

Article

Brachiaria humidicola Cultivation Enhances Soil Nitrous Oxide Emissions from Tropical Grassland by Promoting the Denitrification Potential: A ¹⁵N Tracing Study

Lu Xie ^{1,2}, Deyan Liu ¹, Christoph Müller ^{3,4}, Anne Jansen-Willems ³, Zengming Chen ¹, Yuhui Niu ¹, Mohammad Zaman ⁵, Lei Meng ⁶ and Weixin Ding ^{1,*}

- ¹ State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- ² University of Chinese Academy of Sciences, Beijing 100049, China
- ³ Institute of Plant Ecology, Justus-Liebig University Giessen, 35392 Giessen, Germany
- ⁴ School of Biology and Environmental Science, University College Dublin, Belfield, 4 Dublin, Ireland
- ⁵ Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division, International Atomic
 - Energy Agency, 1400 Vienna, Austria
- College of Tropical Crops, Hainan University, Haikou 570228, China
- * Correspondence: wxding@issas.ac.cn; Tel.: +86-25-8688-1527; Fax: +86-25-8688-1000

Abstract: Biological nitrification inhibition (BNI) in the tropical grass Brachiaria humidicola could reduce net nitrification rates and nitrous oxide (N2O) emissions in soil. To determine the effect on gross nitrogen (N) transformation processes and N2O emissions, an incubation experiment was carried out using 15N tracing of soil samples collected following 2 years of cultivation with high-BNI Brachiaria and native non-BNI grass Eremochloa ophiuroide. Brachiaria enhanced the soil ammonium (NH4⁺) supply by increasing gross mineralization of recalcitrant organic N and the net release of soil-adsorbed NH4⁺, while reducing the NH4⁺ immobilization rate. Compared with Eremochloa, Brachiaria decreased soil gross nitrification by 37.5% and N2O production via autotrophic nitrification by 14.7%. In contrast, Brachiaria cultivation significantly increased soil N2O emissions from 90.42 µg N2O-N kg⁻¹ under Eremochloa cultivation to 144.31 µg N2O-N kg⁻¹ during the 16-day incubation (p < 0.05). This was primarily due to a 59.6% increase in N₂O production during denitrification via enhanced soil organic C, notably labile organic C, which exceeded the mitigated N2O production rate during nitrification. The contribution of denitrification to emitted N2O also increased from 9.7% under Eremochloa cultivation to 47.1% in the Brachiaria soil. These findings confirmed that Brachiaria reduces soil gross nitrification and N2O production via autotrophic nitrification while efficiently stimulating denitrification, thereby increasing soil N2O emissions.

Keywords: biological nitrification inhibition; *Brachiaria humidicola*; N₂O emissions; gross N transformation processes; denitrification

1. Introduction

Nitrous oxide (N₂O) concentrations in the atmosphere have increased by more than 20% since pre-industrial times and are responsible for 6% of current global warming [1]. N₂O emissions are also an important factor in stratospheric ozone depletion [2], with agricultural soil accounting for approximately 66% of global anthropogenic N₂O emissions, mainly due to the excessive input of synthetic N fertilizers [3,4]. The increasing use of synthetic fertilizers is also causing increased nitrifier activity, transforming modern agricultural systems into high-nitrifying environments [5,6].

Ammonia oxidation is the rate-limiting first step of nitrification, producing N2O as

Citation: Xie, L.; Liu, D.; Müller, C.; Jansen-Willems, A.; Chen, Z.; Niu, Y.; Zaman, M.; Meng, L.; Ding, W. *Brachiaria humidicola* Cultivation Enhances Soil Nitrous Oxide Emissions from Tropical Grassland by Promoting the Denitrification Potential: A ¹⁵N Tracing Study. *Agriculture* **2022**, *12*, 1940. https://doi.org/10.3390/ agriculture12111940

Academic Editor: Luca Vitale

Received: 26 September 2022 Accepted: 15 November 2022 Published: 17 November 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/). a by-product [7]. Biological nitrification inhibition (BNI) is a rhizospheric process whereby specific inhibitors exudated or released from the plant's roots suppress the activity of nitrifying bacteria [8]. This process is widely found in major crops, such as sorghum [9], rice [10], wheat [11,12] and maize [13], as well as in certain forage species [14] and trees [15]. *Brachiaria humidicola*, a tropical grass native to East and Southeast Africa, has a strong BNI capacity due to the release of the specific compound brachialactone in its root exudates [14,16]. Previous studies have shown that soil collected from established *Brachiaria* plots shows a remarkable decrease in the net nitrification rate during incubation compared with soil cultivated with non-BNI plants [16–19]. Meanwhile, Subbarao et al. [14] found that both the soil ammonia oxidation rates and cumulative N₂O emissions were reduced by almost 90% after *Brachiaria* pasture planting compared with soybean or plant-free plots during a three-year field experiment in Colombia. However, in contrast, Vazquez et al. [20] found no apparent differences in the gross nitrification rates in the soil in which different *Brachiaria* genotypes with differing BNI capacities were grown.

N₂O is produced by a number of simultaneous N transformation processes [21]. Denitrification produces N₂O as an intermediate product during the reduction in nitrate (NO₃⁻) to N₂ and is considered a much more potent source of N₂O than nitrification in grassland soil [22]. However, it remains unclear whether cultivation of exotic *Brachiaria* in tropical pastures results in a reduction in soil denitrification potential and N₂O emissions due to the decrease in supply of NO₃⁻ substrates for denitrifiers. In this study, we therefore established an incubation experiment using a ¹⁵N tracing technique with soil samples collected from an experimental field cultivated with *Brachiaria* and the native grass *Eremochloa ophiuroide*, which has no BNI capacity. The objectives were to: (1) determine the effect of *Brachiaria* on soil N transformation rates in terms of gross nitrification and denitrification rates; and (2) understand how cultivation would reduce nitrification by releasing biological nitrification inhibitors, thereby reducing the availability of NO₃⁻ for denitrification and together with nitrification, decreasing soil N₂O emissions.

2. Materials and Methods

2.1. Field Experiment and Soil Sampling

The field experiment was established in Danzhou, Hainan Province, China (109°29' E, 19°30' N), in August 2015. The area has a tropical monsoon climate, with an annual mean air temperature of 23.1 °C and annual precipitation of 1823 mm. The soil was developed from granite and classified as Latosol according to the US soil taxonomy. The field experiment involved eight treatments consisting of two forage grasses and four N application rates, with three replicates each. The two forage species were the introduced exotic grass Brachiaria humidicola CIAT679, which has a high-BNI capacity [14], and the native tropical grass Eremochloa ophiuroide, which has no BNI capacity. The four N application rates were 0, 150, 300 and 450 kg N ha⁻¹ year⁻¹. Plot size was 4×3 m and all plots were arranged according to a randomized block design. N fertilizer urea was surface applied prior to irrigation. In the first growing season, 60% urea was applied in August 2015 as a basal fertilizer, with the remaining 40% applied in April 2016 as a topdressing. In the second growing season, 40% urea was applied in August 2016 as a basal fertilizer, while 30% was applied in March and 30% in June 2017 as a top-dressing. The grasses were harvested using a lawnmower one day before each top-dressing. Phosphorus and potassium application rates were 120 kg P₂O₅ ha⁻¹ year⁻¹ (calcium superphosphate) and 120 kg K₂O ha⁻¹ year⁻¹ (potassium sulfate), respectively, with both applied annually as a basal fertilizer in August.

