the EF and SF were higher than that in

the MF (Zhang et al., 2019). As a result, the SF and the EF could

enhance the ratio of soil recalcitrant C fractions and thus benefit soil

C sequestration.

4.3 | Relationships between GRSP and SOC
sequestration among the four study forest restoration
practices

The higher ratio of T-GRSP/SOC in the BL and the EF than in the MF

and SF (Figure 4a) did not support our second hypothesis. This lower

ratio in the MF and SF was caused by more proportional increases in

SOC than in T-GRSP as shown in the insert plot in Figures 2a and 3a.

The disproportionate increase of T-GRSP and SOC in different resto-

ration practices could attribute to the fact that the turnover of GRSP

was slower than that of SOC because the recalcitrant index of SOC

was significantly lower than that of GRSP (Zhang et al., 2017), and the

SOC concentration was higher under MF and SF than under BL and

EF (Figure 3a). However, there were insignificant differences in the

ratio of EE-GRSP to SOC (EE-GRSP/SOC) between different restora-

tion practices (Figure 4a), which might be due to a similar increase in

the magnitude of EE-GRSP and SOC among all of the restoration

practices (Figures 2a and 3a). Furthermore, the positive correlation

between GRSP and SOC (Figure 4b) was in line with studies in grass-

lands (Zhang et al., 2020) and subtropical forests (Zhang et al., 2017).

The increase of GRSP but the decreased percentage of GRSP in SOC

in the forest restoration process suggest that GRSP was more impor-

tant for SOC accumulation in the earlier forest restoration practices.

The positive correlations between the ratio of GRSP/SOC and

the aromatic-C percentage (Figure 5c) revealed that GRSP was proba-

bly related to the recalcitrant C sequestration at our restoration sites

as aromatic-C was enriched in GRSP (Zhang et al., 2017). The percent-

age of the alkyl-C in GRSP was comparable or significantly lower than

that in SOC (Zhang et al., 2017), which partly explains why there was

a negative correlation between the ratio of T-GRSP/SOC and alkyl-C

percentage (Figure 5a). Moreover, our results showed that EE-GRSP

and T-GRSP were significantly positively correlated with large macro-

aggregates (> 2 mm) and MWD (Table 2). These findings were consis-

tent with the results from a path analysis that indicated that GRSP

significantly promoted water-stable aggregates in a grassland in Cali-

fornia (Rillig et al., 2002). Miller and Jastrow (2000) also suggested

that most of the increase in large macroaggregates was due to the

binding of small particles into macroaggregates by GRSP. GRSP func-

tions as a 'super glue' and forms a ‘sticky-string-bag’ with the mycelia

of AMF, making them important for soil structure in the long term

(Rillig, 2004; Wright & Upadhyaya, 1998). In addition, GRSP promoted

soil aggregate formation and benefited SOC accumulation because it

provided physical protection from microbial degradation for labile C

within aggregates (Rillig, 2004). In summary, the accumulation of

GRSP would be beneficial to the soil C sequestration in the tropical

coastal degraded forest ecosystem restoration process, as in other

natural and agricultural ecosystems (Liu et al., 2018; Wright

et al., 2007).

5 | CONCLUSION

Restoration of barren lands significantly increases the concentration

of GRSP because of the increase of AMF biomass and diversity after

decades of reforestation. Accompanied by the accumulation of GRSP,

forest restoration also improved the soil aggregate stability and pro-

portion of soil recalcitrant C fractions. GRSP probably plays a more

important role in SOC accumulation in the single species forest than

in the multispecies community because the concentration of GRSP

increased, but the ratio of GRSP to SOC decreased with forest resto-

ration. GRSP could be beneficial to soil C sequestration by increasing

the proportion of recalcitrant C components and soil aggregate stabil-

ity. Given the important role of GRSP in SOC sequestration, our

results provide a specific restoration strategy to improve degraded

coastal lands. Specifically, we can inoculate AMF or plant-AMF hybrid

plantations (plants that are colonized by AMF) to improve soil physical

stability and SOC sequestration.
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