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A B S T R A C T   

Intrinsic water-use efficiency (iWUE) is a key physiological trait; however, the spatiotemporal variation in iWUE 
and which factors affect iWUE in the tropics and subtropics are poorly known. We determined the temporal 
(1920-2010) and spatial patterns of iWUE using leaf carbon-isotopic composition (δ13C) of 1,811 herbarium 
specimens and associated these patterns with environmental factors across biomes in southern China. We found 
that iWUE increased by 15.7 μmol mol− 1 in the entire studied area from 1920 to 2010. The iWUE declined from 
west to east in southern China, with higher values concentrated in the southwest. Rising CO2 concentrations 
([CO2]), N deposition, increases in mean annual temperature (MAT) and vapor pressure deficit (VPD), and 
changes in temperature seasonality (TS) contributed to the spatiotemporal changes in iWUE. Our results confirm 
that, in addition to a continuous increase in iWUE has, the rate of change of iWUE decreased in southern China in 
the later years. Multiple atmospheric factors jointly determine the changes in both iWUE and the rate of change 
of iWUE in the studied regions.   

1. Introduction 

Over the past century, the physiology of plants has changed in 
response to rising atmospheric carbon dioxide concentrations ([CO2]), 
global warming, changes in precipitation, and increased nitrogen (N) 
deposition (Adams et al., 2020; Soh et al., 2019). This change can be 

observed in leaf functional traits from stomatal to organ levels (Soh 
et al., 2019) and has altered carbon-water relationships from individual 
plants to forest ecosystems (Cernusak et al., 2019; Maxwell et al., 2018; 
Vogado et al., 2020). 

By definition, water-use efficiency (WUE) is closely associated with 
carbon fixation and water loss in plants (Cernusak et al., 2019), and with 
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net primary production of ecosystems by altering carbon-water cycles 
(Adams et al., 2020). Foliar carbon-isotopic composition (expressed as 
δ13C) is widely used as a proxy for intrinsic WUE (iWUE) (Farquhar 
et al., 1982; Huang et al., 2016; Peñuelas et al., 2011). Based on the δ13C 
of tree rings or specimens, for example, previous studies showed that 
plant iWUE increased over the past decades globally or regionally 
(Huang et al., 2016; McLauchlan et al., 2010; Peñuelas et al., 2011) 
which can be affected by biotic and abiotic factors such as species (Soh 
et al., 2019), vapor pressure deficit (VPD), temperature, wind speed, and 
soil properties (Cornwell et al., 2018; Maxwell et al., 2018). On the other 
hand, there some different views about the correlations between plant 
iWUE and environmental changes. Specifically, a growing number of 
studies suggest that we have overestimated the effect of CO2 on plant 
iWUE, and that the effect of CO2 on iWUE is diminishing at a global scale 
(Adams et al., 2020; Marchand et al., 2020). 

Tropical and subtropical forests in southern China represent the 
largest terrestrial sink for CO2 in China (Wang et al., 2020a) and have 
been affected by many facets of global change, e.g., atmospheric CO2 
and N deposition, over the past hundred years (Liu et al., 2013; Yu et al., 
2019). It is well established that abiotic factors, e.g., atmospheric [CO2], 
soil, and climate and their interactions affect iWUE (Giguere-Croteau 
et al., 2019; Quadri et al., 2021; Silva et al., 2016). However, the 
changes in iWUE and their driving factors in the long term and at large 
scales are poorly studied in southern China’s forests in comparison with 
well-studied ecosystems in other biomes in central and north China, e.g., 
temperate deciduous and montane coniferous forests (Liu et al., 2018). 
This is because of the many challenges accessing reliable field sites in 
that remote region where there are a limited number of research in-
stitutes to provide adequate data and materials for this type of study. 
Understanding how iWUE in tropical and subtropical ecosystems 
temporally and spatially responds and which factors drive the responses 
that may differ from findings from temperate biomes (Huang et al., 
2017), is important for assessing the forest structure and functioning to 
global change. 