In March 2017, approximately 2 years after establishment of the field experiment and 6 months after the last fertilization, surface soil (0–20 cm) was collected from 10 different positions in each *Brachiaria* and *Eremochloa* plot treated with 150 kg N ha⁻¹ year⁻¹. The samples were then pooled to form a composite sample for each treatment. After removal of visible roots and litter, the fresh soil was sieved through a 2 mm mesh then divided into two subsamples, one of which was stored at 4 °C for incubation and the other which was air-dried for further analysis. Soil pH was measured in a 1:2.5 soil:water sample ratio using a DMP-2 mV/pH detector (Quark Ltd., Nanjing, China). Soil organic C (SOC) and total N (TN) were determined by wet-digestion with H₂SO₄-K₂Cr₂O₇ and on a CN analyzer (Vario Max CN, Elementar, Hanau, Germany), respectively, while NH₄⁺ and NO₃⁻ were extracted using 2 M potassium chloride (KCl) at a 1:5 soil:solution ratio then analyzed using a continuous-flow autoanalyzer (Skalar, Breda, The Netherlands). Dissolved organic carbon (DOC) was extracted using a TOC analyzer (Vario TOC cube, Elementar, Hanau, Germany). Soil available K⁺ was extracted with ammonium acetate and analyzed using a flame photometer (FP640, INASA, China). Soil properties are presented in Table 1.

Table 1. Properties of the test soils after approximately 2 years of cultivation with *Brachiaria* and *Eremochloa*.

	pН	TN (g N kg-1)	SOC (g C kg ⁻¹)	NH₄⁺-N (mg N kg⁻¹)	NO₃ [–] -N (mg N kg⁻¹)	DOC (mg C kg ⁻¹)	Available K+ (mg K kg-1)
Brachiaria soil	$6.40 \pm 0.30a$	$0.55 \pm 0.02a$	$7.32 \pm 0.10a$	$4.24 \pm 0.11a$	6.57 ± 0.10a	29.79 ± 0.90a	153.13 ± 10.67a
Eremochloa soil	$6.10 \pm 0.1a$	$0.54 \pm 0.01a$	$7.01 \pm 0.09b$	$4.38 \pm 0.13a$	$3.70 \pm 0.11b$	$22.64 \pm 1.01b$	$44.28 \pm 1.18 \mathrm{b}$

¹ Values represent means \pm standard errors (n = 3). Values within the same column with different lowercase letters represent a significant difference at p < 0.05. ² TN: total N, SOC: soil organic C, DOC: dissolved organic C.

2.2. ¹⁵N Tracing Experiment

The soil incubation experiments consisted of two NH4NO₃ treatments with three repetitions each, with labelling of either ammonium (¹⁵NH4NO₃, 10.23 atom % excess) or nitrate (NH4¹⁵NO₃, 10.28 atom % excess) with ¹⁵N. Six sets of 250 mL incubation bottles (six bottles per set) were prepared with 30 g fresh soil (on oven-dried basis). After 24 h pre-incubation, 2 mL of ¹⁵NH4NO₃ solution or NH4¹⁵NO₃ solution was then added at a rate of 50 mg NH4⁺-N kg⁻¹ soil and 50 mg NO₃⁻-N kg⁻¹ soil, respectively. The bottles were sealed with cling film punctured with seven pin holes to allow gas exchange then incubated for 16 d at a water holding capacity (WHC) of 60% and a temperature of 25 °C in the dark. Water lost during incubation was compensated for by adding deionized water using a mini pipette to maintain a constant weight. Prior to incubation, a pre-experiment was conducted to confirm the optimal incubation time and gas sampling time interval for identifying the N₂O flux peaks and meeting the requirement of data-input for the ¹⁵N tracing model.

Gas sampling and destructive soil sampling were carried out 2, 98, 194, 290, and 386 h after NH₄NO₃ application, respectively. At each sampling point, gas samples were collected using a 50 mL syringe from a specific set of bottles at 0 and 6 h after sealing with an air-tight lid. The samples were then immediately injected into two preevacuated gas vials with a butyl-rubber stopper for analysis of N₂O concentrations and the isotopic composition of ¹⁵N₂O. In advance of the first gas collection, the bottles were injected with 50 mL of fresh gas to maintain air pressure then after the second collection, the lids were replaced with the punctured cling film. At the same time as gas sampling, NH₄⁺ and NO₃⁻ were extracted from another set of soil samples using 100 mL 2 M KCl. After extraction, the soil was rinsed repeatedly with deionized water to remove any residual inorganic N then oven-dried at 50 °C for soil organic N testing. The soil and solution samples were both stored at -20 °C until use. N₂O concentrations in the sampled gas samples were measured using a gas chromatograph (Agilent 7890, Agilent Technologies, Santa Clara, CA, USA) equipped with a ⁶³Ni electron capture detector. For isotopic analysis, extracted NH₄⁺ was separated by distillation with MgO, thereafter NO₃⁻ was converted to NH₄⁺ with Devarda's alloy in another distillation [23]. Released ammonia was absorbed in boric acid solution, and NH₄⁺ concentration was measured using 0.02 M sulfuric acid. After acidification, the solution was dried in an oven at 50 °C and ¹⁵N enrichment of NH₄⁺ was determined using an isotope ratio mass spectrometry (IRMS 20-22, SerCon, Crewe, UK). While ¹⁵N enrichment of N₂O and organic N were measured using a MAT 253 mass spectrometer (Thermo Finnigan, Bremen, Germany).

2.3. ¹⁵N Tracing Model

A full process-based ¹⁵N tracing model (Figure 1) was used to simultaneously quantify the gross N transformation rates in each soil sample [24]. Average NH₄⁺ and NO3- concentrations and 15N excess values (average ± standard deviations) from the two ¹⁵N-labeled treatments were included in the model. The model calculated the gross N transformation rates by simultaneously optimizing the kinetic parameters for the various N transformation processes to minimize misfit between the modeled and observed NH₄⁺ and NO₃⁻ concentrations and respective ¹⁵N enrichments. A Markov chain Monte Carlo metropolis algorithm (MCMC-MA) was used for parameter optimization, since it is known to be efficient to simultaneously estimate a large number of parameters [25,26]. This algorithm performed a random walk in model parameter space in order to find the global minimum and was shown to be robust against local minima [24]. The optimization procedure produced a probability density function for each model parameter, from which the mean and standard deviation of three parallel sequences were then calculated [25]. To obtain the best parameter set for ¹⁵N tracing analysis that was able to simulate the observed data, various combinations of kinetic settings of individual processes were evaluated (Table 2 shows the final version of the parameter set). The most appropriate model to describe the measured N dynamics was then selected according to the Akaike information criterion for each model version [25]. The ¹⁵N tracing model was performed using MatLab (Version 7.2, The MathWorks Inc., Natick, MA, USA), which used models individually constructed in Simulink (Version 6.4, The MathWorks Inc., Natick, MA, USA).

