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One sentence summary: This study first elucidates the shifts in the relative contributions of balanced-variation and abundance-gradient components to total
temporal g-diversity of bacterioplankton communities along the trophic state gradient, which are linked to the changes in the balance between deterministic and
stochastic processes.

Editor: Martin W. Hahn

Abstract

Unveiling the rules of bacterioplankton community assembly in anthropogenically disturbed lakes is a crucial issue in aquatic ecol-
ogy. However, it is unclear how the ecological processes underlying the seasonally driven bacterioplankton community structure
respond to varying degrees of lake eutrophication. We, therefore, collected water samples from three subtropical freshwater lakes
with various trophic states (i.e. oligo-mesotrophic, mesotrophic, and eutrophic states) on a quarterly basis between 2017 and 2018.
To innovatively increase our understanding of bacterioplankton community assembly along the trophic state gradient, the total bac-
terioplankton community dissimilarity was subdivided into balanced variation in abundances and abundance gradients. The results
indicated that balanced-variation component rather than abundance-gradient component dominated the total temporal g-diversity
of bacterioplankton communities across all trophic categories. Ecological stochasticity contributed more to the overall bacterioplank-
ton community assembly in the oligo-mesotrophic and mesotrophic lakes than in the eutrophic lake. The reduced bacterioplankton
network complexity at the eutrophic level was closely associated with the enhancement of environmental filtering, showing that bac-
terioplankton communities in eutrophic lakes are likely to be less stable and more vulnerable to water quality degradation. Together,
this study offers essential clues for biodiversity conservation in subtropical lakes under future intensified eutrophication.

Keywords: abundance-gradient component, bacterioplankton community, balanced-variation component, environmental filtering,

lake eutrophication, network complexity

Introduction

Bacterioplankton in freshwater lakes are critical players under-
pinning ecological functions, such as their involvements in nutri-
ent cycling and organic matter transformation (Wang et al. 2020),
but they are of high sensitivity to multiple environmental dis-
turbances (Philippot et al. 2021). Increasing eutrophication trig-
gered by intensive anthropogenic activities associated with exces-
sive nutrients (Le Moal et al. 2019) has profound effects on wa-
ter quality and ecological communities in lake ecosystems (Qin
et al. 2013). It has been well-demonstrated that eutrophication
as an extrinsic disturbance strongly alters the abundance, diver-
sity, composition, metabolism, and taxon interactions of bacte-
rioplankton communities in freshwater lakes (Chrést and Siuda
2006, Kiersztyn et al. 2019, Zhou et al. 2021), thereby leading to
the changes in ecological functions. However, less is known about
how the ecological processes underlying the observed structure

of bacterioplankton communities respond to the varying degrees
of lake eutrophication.

A comprehensive understanding of how the assembly mech-
anisms shape and maintain the diversity and composition of
microbial communities at different spatial and temporal scales
is a central concern in microbial ecology (Xu et al. 2020). A widely
prevailing view is that stochastic (neutral) and deterministic
(niche-based) processes collectively affect the assembly of mi-
crobial communities (Ning et al. 2019, Jiao et al. 2021). Stochastic
processes are dependent on the assumption that all taxa are eco-
logically equivalent (Hubbell 2001), emphasizing the importance
of colonization and extinction dynamics, ecological drift (i.e. ran-
dom changes in the relative abundance of species due to stochas-
tic birth, death, and reproduction events), and dispersal limitation
(Chave 2004). Deterministic processes are any ecological pro-
cesses that involve nonrandom, niche-based mechanisms, such

Received: January 3, 2022. Revised: March 27, 2022. Accepted: April 26, 2022

© The Author(s) 2022. Published by Oxford University Press on behalf of FEMS. All rights reserved. For permissions, please e-mail:

journals.permissions@oup.com

220z Key vz uo Jasn Aysieaiun ejesddn Aq 92£9/69/1 S0981/9/86/21011e/98sWa)/Wod dnoolwspese//:sd)y Wol) papeojumod


http://orcid.org/0000-0002-3298-4820
mailto:jzeng@niglas.ac.cn
mailto:journals.permissions@oup.com

2 | FEMS Microbiology Ecology, 2022, Vol. 98, No. 6

as environmental filtering (i.e. selection of taxa by the prevailing
abiotic environmental conditions) and different biotic interac-
tions (e.g. predation, mutualism, parasitism, and competition;
Zhou and Ning 2017). Previous experimental studies have revealed
that the relative importance of stochastic assembly processes
increased under nutrient-enriched conditions in freshwater
ecosystems (Chase 2010, Ren et al. 2017). Conversely, opposite re-
sults were observed in other field studies by indicating that deter-
ministic processes played a stronger role in the assembly of bac-
terioplankton communities in enriched nutrient environments
(Langenheder et al. 2012, Liu et al. 2021). These divergent findings
further suggest that a clear elucidation of the relative importance
of stochastic vs. deterministic processes is essential to evaluate
the impact of eutrophication on bacterial community assembly.
Here, we are expected that the relative importance of stochastic
processes governing the spatiotemporal assembly patterns of
bacterioplankton communities is likely to show a unimodal trend
along the eutrophication gradient. This is because nutrient in-
puts could dampen deterministic assembly processes by reducing
species competition for resources and strengthen drift by promot-
ing the growth of rare microbial taxa (Zhou et al. 2014), but anthro-
pogenic enrichment of ecosystems with nutrients would increase
the harshness of environmental conditions, thus enhancing
environmental filtering (Donohue et al. 2009, Zeng et al. 2019).
Spatial and temporal variations in community composi-
tion provide significant insights into community assembly
mechanisms and biodiversity maintenance (Mori et al. 2018,
Lopez-Delgado et al. 2020). Total biotic dissimilarity between two
or more assemblages (i.e. total g-diversity) in terms of variation
in taxon abundances can be partitioned into two components:
dissimilarity due to balanced variation in abundances (i.e. taxon
abundances change from site to site with different signs for
different taxa and change balance each other) and dissimilarity
due to abundance gradients (i.e. all taxa that change their abun-
dances from one site to the other make it with the same sign;
Baselga 2013). Partitioning these two components of abundance-
based dissimilarity provides novel perspectives for exploring the
causality of the processes underlying biodiversity (Baselga 2017);
however, it is much less considered in microbiology relative to
animals and plants. Seasonal shifts in microbial assemblage
composition (known as temporal B-diversity, Magurran et al.
2019) have been widely observed in freshwater lakes with various
trophic states (Jiao et al. 2021) due to the seasonal fluctuations
in abiotic conditions. Furthermore, it has been documented that
temporal B-diversity of different aquatic communities can be
strongly influenced by nutrient enrichment (Langenheder et al.
2012, Steiner 2014, Cook et al. 2018). Multiple macroecological
studies demonstrated that eutrophication in freshwater ecosys-
tems homogenizes the biotic assemblages over space and time,
which is characterized as reductions in spatiotemporal g-diversity
(Cook et al. 2018, Salgado et al. 2018, Zhang et al. 2019); however,
there is no consensus on the response of g-diversity of bacterial
communities to lake eutrophication (Jiao et al. 2021). As well,
our understanding of the contributions of balanced-variation
and abundance-gradient components to the overall temporal
B-diversity of bacterioplankton assemblages along the eutroph-
ication gradient in freshwater lakes remains largely unknown.
Nevertheless, it is expected that when bacterioplankton commu-
nity assemblages are subject to increasing environmental filtering
under eutrophic conditions (Zhang et al. 2021), the total temporal
B-diversity of bacterioplankton communities may be driven
largely by balanced variation in abundances, as bacterial taxa are

categorized into copiotrophic and oligotrophic groups (Fierer et al.
2007) that respond differently to increased nutrient enrichment.