Temporal changes in iWUE can be quantified via δ13C values in tree 
ring series (Adams et al., 2020). Previous studies have shown small 
variation in δ13C values (typically < 1‰) between co-located old and 
young trees within systems as diverse as tropical montane forests of 
Mexico (Quadri et al., 2021) and alpine tree lines of Tibet (Silva et al., 
2016). However, the annually-resolved “replication” of δ13C values 
among adjacent tree rings can sometimes not be considered as inde-
pendent measures indicating the temporal shifts in iWUE in response to 
changes in climate and CO2 concentration. To address this limitation, we 
used independent records from multiple plant species collected across 
broad environmental gradients, using a hierarchical spatial design as 
proposed by Maxwell et al. (2018), combined with historical data of 
leaves from independently collected herbarium specimens of the same 
species. We tested these hypotheses: 1) iWUE generally increased in 
response to rising atmospheric [CO2], but the strength of that response 
varied predictably across regions depending on climatic conditions (e.g., 
subtropical and tropical forests of China show different sensitivities in 
that response) reflecting patterns observed in other parts of the world 
(Adams et al., 2020; McLauchlan et al., 2010; Peñuelas et al., 2011). 2) 
Within biomes, iWUE varied among species (e.g., due to species traits) 
and site conditions (e.g., due to soil properties) (Maxwell et al., 2018). 
Testing these hypotheses will improve our ability to develop theoretical 
and computational scenarios to predict changes in the carbon-water 
cycle of forest ecosystems under global change. 

2. Materials and Methods 

2.1. Specimen collection 

We selected 12 common broad-leaved species (five shrub and seven 
tree species, Table S1) for foliar collection based on their wide distri-
bution in tropical and subtropical forests of China (18–34◦N, 97–122◦E). 

All were sampled from the Herbarium of South China Botanical Garden, 
Chinese Academy of Science (IBSC, http://herbarium.scbg.cas.cn/). We 
collected at least three leaves from each preserved herbarium sheet that 
met the criteria of 1) complete spatial and temporal metadata, 2) free 
from chemical treatments that might influence the analysis, and 3) 
conspicuous flowers and/or fruits on herbarium specimens. Although 
herbarium labels did not indicate the canopy position that the leaves 
were sampled from, leaves of shrubs and herbs generally were collected 
from the understory, while leaves of trees were collected from the sun- 
exposed side of the canopy. During the processes of collecting leaves 
from herbarium specimens, we sampled lower down on each branch to 
obtain leaves that were as mature as possible to decrease the effects of 
young leaves on δ13C values (Vogado et al., 2020). We collected leaves 
from a total of 1,811 out of 5,835 possible herbarium specimens, 
spanning 90 years (1920–2010) and located at 429 sites in subtropical 
and tropical forests of southern China (Fig. S1, S2; Table S2). 

2.2. Leaf variables 

All analyses were performed in R v 4.0.3 (R Core Team, 2020), except 
where otherwise indicated. In the following methods, we denote func-
tions used with the format of package::function to improve analysis 
replicability. 

We carefully cut off the leaves from each specimen and kept them in 
a sealed bag. We dried the samples to a constant weight at 65◦C for 72 
hours and ground them before analysis. We determined C and N con-
centrations and stable C isotopes with a mass spectrometer (Thermo 
Finnigan, North Pod Waltham, Massachusetts, USA) coupled with an 
elemental analyzer (Costech Analytical Technologies, Valencia, Cali-
fornia, USA). 

We calculated iWUE based on the δ13C values according to Farquhar 
and Richards (1984) and Ehleringer and Cerling (1995). We discarded 
395 of the initial 1,811 measurements, because they were outside the 
expected δ13C values range of -30 to -22‰ (Cerling et al., 1997) or 
outside our four climatic regions. We calculated stomatal isotopic frac-
tionation using the measured values for each plant sample (δ13Cp) and 
annual δ13C values of the air (δ13Ca) derived from Graven et al. (2017) 
(Eq. (1)), and adjusted for elevation and the Suess effect using a modi-
fied version of the pin function of McCarroll et al. (2009). We calculated 
C isotopic discrimination (Δ13C) via Eq. (1): 

Δ13C=
(
δ13Ca − δ13Cp

)
/(

1+
δ13Cp

1, 000

)

(1) 

We calculated the ratios of internal CO2 (Ci) to atmospheric CO2 
concentration (Ca, data are from NASA GISS [https://data.giss.nasa. 
gov/modelforce/ghgases/]), using Eq. (2): 

Ci

Ca
=

(

Δ13C+ f
Γ∗
Ca

− as

)/

(b − as) (2)  

where as and b indicate the stomatal diffusive and photosynthetic frac-
tionation constants, respectively (as: 4.4‰ and b: 27‰) (Farquhar and 
Richards, 1984); f is the fractionation associated with photorespiration 
(≈12‰) (Lanigan et al., 2008; Marchand et al., 2020); г* is the CO2 
compensation point in the absence of mitochondrial respiration, repre-
senting the temperature of the photosynthetically active period (Ber-
nacchi et al., 2001), which is obtained by mean annual temperature and 
elevation via Eq. (3) using the rpmodel::gammastar function (Bernacchi 
et al., 2001; Stocker et al., 2020). 