Table 2. Descriptions and average gross N transformation rates (mean \pm standard deviation, μ g N g⁻¹ soil d⁻¹) in the *Brachiaria* and *Eremochloa* soils.

Demonstern	Description	K 's at 's a	Gross N Transformation Rates		
Parameter	Description	Kinetics	Brachiaria Soil	Eremochloa Soil	
MNrec	Mineralization of Nrec to NH4+	0	2.02 ± 0.05 a	1.57 ± 0.03 b	
INH4-Nrec	Immobilization of NH4+ to Nrec	1	2.94 ± 0.06 b	3.52 ± 0.07 a	
MNlab	Mineralization of Nlab to NH4+	1	0 ± 0	0 ± 0	
INH4-Nlab	Immobilization of NH4+ to Nlab	1	0 ± 0	0 ± 0	
ONrec	Oxidation of Nrec to NO3-	0	0.002 ± 0.001 b	0.006 ± 0.007 a	
Ino3	Immobilization of NO3- to Nrec	1	0.20 ± 0.03 b	0.88 ± 0.01 a	
Onh4	Oxidation of NH4* to NO3-	1	$1.44 \pm 0.02 \text{ b}$	1.98 ± 0.04 a	
DN03	Dissimilatory NO3- reduction to NH4+	1	0.0005 ± 0.0002 b	0.0011 ± 0.0007 a	
Anh4	Adsorption of NH4*	1	$0.07 \pm 0.06 \text{ b}$	35.43 ± 4.65 a	
RNH4	Release of adsorbed NH4+	1	0.71 ± 0.10 b	35.76 ± 3.36 a	
Ano3	Adsorption of NO3-	1	0 ± 0	0 ± 0	
RN03	Release of adsorbed NO3-	1	0 + 0	0 + 0	

¹. Values followed by different lowercase letters within the same row indicate a significant difference between treatments (no overlap of 85% confidence intervals). ² N_{lab}: soil labile organic N, N_{rec}: soil recalcitrant organic N. ³. Kinetic types: 0 = zero order, 1 = first order.

Figure 1. The ¹⁵N tracing model used to determine gross N transformation rates (**a**) [24] and N₂O production pathways from specific N pools (**b**). N_{org}: soil organic N (including soil labile organic N and recalcitrant organic N), NH₄⁺: ammonium, NO₃⁻: nitrate, NH₄⁺ads: ammonium adsorbed to soil, NO₃⁻sto: stored nitrate, SOM: soil organic matter. Abbreviations for the transformations are as in Table 2.

The initial pool sizes for soil NH₄⁺-N and NO₃⁻-N were estimated by extrapolating the first two sets of data back to the time point zero [27]. Based on the kinetic settings and the final parameters set, average gross transformation rates were then calculated over the whole incubation period and presented in units of μ g N g⁻¹ soil d⁻¹ (Table 2).

2.4. Calculations

The N₂O flux (*F*, µg N₂O-N kg⁻¹ h⁻¹) was calculated as follows:

$$F = \frac{\rho \times \Delta C \times V \times 273}{W \times \Delta t \times T} \tag{1}$$

where ρ is the density of gas under standard conditions (1.25 kg N₂O-N m⁻³); ΔC is the variation in gas concentrations during the 6 h gas sampling period (ppbv); *V* is the volume of the flask (m⁻³); *T* is the incubation temperature; Δt is the incubation time (h); and *W* is the dry weight of the soil (kg).

Cumulative N₂O emissions (*E*, µg N₂O-N kg⁻¹) were calculated as follows:

$$E = \sum \frac{(F_i + F_{i+1})}{2} \times (t_{i+1} - t_i) \times 24$$
(2)

where *F* is the N₂O flux (μ g N₂O-N kg⁻¹ h⁻¹); *i* is the *i*th measurement; and $t_{i+1}-t_i$ represents the time interval between the two adjacent measurements.

N₂O is thought to be derived from three N transformation process: autotrophic nitrification, heterotrophic nitrification, and denitrification. The relative contributions of each process to the N₂O emissions were therefore calculated as follows [28]:

$$a_{N_20} = f_{AN} \times a_a + f_{HN} \times a_h + f_{DN} \times a_d \tag{3}$$

$$f_{AN} + f_{HN} + f_{DN} = 1 (4)$$

where *AN*, *HN* and *DN* represent autotrophic nitrification, heterotrophic nitrification and denitrification, respectively; a_{N20} , a_a , a_h and a_d represent the ¹⁵N atom % excess of N₂O-N, NH₄+-N, organic N and NO₃⁻-N from the paired ¹⁵NH₄NO₃ and NH₄¹⁵NO₃ treatments, respectively; and *f*_{AN}, *f*_{HN} and *f*_{DN} represent the respective fractions of N₂O derived from *AN*, *HN*, and *DN*.

The average rate of N₂O production from heterotrophic nitrification (N₂O_h), autotrophic nitrification (N₂O_a), and denitrification (N₂O_d) were then calculated as follows:

$$N_2 O_h = f_{HN} \times N_2 O_T \tag{5}$$

$$N_2 \boldsymbol{O}_a = \boldsymbol{f}_{AN} \times N_2 \boldsymbol{O}_T \tag{6}$$

$$N_2 O_d = f_{DN} \times N_2 O_T \tag{7}$$

where N_2O_T is the total N₂O production rate during the entire incubation time.

2.5. Statistical Analyses

Statistical analysis was not applied to the parameter results since the ¹⁵N tracing model contained plenty of iterations [24]. Accordingly, differences between treatments were considered significant at an alpha level of 0.05 if the 85% confidence intervals did not overlap. Differences in soil properties and N₂O emissions between treatments were determined using an independent *t*-test. All statistical analyses were carried out using SPSS Statistics (version 26.0, IBM corp., Armonk, NY, USA) for Windows.

3. Results

3.1. Soil N Pool Sizes and 15N Enrichment

NH₄⁺ concentrations decreased while NO₃⁻ concentrations increased during incubation of both the *Brachiaria* and *Eremochloa* soils (Figure 2). NH₄⁺ concentrations decreased more rapidly in the *Eremochloa* soil, with a decrease of 95.0% during the first 8 d of incubation, with a reduction of only 49.8% in the *Brachiaria* soil at the end of the 16-day incubation period (Figure 2a). NO₃⁻ concentrations in the *Eremochloa* soil reached a maximum on day 8 after the application of NH₄NO₃, while a continuous increase was observed up until the end of the incubation in the *Brachiaria* soil (Figure 2b).

Figure 2. Measured (points) and modeled (lines) concentrations (a, b) and ¹⁵N enrichment of NH₄⁺ and NO₃⁻ (c, d) in the *Brachiaria* (squares) and *Eremochloa* soil (circles) treated with either ¹⁵NH₄NO₃ or NH₄¹⁵NO₃. Vertical bars denote the standard deviation of the mean (n = 3).

