
fevo-10-1003532 September 30, 2022 Time: 16:34 # 1

TYPE Original Research
PUBLISHED 06 October 2022
DOI 10.3389/fevo.2022.1003532

OPEN ACCESS

EDITED BY

Sharif A. Mukul,
University of the Sunshine Coast,
Australia

REVIEWED BY

Shixing Zhou,
Sichuan Agricultural University, China
Purabi Saikia,
Central University of Jharkhand, India

*CORRESPONDENCE

Xianhua Gan
gdfri@163.com
Xiaodong Liu
liuxd@scau.edu.cn

†These authors have contributed
equally to this work and share first
authorship

SPECIALTY SECTION

This article was submitted to
Conservation and Restoration Ecology,
a section of the journal
Frontiers in Ecology and Evolution

RECEIVED 26 July 2022
ACCEPTED 13 September 2022
PUBLISHED 06 October 2022

CITATION

Zhao X, Zhang W, Feng Y, Mo Q, Su Y,
Njoroge B, Qu C, Gan X and Liu X
(2022) Soil organic carbon primarily
control the soil moisture characteristic
during forest restoration in subtropical
China.
Front. Ecol. Evol. 10:1003532.
doi: 10.3389/fevo.2022.1003532

COPYRIGHT

© 2022 Zhao, Zhang, Feng, Mo, Su,
Njoroge, Qu, Gan and Liu. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Soil organic carbon primarily
control the soil moisture
characteristic during forest
restoration in subtropical China
Xinyu Zhao1,2†, Weiqiang Zhang2†, Yingjie Feng1,2,
Qifeng Mo1,3, Yuqiao Su2, Brian Njoroge4, Chao Qu2,
Xianhua Gan2* and Xiaodong Liu1,3*
1College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou,
China, 2Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong
Academy of Forestry, Guangzhou, China, 3Chinese Forest Ecosystem Research Network
Guangdong E’huangzhang National Field Observation and Research Station, Yangjiang, China,
4South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China

Soil organic carbon (SOC) is a crucial component of the soil carbon pool

that regulates fundamental soil properties and water status. In the global

context of restoring vegetation, the soil carbon-water coupling relationship

has gained attention. In particular, the regulatory mechanism of SOC on

soil moisture requires further research. In this study, three typical forests in

subtropical China were chosen as restoration sequences to investigate the

changes in SOC and soil moisture during subtropical forest restoration and

its regulation mechanisms: broadleaf-conifer mixed forest (EF), broad-leaved

forest (MF), and old-growth forest (LF). The soil water content (35.71 ± 1.52%),

maximum water holding capacity (47.74 ± 1.91%), capillary water holding

capacity (43.92 ± 1.43%), and field water holding capacity (41.07 ± 1.65%) in

LF were significantly higher than those in EF (p < 0.01). As forest restoration

progressed, the amount of litter returning to the soil increased gradually,

and the SOC content (0–100 cm) increased from 9.51 ± 1.42 g/kg (EF) to

15.60 ± 2.30 g/kg (LF). The SOC storage increased from 29.49 ± 3.59 to

42.62 ± 5.78 Mg/ha. On one hand, forest restoration led to a change in

SOC content, which optimizes the soil structure and enhances soil porosity

(path coefficient of 0.537, p < 0.01), further leading to a change in soil water

content (path coefficient of 0.940, p < 0.01). On the other hand, the increase

in SOC influenced the change in soil nutrient content, i.e., total nitrogen (TN)

and total phosphorus (TP) (path coefficient of 0.842, p < 0.01). Changes in

SOC and soil nutrients stimulated changes in the stoichiometric ratio, i.e., C:P

and N:P (path coefficients of 0.988 and –0.968, respectively, p < 0.01), and

the biological activity in soil changed appropriately, which eventually led to

a change in soil water content (path coefficient of –0.257, p < 0.01). These
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results highlight the changes in SOC and soil water content (SWC), as well as

the mechanism of SOC controlling SWC as a result of vegetation restoration,

which is of tremendous importance for advancing our understanding of the

eco-hydrological process of subtropical forest restoration.