Γ∗ = 4.332 ×
Patm

101.3
× exp

(

378.3×
MAT − 25

298.15 × 8.3145 × (MAT + 273.15)

)

(3)  

where MAT is mean annual temperature; Patm (Pa) is atmospheric 
pressure, obtained from site elevation via Eq. (4) using the rpmodel:: 
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patm function (Allan et al., 1998; Stocker et al., 2020). 

Patm= 101325×
(

298.15 − 0.0065 × z
298.15

)5.26

(4)  

where z is the elevation above sea level (m). 
We then solved this for iWUE, using the ratio of water vapor to CO2 

diffusivity (1.6) via Eq. (5) (Huang et al., 2016): 

iWUE=
A
gs
=

1 − Ci
Ca

1.6
Ca

(5)  

2.3. Environmental factors 

We used partial pressure of CO2 (PCO2 , Eq. (6)) to test the correlations 
between iWUE and [CO2] (Marchand et al., 2020). 

PCO2= 10− 6×CO2× Patm (6)  

where Patm is atmospheric pressure, obtained from Eq. (4). 
We extracted monthly mean temperature, mean vapor pressure 

(VAP), and mean potential evapotranspiration (PET), total precipitation, 
maximum and minimum temperature (Tmax and Tmin, respectively) from 
Climate Research Unit (CRU) TS v4.05 (Harris et al., 2020), and 
extracted monthly wind speed and solar radiation during 1920-2010 
from the Terrestrial Hydrology Research Group at Princeton Univer-
sity (Sheffield et al., 2006). The spatial and temporal resolution of the 
above datasets are 0.5◦ and month, respectively. We calculated mean 

annual temperature (MAT), mean annual precipitation (MAP), temper-
ature and precipitation seasonality (TS and PS, respectively) with 
dismo::biovars based on monthly precipitation, Tmax and Tmin (Fick and 
Hijmans, 2017), and calculated vapor pressure deficit (VPD) based on 
VAP and monthly temperature (Grossiord et al., 2020). We defined leaf 
C/N ratio (tested in this study), CO2, MAT, MAP, TS, PS, VPD, PET, wind 
speed, and solar radiation as time series factors because there are annual 
values for these factors from 1920 to 2010. 

We extracted pH values, cation-exchange capacity (CEC), clay (Clay) 
and silt (Silt) content, soil organic matter (SOM), available nitrogen 
(AN) and phosphorus (AP) concentration, and total nitrogen (TN) and 
phosphorus (TP) concentration at 0-80 cm depth in soil in forests across 
China from Shangguan et al. (2013). Total mean N deposition (Ndep) 
during 1990-2010 at each site was extracted from Jia et al. (2019). The 
spatial resolution of the above datasets is 30 arc-seconds. We defined soil 
pH, CEC, Clay, Silt, SOM, TN, TP, AN, AP, and N deposition at our sites 
as non-time series factors. 

2.4. Statistical analyses 

We averaged foliar Ci, Ci/Ca ratios, Δ13C values and iWUE of same 
species at the same site (defined as all specimens within each 0.1◦ lati-
tude and longitude) within a year. Therefore, we had 1,286 observations 
included in data analyses. 