¹⁵N enrichment of the NH₄⁺ pool decreased, while that of the NO₃⁻ pool increased following the addition of ¹⁵NH₄⁺, suggesting that mineralization of soil organic N and NH₄⁺ oxidation occurred simultaneously (Figure 2c,d). Meanwhile, ¹⁵N enrichment of NO₃⁻ decreased after the application of NH₄¹⁵NO₃, suggesting that natural or a low abundance of NO₃⁻ entered this pool. In contrast, ¹⁵N enrichment of NH₄⁺ increased slightly after the application of NH₄¹⁵NO₃, suggesting that the direct conversion from ¹⁵NO₃⁻ to ¹⁵NH₄⁺ was negligible.

3.2. Gross N Transformation Rates

The ¹⁵N tracing model described the measured data in the test soil with a correlation coefficient (R^2) of 0.99. The estimated gross rates of the 12 N transformation processes are shown in Table 2. The dynamic rates of labile organic N (labile organic N mineralization into NH4+ and immobilization of NH4+ into labile organic N) and adsorbed NO₃⁻ (adsorption of NO₃⁻ and release of adsorbed NO₃⁻) were negligible in both test soils. Meanwhile, the gross mineralization rate of recalcitrant organic N in the *Brachiaria* soil was 2.02 μ g N g⁻¹ soil d⁻¹, which was significantly higher than that in the Eremochloa soil. In contrast, the gross rate of mineral NH4⁺ immobilization in the Brachiaria soil decreased to 2.94 μ g N g⁻¹ soil d⁻¹ from 3.57 μ g N g⁻¹ soil d⁻¹ in the Eremochloa soil (Figure 3), and as a result, Brachiaria planting increased the mineralization-immobilization turnover of NH4+ (M/INH4+) from 44.6% in the Eremochloa soil to 68.7%. Both the adsorption rate of NH_{4^+} and the release rate of adsorbed NH_{4^+} were significantly lower in the Brachiaria compared to Eremochloa soil. Meanwhile, the net exchange (release minus adsorption) of mineral NH4⁺ between these two pools was $0.64 \ \mu g$ N g⁻¹ soil d⁻¹ in the *Brachiaria* soil, almost double that in the *Eremochloa* soil (0.33) μg N g⁻¹ soil d⁻¹), suggesting an increase in NH₄⁺ supply.

Figure 3. Nitrogen cycles in the *Brachiaria* and *Eremochloa* soil. Values shown represent gross N transformation rates (mean \pm SD, μ g N g⁻¹ d⁻¹). The thickness of the arrows indicates the strength of each process. Different lowercase indicates denote a significant difference between treatments at p < 0.05. NH4⁺ads: ammonium adsorbed to soil.

Autotrophic nitrification was a dominant NO₃⁻ production process in both sets of soils, while heterotrophic nitrification was negligible. *Brachiaria* planting reduced the autotrophic nitrification rate to 1.44 µg N g⁻¹ soil d⁻¹ from 1.98 µg N g⁻¹ soil d⁻¹ in the *Eremochloa* soil. The *Brachiaria* soil also showed a lower nitrification capacity (ONH₄⁺/M) than the *Eremochloa* soil (71.3 vs. 126.0%, respectively). Immobilization of NO₃⁻⁻ overwhelmingly surpassed the rate of dissimilatory nitrate reduction to ammonium

(DNRA) in both sets of soil, representing the primary NO₃⁻ consumption process under our experimental conditions. The NO₃⁻ immobilization rate in the *Eremochloa* soil was 0.88 µg N g⁻¹ soil d⁻¹, nearly four times greater than that in the *Brachiaria* soil. Meanwhile, the NO₃⁻ retention capacity and availability in the *Eremochloa* soil, expressed as the ratio of NO₃⁻ consumption to production, was significantly higher than in the *Brachiaria* soil (44.4 vs. 13.9%, respectively).

3.3. N₂O Production Pathways and Emissions

The N₂O flux peak occurred on day 4 of the incubation in the *Eremochloa* soil and on day 12 in the *Brachiaria* soil (Figure 4), although there was no apparent difference in the N₂O production rates from heterotrophic nitrification between the *Eremochloa* and *Brachiaria* soil (Table 3). The average N₂O production rate of autotrophic nitrification was 3.19 µg N₂O-N kg⁻¹ d⁻¹ in the *Eremochloa* soil, while it was significantly lower at 2.78 µg N₂O-N kg⁻¹ d⁻¹ in the *Brachiaria* soil. In contrast, the average N₂O production rate during denitrification increased sharply from 0.55 µg N₂O-N kg⁻¹ d⁻¹ in the *Eremochloa* soil, representing a 7.7-fold increase.

Figure 4. Fluxes (**a**) and cumulative emissions (**b**) of N₂O in the *Brachiaria* and *Eremochloa* soil during the 16-day incubation. Different lowercase indicates denote a significant difference between treatments at p < 0.05. Vertical bars denote the standard deviation of the mean (n = 3).

Table 3. Average N₂O production rates, the relative contribution of each nitrogen transformation process, and the ratio of N₂O emissions from heterotrophic and autotrophic nitrification and denitrification in the *Brachiaria* and *Eremochloa* soils.

	N₂O Production Rate (µg N₂O-N kg ⁻¹ d ⁻¹)				Relative Contribution to N ₂ O (%)			
	Total	Autotrophic Nitrification	Heterotrophic Nitrification	Denitrification	f an	f _{HN}	f dn	
Brachiaria soil	$9.02 \pm 0.05a$	$2.78 \pm 0.1b$	1.99 ± 0.10a	$4.25 \pm 0.14a$	30.90 ± 0.60 b	$22.00 \pm 1.40b$	$47.10 \pm 1.20a$	
Eremochloa soil	$5.65\pm0.22b$	$3.19 \pm 0.28a$	1.91 ± 0.11a	$0.55 \pm 0.06b$	56.30 ± 2.80a	a 33.90 ± 3.20a	$9.70\pm0.80\mathrm{b}$	

¹ Values represent means ± standard deviation (n = 3). Different lowercase letters within the same column denote a significant difference between treatments at p < 0.05. ² f_{AN}, f_{HN} and f_{DN} denote the contribution of autotrophic nitrification, heterotrophic nitrification and denitrification to N₂O production, respectively.

Cumulative N₂O emissions during incubation were significantly higher in the *Brachiaria* soil (144.31 μ g N₂O-N kg⁻¹) than that estimated as 90.42 μ g N₂O-N kg⁻¹ in the *Eremochloa* soil. Meanwhile, denitrification contributed to 47.1% of the emitted N₂O, exceeding the contributions of autotrophic and heterotrophic nitrification in the

Brachiaria soil (Table 3). In contrast, only 9.7% of the produced N₂O was derived from denitrification in the *Eremochloa* soil.