In this study, we aimed to elucidate (i) how the balance be-
tween stochastic and deterministic processes varied with lake
trophic states; and (ii) whether and how lake eutrophication al-
tered the contributions of balanced-variation and abundance-
gradient components to total temporal g-diversity of bacterio-
plankton communities. We, therefore, tested two hypotheses that
(i) the relative contributions of stochastic processes to the as-
sembly of total bacterioplankton communities initially increase
and then decrease along the trophic state gradient; and (ii) a
weakening of ecological stochasticity at the eutrophic level (or
in other words, the enhanced environmental filtering) leads to
the greater balanced-variation component of total temporal -
diversity. To test our hypotheses, the field sampling was exe-
cuted by selecting three subtropical lakes with various trophic
states (i.e. oligo-mesotrophic, mesotrophic, and eutrophic states)
in eastern China to obtain water samples. To ensure that we could
observe seasonally driven variation in community composition,
we started water sampling in April 2017 and revisited the sam-
pled lakes at several-month intervals until January 2018. Bacteri-
oplankton community composition along the trophic state gra-
dient was determined using the 16S rRNA gene amplicon se-
quencing. Temporal g-diversity of bacterioplankton communi-
ties was quantified by using the Baselga partitioning statisti-
cal framework (Baselga 2013). To tease apart the relative role of
stochastic vs. deterministic mechanisms underlying community
assembly along the trophic state gradient, a null model analy-
sis was conducted based on the community-level data. Moreover,
microbial co-occurrence network analysis was executed in this
study to provide further insight into bacterioplankton assembly
patterns (Jiao et al. 2020) by investigating the variation in neu-
trally and non-neutrally distributed taxa along the eutrophication
gradient.

Materials and methods
Study lakes and field sampling

To verify our hypotheses within the same regional species pool
and consider the accessibility of samples, three freshwater lakes
(i.e. Lake Meihua, Lake Pipa, and Lake Qianhu) with diverse trophic
states (Table S1, Supporting Information) in the subtropical mon-
soon climate zone of eastern China were selected as our study
lakes (Figure S1, Supporting Information). Lake Meihua (area,
0.04 km?; maximum depth, 2.5 m) is a macrophyte-dominated
lake. Lake Pipa (area, 0.055 km?; maximum depth, 1.9 m) is a
mesotrophic lake with the majority of macrophytes in the littoral
zone. Compared with Lake Meihua and Lake Pipa, Lake Qianhu
(area, 0.067 km?; maximum depth, 2.2 m) is free of macrophytes
and highly subject to anthropogenic activities (e.g. sewage dis-
charge and tourism disturbances; Jiao et al. 2018). These lakes are
not distant from each other (maximum distance between lakes
less than 1.5 km), and they are not connected to the river. We con-
ducted four sampling campaigns during spring, summer, autumn,
and winter between 2017 and 2018 (Table S1, Supporting Informa-
tion). According to the survey specification for Chinese lake eu-
trophication proposed by Jin and Tu (1990), where sampling sites
should be good representativeness of the abiotic and biotic pa-
rameters of the whole study lake under the premise of meeting
the requirement of statistical number of samples, we thus deter-
mined six sampling sites distributed randomly in each lake (Fig-
ure S1, Supporting Information). Water samples were collected in
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triplicate from a depth of 0.5 m at each site using a plexiglass wa-
ter sampler. Triplicate samples were then mixed together to make
a composite sample for each site and stored in 1.5 1 sterile plas-
tic bottles. The collected water samples were temporarily stored
at ~4°C in a portable icebox and then immediately transported
to the laboratory. Finally, we obtained a total of 72 water samples
from our four field sampling sessions. Each water sample was fur-
ther divided into two subsamples: one for bacterioplankton anal-
ysis and the other for water physicochemical measurements. In
the laboratory, we filtered 200 ml of water per sample through a
0.22-pum pore size polycarbonate membranes with a 47-mm di-
ameter (Millipore) to obtain bacterioplankton samples. The filter
membranes were stored at —80°C in an ultralow temperature re-
frigerator until further DNA extraction.

Physicochemical measurements of water
samples and calculation of lake trophic level
index

Conductivity (Cond), dissolved oxygen (DO), water temperature
(WT), and pH were measured at a depth of 0.5 m underwater
in the field by a multisensor sonde (YSI 6600, Yellow Springs
Instruments). Unfiltered water samples were used for the mea-
surements of total phosphorus (TP), total nitrogen (TN), and water
turbidity. Water turbidity was determined using a portable tur-
bidimeter (WZB-170, Shanghai INESA Scientific Instrument Co.,
Ltd.). Filtered water samples (through a 0.22-um pore size polycar-
bonate membranes with a 47-mm diameter) were employed to de-
termine the concentrations of ammonia nitrogen (NH3-N), nitrate
nitrogen (NOs3-N), and nitrite nitrogen (NO,-N). TP, TN, NH;3-N,
NOs3-N, and NO,-N were measured using continuous flow analysis
(Skalar San++ system, Skalar Analytical BV). Moreover, filtered
water samples (through a 0.45-um pore size polycarbonate mem-
branes with a 47-mm diameter) were used for measuring the
concentrations of dissolved organic carbon (DOC) and the filter
membranes were used for the extraction of chlorophyll a (Chla).
Chla was measured spectrophotometrically with ethanol as the
extraction solvent (Jespersen and Christoffersen 1987). DOC was
measured with a TOC analyzer (Multi N/C 2100, Analytic Jena). To
estimate the seasonal variation in water environmental attributes
within lakes, we calculated the coefficients of variation (CVs) of all
measured environmental parameters based on the means of each
season of each lake, i.e. determined the extent to which the means
measured in individual seasons deviated from the overall mean
for the given lake. To compare the differences in environmental
variables across seasons within each lake, one-way analysis of
variance (ANOVA) with Turkey HSD post hoc test was performed in
SPSS (V20.0; IBM Corp). Principal component analysis (PCA) was
further applied to visualize the variation in physicochemical prop-
erties across seasons in different lakes in R (v3.6.1; R Core Team
2020). Prior to PCA, environmental data were standardized using
the ‘scale’ argument in the ‘rda’ function of the R package ‘vegan’
(v2.5-6).