KEYWORDS

vegetation restoration, soil properties, soil organic carbon, soil water content,
carbon-water coupling, subtropical forest

Introduction

Forest ecosystems are one of the most important carbon
pools and reservoirs in the terrestrial biosphere (Foley et al.,
2007; Fahey et al., 2010; Nguyen et al., 2013). Forest soil carbon
accounts for 51% of the total ecosystem carbon, and forest soil
water storage contributes 73.39% of the total forest ecosystem
water retention (Hughes et al., 2002; Wu et al., 2021). Changes
in forest soil carbon and water stocks are strongly affected by
climatic conditions, soil properties, and plant species (Setälä
et al., 2016; Hessburg et al., 2019). At an ecosystem scale, soil
carbon and hydrological processes are strongly connected (Sun
et al., 2019). Consequently, the functions and processes of forest
soil carbon sequestration and water conservation have garnered
extensive attention worldwide in the context of widespread
vegetation regeneration and increasingly severe climate change
effects (DeLuca and Aplet, 2008; Maioli et al., 2021). It is
crucial to investigate the carbon and water storage of forest
soil and its coupling mechanism to elucidate the production,
ecological function formation, and response mechanism of
forest ecosystems in the context of vegetation and climate
change.

Surface and subsurface biological processes within terrestrial
ecosystems rely on soil organic carbon (SOC) as an essential
nutrient and energy source (Zhang et al., 2022). In forest
ecosystems, land- use changes resulting from natural vegetation
restoration can significantly alter carbon storage and fixation
(Zhang and Shangguan, 2016). Forest restoration influences the
equilibrium between the carbon input and output processes
from plant and microbial sources by altering the soil carbon pool
(Jastrow et al., 2007; Zhang et al., 2021). According to Erskine
et al. (2006), trees can add carbon to the soil, and this process
can be affected by the tree species and the external environment.
Different vegetation varieties, for instance, have distinct biomass
and functional components, and thus distinct decomposition
and transformation rates of soil carbon input (Xu et al., 2020b).
The physical and chemical properties of soil rely on SOC as a key
component (Deng et al., 2013). In a study conducted in northern
China, Shao et al. (2019) found that microbial biomass and
residues increased during forest restoration. Microorganisms
can directly stimulate the creation of SOC (Liang et al., 2017).

Biophysical processes that sustain ecosystem functioning
rely on soil moisture as a crucial link between material and
energy exchange. It plays a significant role in biogeochemical
cycles of ecosystems (Seneviratne et al., 2010; Zhang
and Shangguan, 2016). Studies have observed a coupling
relationship between soil carbon and water which can affect
key soil ecological processes (Kerr and Ochsner, 2020). After
the occurrence of severe compounded forest disturbance,
the carbon sequestration capacity of the forest and water
evaporation dropped dramatically in the forest (Brando et al.,
2019). Franzluebbers (2002) hypothesized that changes in SOC
content resulting from increased porosity is crucial in regulating
water infiltration and the subsequent transfer and storage of
water in soil. Soil moisture is not directly affected by SOC, but
is mainly affected by soil structure and aggregate composition
(Panagea et al., 2021). In a study on the vertical distribution
of soil water, Wang et al. (2013) hypothesized that changes in
soil porosity and structure caused by SOC would affect the
variability of soil water, which would increase with soil depth.
Numerous studies have presented the concept of carbon-water
coupling. However, a majority of these studies have focused on
the effect of soil moisture on soil SOC (Zhang et al., 2015; Singh
et al., 2021; Zhao et al., 2021). Research on the mechanism by
which organic carbon regulates soil moisture in the context of
the natural restoration of forest ecosystems is still limited.

Xinfengjiang National Forest Park is located in Guangdong
Province, China. Since 1984, when the Chinese government
implemented quota-based cutting for trees, deforestation in this
region has reduced, allowing the forest to be gradually restored
naturally over the next three decades. In addition, the study
site was located in humid subtropical China, where soil erosion
is a persistent issue (Fang et al., 2017; Zheng et al., 2021).
Therefore, it is an excellent location for monitoring changes
in soil moisture during the restoration of subtropical forests
(Huang et al., 2018). This region is comprised of forest types at
different stages of restoration. We selected three typical forest
stands, broadleaf-conifer mixed forest (EF), broad-leaved forest
(MF), and old-growth forest (LF), to represent a sequence of
subtropical forest restoration. In this study, we anticipated that
the soil water content (SWC) in subtropical China would be
altered as a result of long-term natural forest restoration, and
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that this change would be related to the change in SOC. We
intended to answer the following questions: First, how does soil
moisture change as forest restoration progresses? Second, how
does the SOC change during forest restoration? Third, what is
the mechanism by which SOC affects soil moisture during forest
restoration?