4. Discussion

4.1. Brachiaria Humidicola Cultivation Enhanced the Soil NH4⁺ Supply

This study revealed that the gross mineralization rate of soil recalcitrant organic N was significantly enhanced by 28.7% under cultivation of Brachiaria compared with *Eremochloa*, accelerating the renewal of soil organic N due to its slight increase. This is consistent with the findings of Teutscherová et al. [29,30] who revealed a positive priming effect of high-BNI Brachiaria on native soil organic N decomposition in Colombian pastures compared with a low-BNI genotype. It is suggested that grasses with a dense root system stimulate organic N mineralization by enhancing microbial biomass and activity through the release of large amounts of dead roots and exudates into the soil [31,32]. It is thought that the increase in organic C accelerates the formation of aggregates and reduces the effective diffusion coefficient of oxygen in the soil, in turn inducing a shift in dominant microbes from aerobes (Gram-negative bacteria) to facultative and/or anaerobic microbes (Gram-positive bacteria and fungi) [33-36]. In general, Gram-positive bacteria and fungi preferentially utilize soil recalcitrant organic matter [37,38]. It is therefore likely that the increase in soil organic C observed here was mainly due to the increase in organic C input from the high biomass of dead roots and exudates under Brachiaria cultivation, resulting in more efficient growth of Grampositive bacteria and fungi and an increase in the turnover of recalcitrant organic C compared with Eremochloa cultivation.

In contrast, the immobilization rate of NH₄⁺ in the *Brachiaria* soil decreased compared with the *Eremochloa* soil. This differs from the results of Vazquez et al. [20] who showed that gross NH₄⁺ immobilization was enhanced in the soil cultivated with high-BNI *Brachiaria* genotypes, while the NO₃⁻ concentration and N losses remained low. It has been reported that a high C/N ratio in high-BNI plant soil reduces N availability for microbial N immobilization when no N fertilizers are added or when only limited (animal) urine deposition occurs [14,29,39,40]. In contrast, cultivation of high-BNI *Brachiaria* genotypes in the same field experiment results in a significant reduction in microbial NH₄⁺ immobilization rates at 7 and 21 days after application of N fertilizers at a rate 50 kg N ha⁻¹ [41]. These results suggest that microbial NH₄⁺ immobilization is dependent on soil NH₄⁺ availability.

Compared with Eremochloa, Brachiaria more efficiently reduced the gross rate of soil NH_{4^+} adsorption than the release rate of adsorbed NH_{4^+} , causing an increase in the net release rate of adsorbed NH4⁺. This may have been due to two possible reasons. Firstly, roots of Brachiaria can distribute within the 20-40 cm soil layer, allowing effective absorption of non-exchangeable K⁺ from deeper soil layers [42], dramatically increasing available K⁺ in the surface soil. The higher availability of K⁺ also outcompetes NH4⁺ for soil adsorption sites, thereby reducing soil adsorption of NH4+ since both have a similar ionic radius and physical properties [43,44]. To date, however, the influence of Brachiaria planting on the soil available K⁺ is less studied. Further study is required to evaluate how *Brachiaria* cultivation affects the soil available K at the different K application rates. Secondly, the adsorption capacity of NH₄⁺ in soil is also affected by the content of clay and organic matter [45,46]. Organic matter with plenty of polar atom groups, such as carboxyl and phenolic hydroxyl, contribute to the negative charge and is the main source of variable soil charge. It is therefore likely that NH4+ as a cation is not as efficiently adsorbed, while NH4⁺ from decomposed organic N is released during the mineralization of native recalcitrant organic C under cultivation of Brachiaria.

Overall, cultivation of *Brachiaria* therefore reduced the rates of NH₄⁺ immobilization and adsorption and enhanced the rates of organic N mineralization and adsorbed NH₄⁺ release, in turn increasing soil NH₄⁺ availability and supply compared with *Eremochloa* cultivation. These results suggest that in the *Brachiaria* soil, reduced application rate of K fertilizer may increase the adsorption of NH₄⁺ from the test soil.

4.2. Effect of Brachiaria humidicola Cultivation on Soil N2O Emissions

As expected, cultivation of Brachiaria significantly reduced autotrophic nitrification and related N₂O production, compared with *Eremochloa*. This is consistent with the findings of Subbarao et al. [14] who reported that Brachiaria soil reduced the ammonia oxidation rate by 90% during a 3-year field experiment compared with soybean and plant-free soil. Subbarao et al. [47] revealed that the release of brachialactone exudate by Brachiaria blocked the activities of both ammonia monooxygenase and hydroxylamino oxidoreductase, thereby reducing ammonia oxidation in pure culture with the ammonia oxidizer Nitrosomonas europaea. In line with this, a reduction in the abundance of ammonia oxidizers was observed in a previous field study of Brachiaria cultivation [18,40]. It was also revealed that BNI compounds were able to persist for a long time and tended to accumulate over time, remaining effective even after Brachiaria pasture was subsequently replaced with maize [48-50]. However, Vazquez et al. [20] and Teutscherová et al. [41] found no comparable differences in gross nitrification rates between Brachiaria genotypes with differing BNI capacities in soil with a high organic C content in the tropical savanna in Colombia. Moreover, they attributed the reduced inhibition of potential net nitrification rates to strong microbial immobilization of NH4⁺, and a subsequent reduction in soil NH4⁺ availability for ammonia oxidizers.

In the present study, the reduction in N₂O production in the *Brachiaria* soil via autotrophic nitrification was at the lower end of the range of 16.8–90.0% reported by previous studies [51]. This suggests that less NH₄⁺ was converted into N₂O during autotrophic nitrification in test acidic soil. In general, competition for available NH₄⁺ exists between autotrophic nitrification and microbial immobilization or adsorption of NH₄⁺ [25,52]. As discussed above, reduced rates of NH₄⁺ immobilization and NH₄⁺ adsorption together with higher mineralization rates of organic N provided more NH₄⁺ substrates for ammonia oxidizers in the *Brachiaria* compared to *Eremochloa* soil. This suggests that the suppression effect of high-BNI *Brachiaria* on N₂O emissions may also depend on soil NH₄⁺ [20,29,53,54].

In contrast to autotrophic nitrification, *Brachiaria* did not alter the N₂O production rate via heterotrophic nitrification. In general, heterotrophic nitrification is carried out by a large variety of bacteria and fungi [55], with heterotrophic nitrifiers using both organic and inorganic N as a substrate, and possibly producing more N₂O than autotrophic nitrifiers [56,57]. In the present study, we supposed that heterotrophic nitrifiers would use organic N as a unique substrate since the model only can select one substrate pool for running. Thus, it is very likely that the gross rate of heterotrophic nitrification in acidic soil is not inhibited by popular synthetic nitrification inhibitors such as acetylene (C₂H₂), dicyandiamide (DCD) and nitrapyrin [58]. Therefore, our results suggest that the 2-year cultivation with *Brachiaria* had no effect on N₂O production via heterotrophic nitrification.