The trophic state assessment of three subtropical lakes was im-
plemented based on the comprehensive trophic level index (TLIc),
which has been widely used to assess the degree of eutrophi-
cation of Chinese lakes (including macrophyte-dominated and
phytoplankton-dominated lakes; Hu et al. 2014, Lin et al. 2021).
In this study, three water environmental parameters (i.e. Chla (ug
171, TN (mg171), and TP (mg 171)) were applied to calculate TLIc
(Lin et al. 2021). The formula for the calculation of TLIc was de-
tailed in the Supporting Information.
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Bacterioplankton DNA extraction, PCR
amplification, and amplicon sequencing

Total bacterioplankton DNA were extracted from filter mem-
branes using E.Z.N.A.® Water DNA Kit (Omega Biotek, Doraville,
USA) following the manufacturer’s instructions. The V4-V5 vari-
able regions of the bacterioplankton 16S rRNA gene were PCR-
amplified using universal primer sets 515F and 907R (Caporaso et
al. 2012). The PCR reaction system and the thermal cycling condi-
tions for PCR amplification were identical to our previous publi-
cation (Jiao et al. 2018). We performed high-throughput amplicon
sequencing using 2 x 250 bp paired end sequencing on an Illumina
MiSeq platform (Illumina Inc., San Diego, CA, USA) at the Shang-
hai BIOZERON Biotechnology Co., Ltd. (Shanghai, China). More-
over, raw sequencing data have been uploaded to the Sequence
Read Archive (SRA) database under the NCBI BioProject number
of PRJNA780039.

Bioinformatics of 16S rRNA gene sequencing data

As described previously (Jiao et al. 2020), raw sequencing data
downloaded from MiSeq platform were processed to obtain high-
quality sequences. Briefly, the paired-end sequences were first
merged by using FLASH (v1.2.11; Mago¢ and Salzberg 2011). Low-
quality sequences (i.e. those with an average quality score < 25,
a homopolymer > 6 bp or ambiguous bases, or a sequence length
< 200bp) and chimeric sequences were discarded. The generated
3126 102 high-quality sequences were subsequently clustered
into operational taxonomic units (OTUs) at 97% similarity level
using the UCLUST algorithm (Edgar 2010). The taxonomic classi-
fication information of representative sequences from each OTU
was obtained using the RDP classifier with a bootstrap cutoff of
80% (Wang et al. 2007). In addition, archaea, mitochondria, chloro-
plast, unassigned, unknown, and singleton (i.e. sequence appear-
ing only once over all samples) sequences were removed. After
that, a total of 2904 691 sequences and 5651 OTUs were obtained
from 72 DNA samples. An approximately maximum-likelihood
phylogenetic tree was constructed using FastTree (v2.1.10; Price
et al. 2009). To address variation in sampling depth (ranging from
23 370 to 55 595 sequences) and avoid potential biases resulting
from rarefaction (Willis 2019), the OTU matrix was normalized
using metagenomeSeq’s cumulative-sum scaling (CSS) method
(Paulson et al. 2013). The CSS-normalized OTU table was then
used for the bacterioplankton «- and g-diversity analyses in R.

Analyses of bacterioplankton community
composition and diversity

To unravel the seasonal variation in bacterioplankton community
composition at the phylum level in different lakes, a stacked bar
graph was plotted using GraphPad Prism (v8.0.2). Bacterioplank-
ton taxonomic a-diversity characterized by taxon richness (i.e. the
number of observed OTUs with a threshold of 97% similarity),
Shannon index, Simpson index, and Pielou’s evenness were calcu-
lated with R package ‘vegan’. One-way ANOVA with Turkey HSD
test (n = 24 denoting the number of samples for this statistical
test, the same below) was used to compare the differences in bac-
terioplankton a-diversity indices between lakes. A nonmetric mul-
tidimensional scaling (NMDS) analysis of bacterioplankton com-
munities was conducted based on Bray—Curtis pairwise dissimi-
larity using the function ‘metaMDS’ in the R package ‘vegan’ to
visualize the community dissimilarity across samples (n = 72). To
investigate the environmental drivers of bacterioplankton com-
munity structure, we applied the function ‘envfit’ to map all the
measured environmental variables as vectors onto the NMDS or-
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dinations. We evaluated the significance of these environmental
variables with 999 random permutations, and kept the significant
ones for plotting. In addition, to investigate whether the varia-
tion in bacterioplankton communities was spatially or temporally
dominated for each lake category (i.e. lakes with diverse trophic
states), we used a two-way permutational multivariate analysis of
variance (PERMANOVA, n = 24) with the function ‘adonis’ in the
R package ‘vegan’ (Anderson 2017) to reveal the effects of season
and spatial sampling site on bacterioplankton community dissim-
ilarity. A one-way PERMANOVA (n = 12) was further applied to
assess the differences in bacterioplankton communities between
lakes and between seasons within lakes.

Partitioning abundance-based g-diversity of
bacterioplankton communities into
balanced-variation and abundance-gradient
components

To evaluate the contributions of balanced-variation and
abundance-gradient components to the seasonal variation
in bacterioplankton community composition, the Baselga parti-
tioning framework (Baselga 2013) was used to partition temporal
B-diversity of bacterioplankton communities based on Bray-
Curtis pairwise dissimilarity. Total Bray-Curtis dissimilarity
(Boe) Was separated into balanced-variation component (Bpcpal)
and abundance-gradient component (Bycg,) using the function
‘beta.pairabund’ in the R package ‘betapart’ (v1.5.4). Here, a
total of three pairwise dissimilarity matrices were generated: By,
Bocbal, and Igbc‘gra

Two-way PERMANOVA (permutations = 999; R package ‘vegan’)
was used to examine the effects of lake category, season and
their interaction on total Bray—Curtis dissimilarity and its two
components of bacterioplankton communities (n = 72). One-way
ANOVA with Turkey HSD test (n = 24) was used to test for the sig-
nificant differences in Bray-Curtis pairwise dissimilarity and its
two components between lakes. To identify the relative impact
of environmental variables on the seasonal variation in bacterio-
plankton communities within each lake, we conducted an anal-
ysis of multiple regression on distance matrices (MRM, n = 24)
based on Buc, Bocpal, and Bucgra Using the function ‘MRM’ in the
R package ‘ecodist’ (v2.0.7), which offers significant advantages
over traditional partial Mantel analysis to explore linear, nonlin-
ear, or nonparametric relationships between a response distance
matrix and any number of explanatory distance matrices (Lich-
stein 2007, Wang et al. 2017). Given the possible multicollinearity
among the explanatory variables, prior to MRM analysis, variable
clustering was employed to evaluate the collinearity of the en-
vironmental factors with the function ‘varclus’ in the R package
‘Hmisc’ (v4.5-0). The variables with high correlations (Spearman’s
p? > 0.7) were removed from the MRM analysis, but all other vari-
ables were retained in the model. We ran the MRM analysis twice
to reduce the effect of spurious relationships between variables.
The first run was to remove insignificant variables and then the
MRM analysis was rerun. We reported the analysis results of the
second run.