We performed variance partition of foliar Ci, Ci/Ca ratios, Δ13C 
values and iWUE to determine the relative effect of time, space (latitude 
and longitude), and species over the past 90 years via the vegan::varpart 

Fig. 1. Temporal patterns of the intracellular CO2 concentration (a, Ci), the ratio of intracellular CO2 concentration to atmospheric CO2 concentration (b, Ci /Ca), 
Δ13C (c), and iWUE (d) in southern China over the past 90 years. Blue dots represent partial residuals from the generalized additive mixed models (GAMMs), that is, 
the estimates for the variable plus the residuals. Red lines and gray shadings are, respectively, for the predicted values and 95% confidence intervals from 
the GAMMs. 
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function (Peres-Neto et al., 2006). We used Mann-Kendall trend test via 
the trend::mk.test function to test the trend of iWUE over the past 90 
years. We calculated the annual rate of change in iWUE (defined as mean 
changed value in iWUE each year) with a 45-year moving window for 
each species from 1920 to 2010 (Wang et al., 2020b). Specifically, we set 
45 years as sliding windows (e.g., 1920-1965, 1921-1966, 
…,1965-2010) to capture long-term responses in a temporally replicated 
manner, rather than high-frequency variation in ecophysiological per-
formance, which may arise, for example, from single extreme weather 
events. Accordingly, the regression slopes of sampling year and plant 
performance were generated for each window using the 
annually-resolved rate of change calculated for iWUE. We used a 45-year 
moving window, because the sample size of each species in each year 
was too small to fit by linear regression; 45 years was the largest win-
dow, and this window avoided data overlap between the first- and 
last-time window. 

We determined the effects of environmental factors on temporal and 
spatial patterns of iWUE in two steps. First, we tested the correlation 
between multiple environmental factors and plant iWUE based on our 
datasets; and, second, we assessed how these factors affected the tem-
poral and spatial patterns of plant iWUE based on the temporal and 
spatial variation of each important factor. We used all data (n = 1,416) 
to tested the correlations between time-series factors and plant iWUE. 
Meanwhile, we subdivided our data from 1990 to 2010 (n = 152) to test 
the correlations between iWUE and non-time-series factors in southern 
China, since there is no available high-quality and long-term dataset of 
soil factors and N deposition (i.e. soil properties and N deposition). 
There are three reasons why we selected samples during 1990-2010: 1) 
the narrow time span can decline the effects of sampling year on the 
analyses related with no-time serial factors; 2) the soil properties 
extracted from Shangguan et al. (2013) were derived using soil profiles 
sampled in the Second National Soil Survey during 1979–1985; and 3) 

the temporal variation for soil properties was small compared with 
spatial variation (Poggio et al., 2021). We divided the sampling sites for 
the historical specimens into four ecological regions, namely northern 
subtropical region (NS), central subtropical region (CS), southern sub-
tropical region (SS), and tropical region (TR), based on Chinese vege-
tation regionalization (http://www.resdc.cn/data.aspx?DATAID =125), 
and into four soil types based on criteria of the United States Department 
of Agriculture (Hengl et al., 2017), namely Alfisols, Entisols, Inceptisols, 
and Ultisols. We tested the difference in iWUE via linear mixed effect 
models along ecological regions and soil types, with year and species as 
random effects (Crawley, 2012). We determined differences in iWUE 
among ecological regions and soil types with Tukey’s honestly signifi-
cant difference (HSD) post–hoc test with lsmeans::lsmeans (Lenth, 
2016). 

There are two steps to determine the correlations of multiple envi-
ronmental factors on iWUE. First, we calculated the relative importance 
of all environmental factors as described by Du et al. (2020) and Terrer 
et al. (2016). In brief, we calculated a series of models and extracted 
Akaike weight of all possible models using the glmulti:: glmulti function 
(Calcagno and de Mazancourt, 2010), and then calculated the relative 
importance of factors by summing the Akaike weights for the models in 
which the environmental factor was included (Calcagno and de 
Mazancourt, 2010; Terrer et al., 2016). A critical relative importance 
value of 0.8 was set to distinguish between the important and less 
important environmental factors (Du et al., 2020; Terrer et al., 2016). 
Second, after obtaining these important factors, we used generalized 
additive mixed models (GAMM) to examine the relationship between 
iWUE and environmental factors with high relative importance (> 0.8) 
with the formula: iWUE~1+s(factor 1)+s(factor 2)+…+s(factor n)+
( site
Species ) + corCAR1(year| site

Species ). In this formula, factors 1, 2, …, and n 
indicate the environmental factors with relative importance over 0.8, 

Fig. 2. Spatial pattern of intrinsic water-use efficiency (iWUE, n =152, the sites where samples were collected) over the period of 1990-2010. Black lines in top and 
right panel indicate the variation of iWUE along longitude and latitude. NS: northern subtropics, CS: central subtropics, SS: southern subtropics; and TR: tropics. The 
spatial pattern of iWUE was obtained by Kriging interpolation in ArcGIS 10.3 for Desktop. 
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site
Species represents the random effect of species nested within sample site, 
and corCAR1 allows for unequally spaced observations (Marchand et al., 
2020). We used the vegan::varpart function to calculate the variance 
partition of each environmental factor that was significantly correlated 
with iWUE in GAMMs on iWUE (Peres-Neto et al., 2006). We established 
two full GAMMs (Table S3) based on all environmental factors focused 
on this study to test if there was omission of environmental factors from 
the results of the first step. The results showed that all the significant 
factors in GAMMs had a high relative importance in the first step. 