As unexpected, cumulative N₂O emissions were significantly higher in the *Brachiaria* soil compared to the *Eremochloa* soil as measured in the field (4.30 and 1.54 kg N₂O-N ha⁻¹ under *Brachiaria* and *Eremochloa* cultivation, respectively), although N₂O emissions via autotrophic nitrification decreased. This is in contrast with previous results in which *Brachiaria* establishment was found to reduce soil N₂O emissions by 20–90% compared with plants without BNI capacity [14,47]. In the present study, the N₂O production rate in the *Brachiaria* soil during denitrification increased 6.7-fold, while the contribution ratio of denitrification to emitted N₂O dramatically increased compared with *Eremochloa*. These results clearly suggest that the enhanced N₂O emissions in the *Brachiaria* soil were primarily due to an increased denitrification potential. There were

two suggested possibilities. Firstly, compared with Eremochloa, Brachiaria cultivation sharply reduced the NO3⁻ immobilization rate, which outnumbered the rate of DNRA as the primary consumption process of NO₃-. This suggests that cultivation of Brachiaria increased soil NO₃⁻ availability by reducing the ratio of total NO₃⁻ consumption through microbial immobilization of NO3⁻ and dissimilatory NO3⁻ reduction to NH4⁺ (IN03+DN03) to total NO₃⁻ production (O_{NH4} + O_{Nrec}), thereby providing more NO₃⁻ for denitrification. It was previously suggested that higher NO3- concentrations in the soil tend to result in a higher N₂O/N₂ ratio during denitrification, thereby favoring N₂O emissions [59]. Secondly, in this study, Brachiaria cultivation significantly enhanced soil organic C, notably dissolved organic C, due to the increase in plant biomass and especially biomass of roots and exudates. Increases in soil organic C were also found to promote the formation of anaerobic microsites for denitrification by stimulating aggregation and soil respiration [60,61]. Meanwhile, an increase in organic C was also found to reduce the minimum soil moisture threshold for the occurrence of denitrification [62,63]. For example, Wan et al. [64] found that the addition of starch to sandy loam soil treated with nitrate-based fertilizers stimulated N2O production through denitrification. The results of this study therefore suggest that although cultivation of Brachiaria suppressed autotrophic nitrification, it significantly increased the soil denitrification potential and subsequent N₂O production by increasing soil organic C, notably labile organic C, through an increase in plant biomass, thereby stimulating soil N₂O emissions.

5. Conclusions

This study examined the effect of the exotic tropical grass *Brachiaria*, which has a high-BNI capacity, on soil N transformation processes and N₂O emissions. Cultivation of *Brachiaria* significantly decreased the gross rate of autotrophic nitrification and N₂O production during nitrification. In contrast, *Brachiaria* also increased the gross mineralization rate of soil recalcitrant organic N and reduced microbial NH₄⁺ immobilization and N₄⁺ adsorption, thereby increasing the NH₄⁺ supply for nitrification compared with native *Eremochloa*. *Brachiaria* planting caused a significant increase in soil N₂O emissions, primarily due to an increase denitrification potential as a result of reductions in NO₃⁻ immobilization and an increase in soil labile organic C. Further studies are now required to determine the effects of K fertilizers on the adsorption and availability of NH₄⁺. The effect of synthetic nitrification inhibitors together with the biological nitrification inhibitors released from *Brachiaria* on the mitigation of N₂O emissions in tropical pastures also requires further clarification.

Author Contributions: Conceptualization, W.D. and D.L.; incubation, L.X., Y.N. and D.L.; data analysis, L.X., C.M., A.J.-W. and Z.C.; writing, L.X., W.D., M.Z., L.M.; funding acquisition, W.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported from the National Natural Science Foundation of China (41730753, 41977049, 42077029), and the International Partnership Program of Chinese Academy of Sciences (151432KYSB20200001). Special appreciations to the collaboration of the German Science foundation research unit DASIM (DFG FOR 2337), and IAEA coordinated research project (D15020).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

 Prather, M.J.; Hsu, J.; DeLuca, N.M.; Jackman, C.H.; Oman, L.D.; Douglass, A.R.; Fleming, E.L.; Strahan, S.E.; Steenrod, S.D.; Søvde, O.A.; et al. Measuring and modeling the lifetime of nitrous oxide including its variability. *J. Geophys. Res.* 2015, 120, 5693–5705.

- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N₂O): The dominant ozone-depleting substance emitted in the 21st century. *Science* 2009, 326, 123–125.
- 3. UNEP. Drawing Down N₂O To Protect Climate and the Ozone Layer; UNEP: Nairobi, Kenia, 2013; ISBN 9789280733587.
- 4. Tian, H.; Yang, J.; Xu, R.; Lu, C.; Canadell, J.G.; Davidson, E.A.; Jackson, R.B.; Arneth, A.; Chang, J.; Ciais, P.; et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. *Glob. Chang. Biol.* **2019**, *25*, 640–659.
- 5. Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.M.; Kirk, G.J.D. Carbon losses from all soils across england and wales 1978–2003. *Nature* **2005**, *437*, 245–248.
- Poudel, D.D.; Horwath, W.R.; Lanini, W.T.; Temple, S.R.; Van Bruggen, A.H.C. Comparison of soil n availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern california. *Agric. Ecosyst. Environ.* 2002, 90, 125–137.
- 7. Wendeborn, S. The chemistry, biology, and modulation of ammonium nitrification in soil. Angew. Chem. Int. Ed. 2019, 58, 2–23.
- Subbarao, G.V.; Sahrawat, K.L.; Nakahara, K.; Ishikawa, T.; Kishii, M.; Rao, I.M.; Hash, C.T.; George, T.S.; Srinivasa Rao, P.; Nardi, P.; et al. Biological nitrification inhibition—A novel strategy to regulate nitrification in agricultural systems. *Adv. Agron.* 2012, *114*, 249–302.
- Zakir, H.A.K.M.; Subbarao, G.V.; Pearse, S.J.; Gopalakrishnan, S.; Ito, O.; Ishikawa, T.; Kawano, N.; Nakahara, K.; Yoshihashi, T.; Ono, H.; et al. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (*Sorghum bicolor*). New Phytol. 2008, 180, 442–451.
- 10. Sun, L.; Lu, Y.F.; Yu, F.W.; Kronzucker, H.J.; Shi, W.M. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. *NEW Phytol.* **2016**, *212*, 646–656.
- 11. O'Sullivan, C.A.; Fillery, I.R.P.P.; Roper, M.M.; Richards, R.A.; O'Sullivan, C.A.; Fillery, I.R.P.P.; Roper, M.M.; Richards, R.A. Identification of several wheat landraces with biological nitrification inhibition capacity. *Plant Soil* **2016**, *404*, 61–74.
- Subbarao, G.V.; Kishii, M.; Nakahara, K.; Ishikawa, T.; Ban, T.; Tsujimoto, H.; George, T.S.; Berry, W.L.; Hash, C.T.; Ito, O. Biological nitrification inhibition (BNI)—Is there potential for genetic interventions in the triticeae? *Breed. Sci.* 2009, *59*, 529– 545.
- 13. Otaka, J.; Subbarao, G.V.; Ono, H.; Yoshihashi, T. Biological nitrification inhibition in maize—Isolation and identification of hydrophobic inhibitors from root exudates. *Biol. Fertil. Soils* **2022**, *58*, 251–264.
- 14. Subbarao, G.V.; Nakahara, K.; Hurtado, M.P.; Ono, H.; Moreta, D.E.; Salcedo, A.F.; Yoshihashi, A.T.; Ishikawa, T.; Ishikawa, T.; Ohnishi-Kameyama, M.; et al. Evidence for biological nitrification inhibition in *Brachiaria* pastures. *Proc. Natl. Acad. Sci. USA* **2009**, *106*, 17302–17307.
- 15. Castaldi, S.; Carfora, A.; Fiorentino, A.; Natale, A.; Messere, A.; Miglietta, F.; Cotrufo, M.F. Inhibition of net nitrification activity in a mediterranean woodland: Possible role of chemicals produced by arbutus unedo. *Plant Soil* **2009**, *315*, 273–283.
- Subbarao, G.V.; Nakahara, K.; Ishikawa, T.; Yoshihashi, T.; Ito, O.; Ono, H.; Ohnishi-Kameyama, M.; Yoshida, M.; Kawano, N.; Berry, W.L. Free fatty acids from the pasture grass *Brachiaria humidicola* and one of their methyl esters as inhibitors of nitrification. *Plant Soil* 2008, 313, 89–99.
- Karwat, H.; Egenolf, K.; Nunez, J.; Rao, I.; Rasche, F.; Arango, J.; Moreta, D.; Arevalo, A.; Cadisch, G. Low N-15 natural abundance in shoot tissue of *Brachiaria humidicola* is an indicator of reduced N losses due to biological nitrification inhibition (BNI). *Front. Microbiol.* **2018**, *9*, 2383.
- Nunez, J.; Arevalo, A.; Karwat, H.; Egenolf, K.; Miles, J.; Chirinda, N.; Cadisch, G.; Rasche, F.; Rao, I.; Subbarao, G.V.; et al. Biological nitrification inhibition activity in a soil-grown biparental population of the forage grass, *Brachiaria humidicola*. *Plant Soil* 2018, 426, 401–411.
- Egenolf, K.; Schad, P.; Arevalo, A.; Villegas, D.; Arango, J.; Karwat, H.; Cadisch, G.; Rasche, F. Inter-microbial competition for N and plant NO₃⁻ uptake rather than BNI determines soil net nitrification under intensively managed *Brachiaria Humidicola*. *Biol. Fertil. Soils* 2022, *58*, 307–319.
- Vazquez, E.; Teutscherova, N.; Dannenmann, M.; Töchterle, P.; Butterbach-Bahl, K.; Pulleman, M.; Arango, J. Gross nitrogen transformations in tropical pasture soils as affected by *Urochloa* genotypes differing in biological nitrification inhibition (BNI) capacity. *Soil Biol. Biochem.* 2020, 151, 108058.
- 21. Zhang, J.; Cai, Z.; Zhu, T. N₂O production pathways in the subtropical acid forest soils in China. *Environ. Res.* **2011**, *111*, 643–649.
- Saggar, S.; Jha, N.; Deslippe, J.; Bolan, N.S.; Luo, J.; Giltrap, D.L.; Kim, D.G.; Zaman, M.; Tillman, R.W. Denitrification and N2O: N2 Production in Temperate Grasslands: Processes, Measurements, Modelling and Mitigating Negative Impacts. *Sci. Total Environ.* 2013, 465, 173–195. https://doi.org/10.1016/j.scitotenv.2012.11.050.
- Zhang, J.; Cai, Z.; Cheng, Y.; Zhu, T. Denitrification and Total Nitrogen Gas Production from Forest Soils of Eastern China. Soil Biol. Biochem. 2009, 41, 2551–2557. https://doi.org/10.1016/j.soilbio.2009.09.016.
- Müller, C.; Rütting, T.; Kattge, J.; Laughlin, R.J.; Stevens, R.J. Estimation of parameters in complex ¹⁵N tracing models by monte carlo sampling. *Soil Biol. Biochem.* 2007, 39, 715–726.
- Rütting, T.; Müller, C. ¹⁵N Tracing models with a monte carlo optimization procedure provide new insights on gross n transformations in soils. *Soil Biol. Biochem.* 2007, 39, 2351–2361.
- Knorr, W.; Kattge, J. Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by monte carlo sampling. *Glob. Chang. Biol.* 2005, 11, 1333–1351.