Null model analysis

To estimate the relative importance of stochastic and determin-
istic processes on bacterioplankton community assembly, taxo-
nomic normalized stochasticity ratio (NST), a metric proposed
by Ning et al. (2019), was calculated using the function “tNST’
(dist. method = ‘bray’; 1000 randomizations) in the R package
‘NST’ (v2.0.4). We used the null model algorithm of proportional

taxa occurrence frequency and fixed taxa richness, which has
been more often used in previous publications (Chase et al. 2011,
Stegen et al. 2013, 2015) and is also the default algorithm in the
NST calculation. The NST index estimates the average ecologi-
cal stochasticity within a set of samples (n > 6), which was de-
veloped with 50% as the cutoff point between more deterministic
(< 50%) and more stochastic (> 50%) community assembly (Ning
et al. 2019). NST is a valuable metric for quantitatively assessing
ecological stochasticity based on the whole community (Ning et
al. 2019), but it fails to directly reflect the relative contributions of
various ecological processes to the bacterioplankton community
assemblages. The various ecological processes that regulate the
assembly of bacterial communities include homogeneous selec-
tion (i.e. selection under homogeneous abiotic and biotic condi-
tions leads to low compositional turnover), heterogeneous selec-
tion (i.e. selection under heterogeneous abiotic and biotic condi-
tions results in high compositional turnover), homogenizing dis-
persal (i.e. high dispersal rates can homogenize community com-
position and hence lead to low compositional turnover), dispersal
limitation (i.e. low dispersal rates can cause high compositional
turnover), and drift (i.e. stochastic changes in taxon relative abun-
dances within a community over time due to random birth and
death events that occur with respect to taxon identity; Stegen et
al. 2013).

To assess which ecological processes dominantly governed
bacterioplankton community assembly, we applied a statistical
framework developed by Ning et al. (2020) from a previous frame-
work (Stegen et al. 2013) to quantitatively infer the relative im-
portance of different ecological assembly processes through a
phylogenetic-bin-based null model analysis (iCAMP). In the iCAMP
framework, the observed bacterial taxa were first divided into dif-
ferent groups (i.e. bins) based on their phylogenetic relationships.
Then, the ecological processes governing each bin were quantified
based on an abundance-based null model analysis of the phylo-
genetic B-diversity metric using beta net relatedness index (8NRI)
and taxonomic B-diversity metric using modified Raup-Crick met-
ric based on Bray-Curtis dissimilarity (RCgay). Subsequently, the
proportions of individual processes across all bins were weighted
by the relative abundance of each bin and summarized to calcu-
late the relative importance of individual processes at the entire
community level (Ning et al. 2020). We performed statistical anal-
yses described above in the R package iICAMP’ (v1.3.4). The R code
for iCAMP used to quantify various ecological processes was de-
tailed in Ning et al. (2020).

Based on the iCAMP framework, the fraction of pairwise com-
parisons with BNRI > +1.96 or < —1.96 was considered as the per-
centages of heterogeneous selection or homogeneous selection
on the assembly of bacterioplankton communities, respectively.
RCgray was then used to separate the pairwise comparisons that
were not part of selection (i.e. |[NRI| < 1.96). The fraction of pair-
wise comparisons with |BNRI| < 1.96 and RCpyay > +0.95 or < —0.95
indicated that compositional turnover was governed by dispersal
limitation or homogenizing dispersal, respectively. The fraction of
pairwise comparisons with |NRI| < 1.96 and |RCpray| < 0.95 was
quantified as the effect of drift (Ning et al. 2020). In this study, we
calculated the relative importance of selection (i.e. homogeneous
selection and heterogeneous selection), dispersal (i.e. homogeniz-
ing dispersal and dispersal limitation), and drift for each pair of
samples and obtained an average of percentage of ecological pro-
cesses for each lake category Moreover, ecological stochasticity of
bacterioplankton community assembly can be also reflected by
the sum of the relative importance of dispersal and drift (Ning et
al. 2020).
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Neutral community model

For bacterioplankton communities, the relationship between oc-
currence frequency of bacterioplankton OTUs and their average
relative abundance in the metacommunity (i.e. the sum of all
samples for each trophic category) was predicted by the neutral
community model (NCM) proposed by Sloan et al. (2006) to val-
idate the potential influence of neutral processes on the assem-
bly of bacterioplankton communities. In the NCM, the parame-
ters R? and Nm values denote the overall fit to the NCM and the
metacommunity size times immigration, respectively, with N rep-
resenting the metacommunity size and m denoting the immigra-
tion rate. R? > O indicates that bacterioplankton communities con-
form to the NCM (subject to neutral processes), and greater R?
values suggest that stochastic dispersal and ecological drift con-
tribute more to the community assembly. The Nm value is an es-
timate of dispersal between communities (Sloan et al. 2006). The
calculation of 95% confidence intervals around all fitting statistics
was performed by bootstrapping with 1000 bootstrap replicates
(Burns et al. 2016). The R code used to fit the NCM and calculate
the goodness-of-fit statistics was detailed in Burns et al. (2016). In
addition, bacterioplankton OTUs were partitioned into three dif-
ferent partitions depending on whether they occurred more fre-
quently than (above prediction), less frequently than (below pre-
diction), or within (neutral distribution) the 95% confidence inter-
val of the NCM predictions. OTUs assigned to the above and below
partitions were non-neutrally distributed.

Co-occurrence network analysis of
bacterioplankton communities

To compare the co-occurrence patterns of bacterioplankton OTUs,
networks of three subtropical lakes were generated using Sparse
Correlations for Compositional data (SparCC), a robust network
analysis method, i.e. especially suited for compositionally diverse
microbial data (Friedman and Alm 2012). Bacterioplankton OTUs
were selected by frequency of occurrence (> 50%) to simplify our
data sets and address the bias caused by too many matching ze-
ros across samples (Faust 2021). Only robust (SparCC |r| > 0.80)
and statistically significant (P < .01) correlations were included
in the network analysis (Jiao et al. 2020). The constructed net-
works were visualized using Gephi (v0.9.2). Network nodes rep-
resent neutrally or non-neutrally distributed OTUs, and network
links connecting two nodes signify significant correlations be-
tween OTUs. Network topological parameters (i.e. average degree,
graph density, network diameter, modularity, average path length,
and average clustering coefficient) were described collectively in
our previous studies (Huang et al. 2020, Jiao et al. 2020) and cal-
culated using the R package ‘igraph’ (v1.2.4.1). Furthermore, 1000
random Erd6és—Rényi networks (Erdés and Rényi 1960) sharing the
same number of nodes and links as empirical networks were con-
structed using the R ‘igraph’ package and their topological param-
eters were calculated as described above. The differences in topo-
logical parameters between random and empirical networks was
compared by Z-test in R (Zhao et al. 2016).