We performed dominance analysis to calculate the incremental R2 

(IR2) of important factors to plant iWUE (Azen and Budescu, 2003; Zhao 
et al., 2022). Single-factor in the full GAMM was picked and fitted into 

the GAMM to develop a series of sub-models (Zhao et al., 2022). The IR2 

of each environmental factor was derived via averaging all the differ-
ences between each possible sub-model excluding or including the 
relevant factor. Significance was set at P < 0.05. 

3. Results 

3.1. Spatiotemporal patterns of iWUE 

Foliar Ci, Ci/Ca ratios, Δ13C values and iWUE varied with time (year) 
and space (longitude and/or latitude, Fig. S3) which supports a part of 
hypothesis one. Overall, foliar Δ13C values and Ci/Ca decreased, but 
foliar Ci and iWUE increased by 46 ppm and 15.7 μmol mol− 1, respec-
tively (Fig. 1, Table S4). Consistent patterns of change in Ci, Ci/Ca, Δ13C, 
and iWUE (Table S5) were observed in all studied species (Fig. S4), life 
forms (Fig. S5), leaf types (Fig. S5), ecological regions (Fig. S6), and soil 
types (Fig. S7). However, the moving window of iWUE showed a 
nonlinear change, with slow, fast, and constant rates at the first, middle, 
and late periods of 1920-2010, respectively (Fig. S8). Intrinsic water-use 
efficiency did not vary spatially among the four regions and soil types 
(Fig. S9). However, iWUE was higher in the southwest than in other 
regions in our study (Fig. 2). 

3.2. Correlations between factors and iWUE 

For climatic and biotic factors, the relative importance of four fac-
tors, i.e. PCO2 , VPD, MAT, and TS, were over 0.8 (Fig. 3a). All these 
relatively important factors significantly affected iWUE (Table 1), with 
PCO2 and VPD positively, but MAT and TS negatively affecting iWUE 
(Fig. 4). The four factors explained 21% of the variation of plant iWUE of 
all samples collected during 1920-2010 (Table 1). Two non-time series 
factors, i.e. N deposition and available phosphorus had a high relative 
impact on iWUE (Fig. 3b, Table 1), but only N deposition was signifi-
cantly correlated with plant iWUE (Fig. 4). Nitrogen and available 
phosphorus explained 7% of the variations of iWUE of samples collected 
during 1990-2010 (Table 1). The PCO2 , N deposition, MAT, TS, and VPD 
explained approximately 9, 7, 7, 3, and 2% of the total variation of iWUE 
in southern China’s forests (Table 1). 

4. Discussion 

The present results indicate that there was a huge temporal and 
spatial variability in iWUE in southern China’s forests over the past nine 
decades, and the variabilities of iWUE were not only associated with 
atmospheric CO2 concentrations, but also greatly affected by climatic, i. 
e. MAT, TS, VPD, and N deposition in southern China over the past 90 
years, confirming that multiple environmental factors affect plant iWUE 
(Cornwell et al., 2018; Maxwell et al., 2018; Silva and Lambers, 2021; 
Tang et al., 2022). Nevertheless, the increased patterns of plant iWUE 
were observed for all species, ecological regions, and soil types. The 
uniform patterns might be related to the important role of atmospheric 
CO2 in impacting carbon-water exchange in plants (Peñuelas et al., 
2011), which is consistent with a part of our first hypothesis that iWUE 
has generally increased in response to rising atmospheric [CO2]. The 
significant increase of iWUE in forests of southern China over the past 90 
years is consistent with the patterns found by McLauchlan et al. (2010) 
using specimens spanning 130 years in temperate grasslands, and by 
Peñuelas et al. (2011) using a global database covering all major forest 
biome types, but inconsistent with Huang et al. (2016), who found that 
iWUE decreased by 30% from the 1950s to 2010. 