- 27. Müller, C.; Stevens, R.J.; Laughlin, R.J. A ¹⁵N tracing model to analyse n transformations in old grassland soil. *Soil Biol. Biochem.* **2004**, *36*, 619–632.
- Zhu, T.; Zhang, J.; Cai, Z. The Contribution of Nitrogen Transformation Processes to Total N2O Emissions from Soils Used for Intensive Vegetable Cultivation. *Plant Soil* 2011, 343, 313–327.
- 29. Teutscherová, N.; Vazquez, E.; Arevalo, A.; Pulleman, M.; Rao, I.; Arango, J. Differences in arbuscular mycorrhizal colonization and P acquisition between genotypes of the tropical brachiaria grasses: Is there a relation with BNI activity? *Biol. Fertil. Soils* **2019**, *55*, 325–337.
- Teutscherová, N.; Vazquez, E.; Lehndorff, E.; Pulleman, M.; Arango, J. Nitrogen acquisition by two U. humidicola genotypes differing in biological nitrification inhibition (BNI) capacity and associated microorganisms. Biol. Fertil. Soils 2022, 58, 355–364.
- 31. Lama, S.; Kuhn, T.; Lehmann, M.F.; Müller, C.; Gonzalez, O.; Eisenhauer, N.; Lange, M.; Scheu, S.; Oelmann, Y.; Wilcke, W. The biodiversity – N cycle relationship: A ¹⁵N tracer experiment with soil from plant mixtures of varying diversity to model N pool sizes and transformation rates. *Biol. Fertil. Soils* **2020**, *56*, 1047–1061.
- 32. Zhang, J.; Zhu, T.; Cai, Z.; Müller, C. Nitrogen cycling in forest soils across climate gradients in eastern China. *Plant Soil* **2011**, 342, 419–432.
- Zhang, H.; Ding, W.; Yu, H.; He, X. Carbon uptake by a microbial community during 30-day treatment with ¹³C-glucose of a sandy loam soil fertilized for 20 years with npk or compost as determined by a GC-C-IRMS analysis of phospholipid fatty acids. *Soil Biol. Biochem.* 2013, *57*, 228–236.
- Lin, Y.X.; Ye, G.P.; Kuzyakov, Y.; Liu, D.Y.; Fan, J.B.; Ding, W.X. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. *Soil Biol. Biochem.* 2019, 134, 187–196.
- Zhang, H.J.; Ding, W.X.; Yu, H.Y.; He, X.H. Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: Result of 20 years compost and inorganic fertilizers repeated application experiment. *Biol. Fertil. Soils* 2015, 51, 137–150.
- Yu, H.Y.; Ding, W.X.; Luo, J.F.; Geng, R.L.; Cai, Z.C. Long-term application of compost and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. *Soil Till. Res.* 2012, 124, 170–177.
- Xu, G.; Chen, J.; Berninger, F.; Pumpanen, J.; Bai, J.; Yu, L.; Duan, B. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two abies faxoniana forest elevations under elevated temperatures. *Soil Biol. Biochem.* 2015, *91*, 1–13.
- 38. Fanin, N.; Kardol, P.; Farrell, M.; Nilsson, M.C.; Gundale, M.J.; Wardle, D.A. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. *Soil Biol. Biochem.* **2019**, *128*, 111–114.
- Horrocks, C.A.; Arango, J.; Arevalo, A.; Nuñez, J.; Cardoso, J.A.; Dungait, J.A.J. Smart forage selection could significantly improve soil health in the tropics. *Sci. Total Environ.* 2019, 688, 609–621.
- Byrnes, R.C.; Nùñez, J.; Arenas, L.; Rao, I.; Trujillo, C.; Alvarez, C.; Arango, J.; Rasche, F.; Chirinda, N. Biological nitrification inhibition by *Brachiaria* grasses mitigates soil nitrous oxide emissions from bovine urine patches. *Soil Biol. Biochem.* 2017, 107, 156–163.
- 41. Teutscherová, N.; Vázquez, E.; Trubač, J.; Villegas, D.M.; Subbarao, G.V.; Pulleman, M.; Arango, J. Gross N transformation rates in soil system with contrasting *Urochloa* genotypes do not confirm the relevance of bni as previously assessed in vitro. *Biol. Fertil. Soils* **2022**, *58*, 321–331.
- 42. Garcia, R.A.; Crusciol, C.A.C.; Calonego, J.C.; Rosolem, C.A. Potassium cycling in a corn-brachiaria cropping system. *Eur. J. Agron.* **2008**, *28*, 579–585.
- Zhao, W.; Li, Y.; Zhao, Q.; Ning, Z.; Zhou, C.; Wang, H.; Lu, L.; Yang, P.; Zhang, K.; Wang, F.; et al. Adsorption and desorption characteristics of ammonium in eight loams irrigated with reclaimed wastewater from intensive hogpen. *Environ. Earth Sci.* 2013, 69, 41–49.
- 44. Rich, C.I.; Black, W.R. Pottasium exchange as affected by cation size, pH, and mineral structure. Soil Sci. 1964, 97, 384–390.
- 45. Zhu, T.; Meng, T.; Zhang, J.; Yin, Y.; Cai, Z.; Yang, W.; Zhong, W. Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China. *Biol. Fertil. Soils* **2013**, *49*, 323–331.
- 46. Xie, Y.; Yang, L.; Zhu, T.; Yang, H.; Zhang, J.; Yang, J.; Cao, J.; Bai, B.; Jiang, Z.; Liang, Y. Rapid recovery of nitrogen retention capacity in a subtropical acidic soil following afforestation. *Soil Biol. Biochem.* **2018**, *120*, 171–180.
- Subbarao, G.V.; Ito, O.; Sahrawat, K.L.; Berry, W.L.; Nakahara, K.; Ishikawa, T.; Watanabe, T.; Suenaga, K.; Rondon, M.; Rao, I.M. scope and strategies for regulation of nitrification in agricultural systems—Challenges and opportunities. *CRC. Crit. Rev. Plant Sci.* 2006, 25, 303–335.
- 48. Subbarao, G.V.; Ishikawa, T.; Ito, O.; Nakahara, K.; Wang, H.Y.; Berry, W.L. A bioluminescence assay to detect nitrification inhibitors released from plant roots: A case study with *Brachiaria humidicola*. *Plant Soil* **2006**, *288*, 101–112.
- Subbarao, G.V. V.; Sahrawat, K.L.; Nakahara, K.; Rao, I.M.; Ishitani, M.; Hash, C.T.; Kishii, M.; Bonnett, D.G.; Berry, W.L.; Lata, J.C. A paradigm shift towards low-nitrifying production systems: The role of biological nitrification inhibition (BNI). *Ann. Bot.* 2013, 112, 297–316.
- Karwat, H.; Moreta, D.; Arango, J.; Nunez, J.; Rao, I.; Rincon, A.; Rasche, F.; Cadisch, G. Residual effect of BNI by *Brachiaria Humidicola* pasture on nitrogen recovery and grain yield of subsequent maize. *Plant Soil* 2017, 420, 389–406.
- 51. Wang, X.; Bai, J.; Xie, T.; Wang, W.; Zhang, G.; Yin, S.; Wang, D. Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review. *Ecotoxicol. Environ. Saf.* **2021**, 220, 112338.

- 52. Portier, E.; Silver, W.L.; Yang, W.H. Invasive perennial forb effects on gross soil nitrogen cycling and nitrous oxide fluxes depend on phenology. *Ecology* **2019**, *100*, e02716.
- Nardi, P.; Müller, C.; Pietramellara, G.; Subbarao, G.V.; Nannipieri, P. Recommendations about soil biological nitrification inhibition (BNI) studies. *Biol. Fertil. Soils* 2022, 58, 613–615.
- Nardi, P.; Laanbroek, H.J.; Nicol, G.W.; Renella, G.; Cardinale, M.; Pietramellara, G.; Weckwerth, W.; Trinchera, A.; Ghatak, A.; Nannipieri, P. Biological nitrification inhibition in the rhizosphere: Determining interactions and impact on microbially mediated processes and potential applications. *FEMS Microbiol. Rev.* 2020, 44, 874–908.
- Braker, G.; Conrad, R. Diversity, structure, and size of N₂O-producing microbial communities in soils-what matters for their functioning? *Adv. Appl. Microbiol.* 2011, *75*, 33–70.
- 56. Zhang, J.; Müller, C.; Cai, Z. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. *Soil Biol. Biochem.* **2015**, *84*, 199–209.
- 57. Anderson, I.C.; Poth, M.; Homstead, J.; Burdige, D. A Comparison of NO and N₂O production by the autotrophic nitrifier nitrosomonas europaea and the heterotrophic nitrifier *Alcaligenes faecalis*. *Appl. Environ. Microbiol.* **1993**, *59*, 3525–3533.
- 58. De Boer, W.; Kowalchuk, G.A. Nitrification in acid soils: Micro-organisms and mechanisms. *Soil Biol. Biochem.* **2001**, *33*, 853–866.
- 59. Luo, J.; Tillman, R.W.; Ball, P.R. Factors regulating denitrification in a soil under pasture. Soil Biol. Biochem. 1999, 31, 913–927.
- 60. Garcia-Montiel, D.C.; Melilo, J.M.; Steudler, P.A.; Cerri, C.C.; Piccolo, M.C. Carbon limitations to nitrous oxide emissions in a humid tropical forest of the Brazilian Amazon. *Biol. Fertil. Soils* **2003**, *38*, 267–272.
- 61. Bollmann, A.; Conrad, R. Influence of O₂ Availability on NO and N₂O release by nitrification and denitrification in soils. *Glob. Chang. Biol.* **2004**, *4*, 387–396.
- Groenigen, J.W.; Kasper, G.J.; Velthof, G.L.; Dasselaar van den Pol-van, A.; Kuikman, P.J. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry application. *Plant Soil* 2004, 263, 101–111.
- Chantigny, M.H.; Pelster, D.E.; Perron, M.H.; Rochette, P.; Angers, D.A.; Parent, L.E.; Massé, D.; Ziadi, N. Nitrous oxide emissions from clayey soils amended with paper sludges and biosolids of separated pig slurry. J. Environ. Qual. 2013, 42, 30–39.
- 64. Wan, Y.J.; Ju, X.T.; Ingwersen, J.; Schwarz, U.; Stange, C.F.; Zhang, F.S.; Streck, T. Gross nitrogen transformations and related nitrous oxide emissions in an intensively used calcareous soil. *Soil Sci. Soc. Am. J.* **2009**, *73*, 102–112.