Results

Physicochemical properties of three subtropical
lakes with diverse trophic states

The TLIc index, which represents the degree of eutrophication, re-
vealed that Lake Qianhu characterized as a eutrophic state was
more eutrophic than Lake Meihua and Lake Pipa, which were in
oligo-mesotrophic and mesotrophic states, respectively (Table S1,
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Supporting Information). PCA based on water environmental vari-
ables showed that the water samples were clearly differentiated
by both lake category and season (Figure S2, Supporting Infor-
mation), but season exerted a greater effect on the variation in
water environment attributes than lake category (Table 1). We,
thus observed significant seasonal variations in the measured en-
vironmental variables in the oligo-mesotrophic lake (Figure S3,
Supporting Information), mesotrophic lake (Figure S4, Support-
ing Information), and eutrophic lake (Figure S5, Supporting Infor-
mation). Of all the measured water physicochemical parameters,
Chla, NO;,-N, NOs-N, and turbidity concentrations were higher but
their CVs were relatively lower in the eutrophic lake compared to
the oligo-mesotrophic and mesotrophic lakes (Table S2, Support-
ing Information), indicating that seasonal fluctuations in these
environmental variables were lower in the eutrophic lake than in
the other two lakes.

Seasonally driven variation in bacterioplankton
community structure along the trophic state
gradient

The overall bacterioplankton communities in the eutrophic
lake showed lower Shannon index, Simpson index, and Pielou’s
evenness than in the oligo-mesotrophic and mesotrophic lakes
(Figure S6, Supporting Information). However, no difference
in taxon richness was found among the three lake cate-
gories (Figure S6, Supporting Information). Actinobacteria (aver-
age relative abundance, 29.36%), Gammaproteobacteria (26.59%),
and Cyanobacteria (37.20%) were the most abundant bacte-
rial phyla/classes based on all seasonal datasets in the oligo-
mesotrophic, mesotrophic, and eutrophic lakes, respectively (Fig-
ure S7, Supporting Information). For each lake category, we ob-
served that seasonality explained much greater amount of the
variability in bacterioplankton communities than spatial sam-
pling site (Table S3, Supporting Information), indicating that over-
all bacterioplankton community dissimilarity within lakes was
dominantly driven by seasonality. In addition, lake category and
season and their interactions contributed to significant composi-
tion variation in total bacterioplankton communities (Table 1). To-
tal bacterioplankton community structure for all lake categories
displayed a remarkable seasonal variation in community com-
position (Fig. 1A), which was also strongly validated by the PER-
MANOVA results that bacterioplankton community structure dif-
fered significantly between seasons within each lake (P < .05 in all
cases; Table S4, Supporting Information).

Balanced-variation and abundance-gradient components
jointly contributed to the observed seasonally driven variation
in bacterioplankton community structure for each lake; how-
ever, we found that balanced-variation component contributed
more to total temporal B-diversity than abundance-gradient
component (Fig. 1B). In comparison with oligo-mesotrophic and
mesotrophic lakes, bacterioplankton communities in the eu-
trophic lake exhibited significantly higher overall g-diversity and
balanced-variation component but lower abundance-gradient
component (P < 0.05, one-way ANOVA with Turkey HSD test;
Fig. 1B).

Environmental drivers of bacterioplankton
community structure of three subtropical lakes

Among bacterioplankton assemblages from all the lake cate-
gories, the NMDS ordinations of overall g-diversity partitioned
into balanced-variation and abundance-gradient components re-
vealed the important environmental drivers of spatiotemporal
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Table 1. Permutational multivariate analysis of variance (P(ERMANOVA) showing the effects of lake category, season and their interac-
tion on environmental variables (Euclidean distance), and bacterioplankton community structure (Bray—Curtis dissimilarity and its two

components).

Source of variation Df Ss MS F. Model R? P-value
Environmental variables

Lake category 2 252.03 126.02 83.65 0.296 .001
Season 3 349.89 116.63 77.42 0.411 .001
Interaction 6 159.68 26.61 17.67 0.187 .001
Residuals 60 90.39 1.51 0.106

Total 71 852.00 1

Bacterioplankton communities (By.)

Lake category 2 4.44 2.22 19.92 0.225 .001
Season 3 4.74 1.58 14.16 0.240 .001
Interaction 6 3.90 0.65 5.84 0.197 .001
Residuals 60 6.69 0.11 0.338

Total 71 19.77 1

Bacterioplankton communities (Byc pal)

Lake category 2 4.50 2.25 27.50 0.264 .001
Season 3 4.45 1.48 18.12 0.261 .001
Interaction 6 3.18 0.53 6.48 0.187 .001
Residuals 60 491 0.08 0.288

Total 71 17.04 1

Bacterioplankton communities (Byc gra)

Lake category 2 -0.17 -0.087 -10.62 -0.562 1
Season 3 -0.03 -0.009 -1.08 —-0.086 954
Interaction 6 0.02 0.003 0.38 0.061 744
Residuals 60 0.49 0.008 1.587

Total 71 0.31 1

Note: Df, degrees of freedom; SS, sum of squares; MS, mean squares; F. Model, F statistic. Lake category includes oligo-mesotrophic, mesotrophic, and eutrophic lakes.
Sampling season includes spring, summer, autumn, and winter. ., total Bray-Curtis pairwise dissimilarity; By a1, balanced-variation component of Bray-Curtis
pairwise dissimilarity; and B g2, abundance-gradient component of Bray-Curtis pairwise dissimilarity.

Statistical significance was calculated based on 999 permutations. Bold values indicate statistical significance at the P < .05 level.

variation in bacterioplankton community structure (Fig. 1A). We
found that the spatiotemporal variation in overall bacterioplank-
ton communities was most closely linked to DO (r? = 0.70) and
WT (r? = 0.64), whereas community dissimilarity due to balanced-
variation and abundance-gradient components was most strongly
explained by NO,-N (r? = 0.76) and DOC (r> = 0.23), respectively.
WT, DO, and pH were all significantly correlated with three pair-
wise dissimilarity matrices (i.e. Bpc, Bocbal, a0d Bocgra). MoTEOVET,
differences among bacterioplankton assemblages were also sig-
nificantly related to TN, TP, NOs-N, Chla, Cond, and turbidity for
Bue and Bucpal [see Table S5 (Supporting Information) for details].

Within each lake category, MRM model was performed to fur-
ther examine the relative contributions of different environmen-
tal variables to temporal g-diversity of bacterioplankton commu-
nities. MRM model showed that WT was the most influential fac-
tor driving the seasonal variation in overall g-diversity across all
lake categories (partial regression coefficient b = 0.088 for OML,
b = 0.062 for ML, and b = 0.122 for EL; P < .001; Table S6, Sup-
porting Information). Community dissimilarity due to balanced-
variation component (Bpcpa) Was most explained by WT in the
oligo-mesotrophic (b = 0.117, P < .001) and eutrophic (b = 0.135, P
< .001) lakes. In the mesotrophic lake, pH contributed the greater
partial regression coefficient (b = 0.067, P < .001) to the variabil-
ity in Bpepa than other variables such as WT (b = 0.056, P < .01),
TP (b = 0.043, P < .01), and DOC (Jb| = 0.032, P < .05). Community
dissimilarity due to abundance-gradient component (Bycgra) Was
significantly explained by DOC (b = 0.028, P < .01), turbidity (b =
0.024,P < .05),and pH (|b| = 0.023, P < .05) in the mesotrophic lake,
while only NO3-N (|b] = 0.018, P < .001) made a significant contri-
bution to By g in the eutrophic lake. However, no variable showed

a significant impact on By g, in the oligo-mesotrophic lake (Table
S6, Supporting Information).