The overall temporal patterns of increasing iWUE in this study and 
others, e.g., Peñuelas et al. (2011) and McLauchlan et al. (2010), might 
be caused by decreases in stomatal conductance due to elevated atmo-
spheric [CO2]. Additionally, the changes in VPD, N deposition, and TS 
also contributed to the temporal patterns of iWUE over the past 90 years 
in southern China (Fig. S10). It is generally well understood that a high 

Fig. 3. Relative importance of time series (a, 1920-2010) and non-time series 
(b, 1990-2010) environmental factors on leaf iWUE. Relative importance 
derived from the sum of the Akaike weights based on the results of model se-
lection using Akaike information criterion (AIC). Gray dashed lines indicate cut- 
off values of relative importance (0.8) which distinguished important and un-
important. MAT: mean annual temperature; PCO2 : partial pressure of atmo-
spheric CO2; TS: temperature seasonality; VPD: vapor pressure deficit; Wind: 
wind speed; PS: precipitation seasonality; leaf C/N: the ratio of leaf carbon to 
nitrogen concentrations; Srad: solar radiation; PET: potential evapotranspira-
tion; MAP: mean annual precipitation; Ndep: total N deposition; AP: available 
phosphorus concentration; Silt: soil silt content; AN: available nitrogen con-
centration; TP: soil total phosphorus concentration; Clay: soil clay content; pH: 
soil pH; CEC: soil cation exchange capacity; TN: soil total nitrogen concentra-
tion; and SOM: soil organic matter. 

Table 1 
Summaries of generalized additive mixed models (GAMMs). EDF: Estimated 
degree of freedom; IR2: incremental R2; PCO2 : partial pressure of CO2, VPD: vapor 
pressure deficit, MAT: mean annual temperature, TS: temperature seasonality 
(TS).   

Factor EDF F IR2 P R2 

Time series (1920- 
2010) 

PCO2 3.73 46.65 0.09 <

0.001 
0.21 

VPD 2.37 8.60 0.02 <

0.001  
MAT 1.00 128.8 0.07 <

0.001  
TS 3.94 14.88 0.03 <

0.001  
Non-time series 

(1990-2010) 
N 
deposition 

1.00 9.97 0.06 0.002 0.06 

Available P 1.00 1.32 <

0.01 
0.253   
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Fig. 4. Partial effects of partial pressure of CO2 (a, PCO2 ), mean annual temperature (b, MAT), temperature seasonality (c, TS), vapor pressure deficit (d, VPD), N 
deposition (e), and soil available phosphorus concentration (soil available P, f) on iWUE. Blue dots represent partial residuals from the generalized additive mixed 
models (GAMMs), that is, the estimates for the variable plus the residuals. Red lines and gray shadings are, respectively, the predicted values and 95% confidence 
intervals from the GAMMs. Solid and dashed lines indicate fitted significant and non-significant results, respectively, at P < 0.05. 
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VPD can result in a decline in stomatal conductance, thus increasing 
iWUE (Grossiord et al., 2020). In contrast, high climatic variability 
might negatively affect iWUE by decreasing plant productivity (New-
berry, 2010). The difference between our study and Huang et al. (2016) 
might be explained by the different time-scale (continuous vs discrete 
with large gaps) and region-scale (whole southern China vs several sites 
(Guling)). The discrete-time with large gaps and single sites might be 
affected by environmental events, e.g., temperature fluctuation and N 
deposition which can be avoided by using continuous-time and 
large-scale data sets. Specifically, the decreases of iWUE in Huang et al. 
(2016) were caused by huge differences in N deposition between 1950s 
and 2014 in Guling, with a negative correlation between N deposition 
and iWUE which was also observed in the present study and others (Lu 
et al., 2018). Although N deposition increased significantly, the 
increased rate significantly varied among sites in southern China (Yu 
et al., 2019). Furthermore, iWUE can also be affected by other envi-
ronmental factors, i.e. CO2, MAT, and VPD. Therefore, iWUE might in-
crease on a larger studied scale, i.e. southern China, with decreases in 
special small sites such as Guling, where N deposition strongly increased 
over the past decades (Huang et al., 2016). 