The balance between deterministic and
stochastic assembly processes along the trophic
state gradient

Our NST results showed that seasonal change in the relative im-
portance of ecological stochasticity was closely associated with
lake trophic states (Fig. 2A). For example, the influence of eco-
logical stochasticity on the assembly of bacterioplankton com-
munities in the oligo-mesotrophic, mesotrophic, and eutrophic
lakes was greatestin autumn (61.3%), summer (76.6%), and winter
(68.0%), respectively. Compared to those in the oligo-mesotrophic
lake, stronger ecological stochasticity (71.9%) regulated the to-
tal temporal variation in bacterioplankton communities in the
mesotrophic lake; however, the relative contribution of ecologi-
cal stochasticity to the total community assemblages decreased
at the eutrophic level (45.0%; Fig. 2A).

To further disentangle the variation in the relative importance
of different ecological processes along the trophic state gradient
in subtropical freshwater lakes, iCAMP analysis was performed.
The iCAMP results indicated that the relative role of drift on
the assembly of the overall bacterioplankton communities in-
creased first and then decreased along the trophic state gradient
(Fig. 2B). The importance of ecological stochasticity (i.e. dispersal
and drift) was lower in the eutrophic lake (77.1% on average) than
in the oligo-mesotrophic (87.4%) and mesotrophic (87.7%) lakes. In
turn, selection played a greater role in shaping seasonally driven
bacterioplankton community assemblages in the eutrophic lake
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Figure 1. (A) NMDS plots of bacterioplankton communities based on total Bray—-Curtis dissimilarity and its two components (i.e. balanced variation in
abundances and abundance gradients). The function envfit maps environmental variables onto the NMDS ordination space as vectors. Only
environmental vectors with a significance of P < .05 (999 permutations) are displayed. The environmental variables with a longer line segment are
more strongly correlated with the ordination than those with a shorter line segment. Chla, chlorophyll a; Cond, conductivity; DO, dissolved oxygen;
DOC, dissolved organic carbon; NO,-N, nitrite nitrogen; NOs-N, nitrate nitrogen; TN, total nitrogen; TP, total phosphorus; and WT, water temperature.
Bue, total Bray—Curtis dissimilarity; Bucbal, balanced-variation component; and By ga, abundance-gradient component. (B) Comparisons of total
temporal B-diversity and its two components across lake categories. Total temporal g-diversity and its two components within lakes are calculated
from four seasonal data sets. Data are presented as mean =+ standard error of mean (SEM). Different lowercase letters over the bars denote statistically
significant differences (P < .05, one-way ANOVA with Turkey HSD test). OML, oligo-mesotrophic lake; ML, mesotrophic lake; and EL, eutrophic lake. n

represents the number of samples.

(22.9% on average) compared to oligo-mesotrophic (12.6%) and
mesotrophic (12.3%) lakes (Fig. 2B).

The relationship between the occurrence frequency of total
bacterioplankton OTUs and their relative abundance was well-
described by Sloan’s NCM (Fig. 2C). The relative contributions of
neutral processes first increased and then decreased with increas-
ing eutrophication, explaining 32.7%, 48.1%, and 20.7% of the vari-
ation in bacterioplankton metacommunity structure for the oligo-
mesotrophic, mesotrophic, and eutrophic levels, respectively.

Co-occurrence networks of bacterioplankton
communities along the trophic state gradient
Three metacommunity co-occurrence networks along the lake
trophic gradient (i.e. oligo-mesotrophic, mesotrophic, and eu-
trophic states) were constructed based on all datasets from four
seasons (Fig. 3), and four subnetworks for each lake during four
seasons were analyzed (Table S7, Supporting Information). The
observed network parameters (i.e. network diameter, modularity,
average clustering coefficient, and average path length) were sig-

nificantly greater than those of the corresponding random net-
works (Z-test, P < .001, Table 2; Table S7, Supporting Information),
suggesting that the co-occurrence networks were nonrandom,
and they exhibited modular structures and small-world proper-
ties (i.e. high interconnectivity and efficiency). In addition, the
average degree, average clustering coefficient, and modularity of
bacterial communities in the mesotrophic lake were greater than
those in the oligo-mesotrophic and eutrophic lakes (Table 2), indi-
cating that the complexity of co-occurrence networks increased
first and then decreased along the trophic state gradient. In com-
parison with the oligo-mesotrophic level, the co-occurrence net-
works at the higher trophic levels had a shorter average path
length, which indicates an increased sensitivity of bacterioplank-
ton networks to eutrophication. The metacommunity networks
from three lakes primarily consisted of non-neutrally distributed
nodes (Fig. 3A), suggesting that the metacommunity networks
were strongly influenced by non-neutral processes. In the three
lake trophic categories, we further observed that the proportion
of non-neutrally distributed nodes increased as eutrophication
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Figure 2. Ecological processes governing the assembly of bacterioplankton communities in subtropical lakes assessed by the normalized stochasticity
ratio (NST), phylogenetic-bin-based null model analysis (iCAMP), and Sloan’s NCM. (A) The NST index (ranging from 0 to 100%) of bacterioplankton
communities was developed based on Bray-Curtis dissimilarity metric with 50% as the boundary point between more deterministic (< 50%) and more
stochastic (> 50%) community assembly. (B) Relative importance (%) of different ecological processes (i.e. drift, dispersal, and selection) in the seasonal
assembly of bacterioplankton communities. Data are presented as mean values mean =+ standard error of mean (SEM). Error bars represent SEM. Note
the different scales of the y-axis among panels. (C) Fit of the NCM for total bacterioplankton communities in three lakes. In this model, OTUs were
separated into three categories (above predicted OTUs, neutrally distributed OTUs, and below predicted OTUs). OTUs that occur more or less
frequently than predicted by the NCM are shown in purple and green, respectively. OTUs that occur within prediction are shown in gray. Dashed black
lines represent 95% confldence intervals around the model prediction (solid red line). R? indicates the fit to the NCM; Nm indicates the
metacommunity size times immigration. OML, oligo-mesotrophic lake; ML, mesotrophic lake; and EL, eutrophic lake.

increased (69.5% for the oligo-mesotrophic lake, 72.5% for the
mesotrophic lake, and 75.4% for the eutrophic lake). Bacterio-
plankton co-occurrence networks in three lakes were character-
ized by modular structures, and they were all clearly divided into
five major modules (Fig. 3B). These modules were specific to each
of four seasons (Figure S8, Supporting Information). For instance,
module IV in the oligo-mesotrophic and eutrophic lakes as well as
modules I and V in the mesotrophic lake were specific to spring.
Module II in the oligo-mesotrophic and mesotrophic lakes and
module III in the eutrophic lake were specific to summer. Mod-
ules [, II, and V in the eutrophic lake as well as module IV in the
mesotrophic lake were specific to winter.