The patterns of annual rate of change of iWUE support another part 
of our first hypothesis that the strength of that response varies predict-
ably across regions depending on climatic conditions, which might be 
caused by the diminishing effects of atmospheric CO2 on iWUE (Adams 
et al., 2020) and the increases in air temperature and N deposition. 
There are several possible causes explaining the decline in annual rate of 
change of iWUE. First, although iWUE can increase at elevated atmo-
spheric [CO2] as mentioned above, the increasing rate of change of 
iWUE may be constrained by increasing nutrient limitation (e.g., P) 
across biomes (Correa-Díaz et al., 2020; Liles et al., 2019; Maxwell and 
Silva, 2020; Peñuelas et al., 2017; Quadri et al., 2021; Wang et al., 
2020b). Specifically, as the studied samples came from southeast China 
with sub-tropical/tropical mesic/wet and hot (on average) climates, the 
soils tend to be low in plant-available P (Hou et al., 2020). This, together 
with the increasing soil N saturation by continuous N deposition (Lu 
et al., 2018) should drive steadily increasing P limitation, which, in turn, 
can limit an increase in iWUE resulting from an increasing atmospheric 
CO2 concentration (Adams et al., 2020). Second, high temperatures 
might increase water loss through transpiration and decrease iWUE 
(Matthews and Lawson, 2019). The MAT in southern China significantly 
increased since 1980 (Fig. S10b) which might limit the increases in plant 
iWUE and thus decreasing ΔiWUE. Third, the positive effects of N 
deposition on transpiration rates might also directly contribute to de-
creases in ΔiWUE. A 10-year experiment adding N to an already N-rich 
tropical forest in southern China showed that trees maintain foliar 
nutrient concentrations, which we also observed in the present study 
(Fig. S11), possibly due at least in part to increasing transpiration rates, 
and to iWUE generally decreasing with adding N (Lu et al., 2018). 
Fourth, high S deposition can compromise the formation of leaf cuticular 
waxes and stomatal structure due to altering the apoplastic pH and 
electrochemical potential gradient across the guard cell plasmalemma 
(Eamus and Fowler, 1990; Shepherd and Griffiths, 2006). Therefore, the 
high level of sulfur (S) deposition in China in the recent past (Yu et al., 
2017; Zhao et al., 2021) can also cause a decline ΔiWUE via declining 
plant growth and productivity (Silva et al., 2015). Therefore, we surmise 
that the temporal patterns of the annual rate of change of iWUE in this 
study was most likely caused by increasingly severe P limitation and 
decreases in transpiration under high N deposition, high S deposition, 
global warming and continuously increasing atmospheric CO2 concen-
trations (Adams et al., 2020; Hou et al., 2020; Yu et al., 2019). 

The iWUE substantially declined from the west to the east of 
southern China, with higher values concentrated in the southwest 
(Fig. 2), partly coinciding with our second hypothesis and the findings of 
Li et al. (2019), and supporting Cooley et al. (2022) who found a 
remarkably variation in WUE even at a small spatial scale. The spatial 
pattern of iWUE in our study was consistent with the spatial patterns of 

TS, VPD, and N deposition (Fig. S12), which suggests the important role 
of the three factors in impacting spatial patterns of plant iWUE in south 
China. It is worth mentioning that we did not observe significant cor-
relations between plant iWUE and soil properties which might be 
attributed to the lack of long-term soil data. However, given the higher 
variation of soil properties in space than in time (Poggio et al., 2021) and 
the significant correlations between soil properties (e.g., soil pH, silt and 
clay) and foliar δ13C or iWUE reported in previous studies (Cornwell 
et al., 2018; Maxwell et al., 2018), further studies should be conducted 
to address the role of soil properties affecting spatial patterns of iWUE in 
tropical and subtropical forests. 

5. Conclusion 

Mean iWUE of 12 common woody species increased by 15.7 μmol 
mol− 1 over the past 90 years in southern China, but the annual rate of 
change in iWUE showed an S-curve pattern. We identified that temporal 
and spatial patterns of iWUE were associated with changes in atmo-
spheric [CO2] (+), VPD (+), MAT (-), TS (-), and N deposition (-). 
Changes in [CO2], MAT, TS, VPD, and N deposition affected the tem-
poral patterns, and changes in TS, VPD and N deposition impacted the 
spatial patterns. The present regional-scale patterns of iWUE of forest 
tree species help to improve predictions of ecological processes and 
functions including C and water cycles of forest ecosystems under global 
change. 
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