Discussion

The contribution of ecological stochasticity to the
temporal assembly of bacterioplankton
communities first increased and then decreased
along the trophic state gradient

Bacterioplankton community assemblages were jointly influ-
enced by niche-based (deterministic) and neutral (stochastic)
processes; however, our NST results based on null model analysis
exhibited that the relative influence of ecological stochastic-
ity on governing total bacterioplankton community assembly
showed a first upward and then downward trend with increasing
eutrophication. This finding supported our first hypothesis. The
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Figure 3. Ecological networks of total bacterioplankton communities in three different subtropical lakes. (A) Co-occurrence patterns of
bacterioplankton communities. Each node represents a bacterioplankton OTU; each link connecting two nodes represents a positive (gray line) or
negative (black line) correlation. The nodes are colored according to their distributed types resulting from the NCM. (B) Network analysis showing the
modular associations between bacterioplankton OTUs. The nodes are colored by their affiliated modules. A stacked bar graph exhibits the proportion
of module nodes in different bacterioplankton networks. Node size is proportional to the node degree (i.e. the number of connections). A connection
between two nodes indicates a robust (SparCC |r| > 0.80) and statistically significant (P < .01) correlation; the thickness of each connection is
proportional to the absolute magnitude of the SparCC correlation coefficients. OML, oligo-mesotrophic lake; ML, mesotrophic lake; and EL, eutrophic
lake.
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Table 2. Topological features of the empirical networks of bacterioplankton communities in different trophic lakes and their associated

random networks.

Network topological parameters

OML ML EL

Empirical network Nodes
Neutrally distributed nodes
Non-neutrally distributed nodes
Links
Positive links
Negative links
Average degree
Graph density
Network diameter
Modularity
Average path length
Average clustering coefficient
Network diameter (SD)
Modularity (SD)
Average path length (SD)
Average clustering coefficient (SD)

Random network

174 131 138
53 (30.5%) 36 (27.5%) 34 (24.6%)
121 (69.5%) 95 (72.5%) 104 (75.4%)
546 584 480
370 (67.8%) 496 (84.9%) 350 (72.9%)
176 (32.2%) 88 (15.1%) 130 (27.1%)

6.276 8.916 6.957
0.036 0.069 0.051
0.556% 0.579% 0.434%
4853+ 4443 3.713%
0,545 0.645% 0.571%
5.668 (0.508) 4132 (0.339) 5.075 (0.289)
0.360 (0.009) 0.280 (0.008) 0.330 (0.009)
2.998 (0.007) 2.457 (0.007) 2.737 (0.012)
0.036 (0.007) 0.069 (0.007) 0.051 (0.008)

Erdds-Réyni random networks (repeating 1000 times) are generated by rewiring all of the links with the same number of nodes and links as the corresponding
empirical networks. The values highlighted with asterisks indicate significant differences between empirical and random networks (Z-test, P < .001). SD, standard
deviation. OML, oligo-mesotrophic lake; ML, mesotrophic lake; and EL, eutrophic lake.

possible interpretations for the upward trend could be that lake
eutrophication increases the relative importance of ecological
stochasticity by (i) promoting priority effects by enhancing
the growth of earlier random colonizers (Fukami 2015), (ii)
strengthening ecological drift by increasing stochastic variation
in colonization or extinction across localities (i.e. sampling sites;
Chase 2010), and (iii) weakening niche selection by providing
greater resource availability (Zhou et al. 2014). The potential
interpretations of the latter two points are confirmed by our
iCAMP results. As for the downward trend, it is presumably that
increased eutrophication could serve as an environmental filter
(Zeng et al. 2019) that regulates bacterioplankton communities
by reinforcing deterministic processes as the degradation of the
aquatic environment leads to variations in abiotic environmental
conditions and biotic interactions (Zhou et al. 2021), with a
reduction in the relative importance of stochasticity (Cao et al.
2021, Zhang et al. 2021). This suggestion is further supported by
our NCM analysis in which the relative contributions of neutral
processes (e.g. stochastic dispersal and ecological drift) to the
community assembly decreased in the eutrophic category.

In addition, we also found that the overall bacterioplankton
assemblages in the eutrophic lake exhibited significantly greater
variation in community dissimilarity (i.e. g-diversity) compared to
those in the oligo-mesotrophic and mesotrophic categories, which
agrees with a recent finding on freshwater reservoirs (Zhang et al.
2021). A stochasticity-dominated view suggests in aquatic ecosys-
tems that higher g-diversity at higher nutrient levels is attributed
to the greater role for stochastic relative to deterministic pro-
cesses as eutrophication increases (Chase 2010), while another
argument holds that increased eutrophication enhances the de-
terministic selection processes, resulting in greater variation in
bacterial community composition (Langenheder et al. 2012). It is
generally considered that the spatiotemporal g-diversity is ex-
plained by community assembly mechanisms involving (i) purely
deterministic assembly processes, (ii) purely stochastic assem-
bly processes, and (iii) the interaction between deterministic and
stochastic assembly processes (Chase 2010, Zhang et al. 2021).
In this study, bacterioplankton community assembly was less
stochastic in the eutrophic lake than in the oligo-mesotrophic
and mesotrophic lakes. Accordingly, higher overall temporal 8-

diversity in the eutrophic category may be the result of the
increased importance of deterministic processes. However, we
should not ignore the contributions of neutral stochastic pro-
cesses to total temporal g-diversity, as stochastic processes made
more contributions to the community assembly in the oligo-
mesotrophic and mesotrophic lakes.

Balanced-variation component rather than
abundance-gradient component dominated the
temporal g-diversity of bacterioplankton
communities

Although both balanced-variation and abundance-gradient com-
ponents contributed to total temporal B-diversity, we observed
that balanced-variation component overwhelmed abundance-
gradient component in dominating the total temporal g-diversity
of bacterioplankton communities across all trophic categories.
This finding was in agreement with the results for stream algae
and macrophyte in freshwater ecosystems (Fernandez-Alédez et
al. 2020, Cook et al. 2022), suggesting that the dominance of the
balanced-variation component in overall g-diversity is potentially
prevalent in both microbial and macrobial taxa. Moreover, greater
balanced-variation component was found in the eutrophic lake
compared to oligo-mesotrophic and mesotrophic lakes, an indica-
tion of the importance of environmental filtering (L6pez-Delgado
et al. 2020). This finding supported our second hypothesis. How-
ever, opposite to our finding, a recent study on lotic algal assem-
blages has shown that increased nutrient enrichment suppressed
balanced-variation component of total temporal g-diversity by
reducing the importance of seasonal fluctuations in aquatic en-
vironmental conditions (Cook et al. 2022). The contradictory re-
sults yielded between the two studies may be linked to three fac-
tors: first, the geographical scale investigated (lake- vs. watershed-
scale) and aquatic ecosystems (lentic vs. lotic ecosystems) of the
two studies are greatly different; second, two biological groups
(bacterioplankton vs. benthic algae) respond differently to eu-
trophication. For example, Cook et al. (2022) reported that taxon
richness of benthic algal assemblages increased positively with
nutrient enrichment, whereas no significant difference in taxon
richness of bacterioplankton assemblages was observed along the
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trophic state gradient; third, there may be dissimilar community
assembly mechanisms between algae and bacteria due to their
differences in body size. Compared to algal assemblages, bacte-
rial assemblages that are characterized by higher dispersal rates
and faster population growth rates due to a smaller body size, re-
spond more rapidly to environmental fluctuations and tend to be
governed by relatively stronger deterministic assembly processes
(Aslani et al. 2022).

Among all lake categories, our results indicated that the spa-
tiotemporal variability in overall g-diversity of bacterioplankton
communities was most importantly explained by DO and WT that
are highly associated with seasonal variability, while balanced-
variation and abundance-gradient components were most largely
correlated with NO,-N and DOC, respectively. This implies that
fluctuations in nutrient loading may contribute to changes in
the relative roles of balanced-variation and abundance-gradient
components on the structure of bacterioplankton communities.
Consistent with our results, a field study on macrophyte com-
munity assemblages has also reported that balanced-variation
and abundance-gradient components were shaped by dissimi-
lar locally measured environmental drivers (Fernandez-Alaez et
al. 2020). These findings collectively suggest that environmen-
tal filtering exerts an indispensable role in the variation of over-
all p-diversity and its two components in aquatic environments
(Fernandez-Aldez et al. 2020, Lopez-Delgado et al. 2020).

At the level of individual lake categories, we found a signifi-
cant correlation between WT and the total temporal g-diversity
and balanced-variation component in all lake categories; however,
no significant correlation between WT and abundance-gradient
component was found within lake categories, probably due to
the small contribution of abundance-gradient component to the
observed seasonally driven variation in bacterioplankton com-
munities (Fernandez-Alaez et al. 2020). It is also possible that
the abundance-gradient component of total temporal g-diversity
has greater seasonal stability. Hence, the overall bacterioplank-
ton communities in response to thermal fluctuations depended
mainly on the balanced-variation component in this study. In
addition, a laboratory study has suggested that elevated nutri-
ent concentrations reduced the stabilizing effects of biodiversity
in aquatic microcosms of algae exposed to thermal fluctuations
(Zhang and Zhang 2006). Thus, we would suggest that the over-
all bacterioplankton communities in the eutrophic lake charac-
terized by lower community diversity (e.g. Shannon and Simpson
indices) and greater balanced-variation component compared to
the other two lakes may be at higher risk of community desta-
bilization. This suggestion can be further supported by our co-
occurrence network analysis we discussed below:.

Shifts in the balance between stochastic and
deterministic processes induced changes in the
complexity of bacterioplankton co-occurrence
networks

Bacteria do not usually live in isolation but interact with a myriad
of other bacteria to form complex ecological networks (Faust and
Raes 2012). Based on microbial network construction analysis, our
results indicated that network complexity (reflected by average
degree, average clustering coefficient, and modularity) initially in-
creased and then decreased along the trophic state gradient. This
pattern could be explained by the shifts in the balance between
stochastic and deterministic processes. It has been reported that
the bacterial network complexity was closely associated with the
relative importance of stochastic vs. deterministic assembly pro-
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cesses (Wang et al. 2020, Cao et al. 2021). It is typically that non-
random co-occurrence patterns of bacterial communities are of
environmental preferences (Comte et al. 2016, Zeng et al. 2019),
indicating that environmental filtering is an important determi-
nant of taxa coexistence. It has been indicated that nutrient en-
richment could enhance the environmental filtering to weaken
the ecological interactions among bacteria taxa, thereby reduc-
ing network complexity (Wang et al. 2020). In this study, the pro-
portion of non-neutrally distributed OTUs in our networks in-
creased as eutrophication increased, suggesting the greater role
of non-neutral processes on bacterioplankton network structure
along the eutrophication gradient. Some evidence from freshwa-
ter ecosystems show that environmental stress filters the most
sensitive taxa (Mo et al. 2021) and favors the occupation of more
generalist ones (Zorzal-Almeida et al. 2021), leading to lower a-
diversity. In the present study, the greater environmental filtering
at the eutrophic level compared to other two trophic levels poten-
tially contributed to a reduction in taxon diversity, which may in
turn result in a decrease in bacterioplankton network complexity.
Recent study has been empirically demonstrated that network
stability was strongly and positively correlated with network com-
plexity in microbial ecology (Yuan et al. 2021), which also sup-
ported the classical ecological belief that increasing complexity
begets increased stability (MacArthur 1955). We are, thus expected
that the stability of bacterioplankton co-occurrence networks
would be reduced under eutrophic conditions. In agreement with
our expectation, a related study has also suggested that aquatic
eutrophication tends to destabilize bacterial co-occurrence net-
works (Zhou et al. 2021). Moreover, it has been documented that
small-world network properties were more robust to environmen-
tal changes (Comte et al. 2016). Our constructed co-occurrence
networks had small-world properties across all trophic categories,
but the eutrophic network had a shorter average path length
than networks in other two trophic categories. This indicates
that bacterioplankton communities could be more susceptible
to variations in environmental conditions in the eutrophic con-
text and, thus weaker to resist environmental disturbances. More-
over, given that networked communities are strongly linked to
ecosystem function (Wang et al. 2020, Yuan et al. 2021), preserving
the structure of bacterioplankton networks is critical for future
aquatic ecosystem conservation, especially in eutrophic lakes.

Conclusions

Our study revealed that the relative role of stochastic processes
on total bacterioplankton community assembly elevated first
and then declined along the trophic state gradient in subtropi-
cal freshwater lakes. Moreover, balanced variation in abundances
made a larger contribution than abundance gradients to total
temporal g-diversity of bacterioplankton communities across all
trophic categories. Lake eutrophication did not lead to an in-
crease in abundance-gradient component of bacterioplankton
communities; conversely, greater balanced-variation component
was observed in the eutrophic category. Within each lake cat-
egory, unlike total temporal B-diversity and balanced-variation
component, there was no significant relationship between WT
and abundance-gradient component, an indication of a possible
greater seasonal stability of abundance-gradient component. The
network complexity of bacterioplankton communities along the
eutrophication gradient was associated with the shifts in the bal-
ance between deterministic and stochastic processes. Freshwa-
ter eutrophication tended to reduce the complexity and, thus the
stability of the bacterioplankton community network. Our study
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provides novel insights into the ecological impacts of freshwater
eutrophication on bacterioplankton community assemblages in
subtropical lake ecosystems. This research further suggests that
the conservation of microbial diversity and network structure is
of great significance for subtropical lakes with different trophic
states.
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