Materials and methods

Site description

This study was conducted in Xinfengjiang National Forest
Park (23◦40′30′′−24◦46′30′′N, 114◦30′33′′−114◦36′30′′E),
China, which has a subtropical monsoon climate, with an
annual average temperature of 21.2◦C. The total area of the
park is 4,479.47 hm2. The average annual precipitation is
approximately 1,420 mm, primarily from April to September,
with an average relative humidity of 76%. The predominant
forms of vegetation are evergreen broad-leaved forests,
evergreen coniferous forests, and broadleaf-conifer mixed
forests, and 78% of the land is covered by forest. The geological
foundation primarily consists of granite, basalt, and sand shale.
The zonal soils of this region are predominantly loess and
laterite, predominantly medium loam and heavy loam (Huang
et al., 2018).

Six 50 m × 50 m plots with equal altitudes, slopes, and
climates were created within the three main forest types in the
study area (Figure 1). The EF was mostly distributed in the
forest margins of the natural forest, and was rapidly undergoing
restoration to a broad-leaved forest, and the dominant tree
species were Pinus massoniana, Heptapleurum heptaphyllum,
and Cunninghamia lanceolata. The main tree species in MF
were Castanopsis chinensis, H. heptaphyllum, Machilus chinensis,
and Schima superba. The LF is located in the central area with
little disturbance and can be considered a well-developed climax
community during the late-restoration period. Cinnamomum
parthenoxylon, Neolitsea chui, and S. superba are the most
abundant tree species. These three forest types constituted a
restoration sequence. Under natural conditions, the direction of
restoration is as follows: broadleaf-conifer mixed forest–broad-
leaved forest–old-growth forest (Huang et al., 2018).

Soil sampling

Three 10 m× 10 m replicate sub-samples were randomly set
up in each 50 m × 50 m plot. Two holes were taken from each
quadrat, with a size of approximately 1.3 m× 1 m. Soil samples
from 0–25, 25–50, 50–75, and 75–100 cm soil layers were
used to determine soil physical properties [bulk density (BD),
soil porosity, and soil moisture index] and chemical properties
[SOM, SOC, total nitrogen (TN), and total phosphorus (TP)].

Undisturbed soil cores were collected using 100 cm3 stainless
steel cutting rings for each soil layer (three replicates) (Zhang
et al., 2019). A 3.5 cm diameter auger was used to collect
disturbed soil samples at five points of the soil sampling site,
including the four corners and the center of each plot, and the
soil samples at five points of each layer were thoroughly mixed
to form a composite sample with a weight of approximately 1 kg.

Measurements

Soil water content was determined using the drying method,
and indicators such as BD and porosity were determined using
the soil cutting ring soaking method (Xia et al., 2017). Before
sampling, the weight of a 100 cm3 empty stainless-steel cutting
ring was recorded as m0. After sampling, the weight of the
cutting ring containing the fresh soil sample (m1) and the weight
of the cutting ring after soaking in water with unmoved soil for
12–14 h (m2) were weighed. The cutting ring containing soil
samples were drained for 2 h (m3) and 72 h (m4), respectively.
The specific formulae used are as follows:

md = (m1 −m0) × (1−SWC) (1)

MWHC = (m2 −md −m0)/md × 100 (2)

CWHC=(m3 −md −m0)/md × 100 (3)

FWC=(m4 −md −m0)/md × 100 (4)

Where SWC is the soil water content (%), md is the dry soil
weight (g), MWHC is the maximum water holding capacity
(%), CWHC is the capillary capacity (%), and FWC is the
field capacity (%).

Prior to analysis, a mixed soil sample from each soil layer
(removing plant roots, debris, and gravel) was passed through a
0.25 mm mesh screen to determine soil organic matter (SOM),
TN, and TP (Zhao et al., 2022). SOM content was determined by
oil bath-K2CrO7 titration (Wang et al., 2009). The conversion
of SOM to SOC was achieved using the reciprocal of the van
Bemmelen factor (1.724) (Bierer et al., 2021). TN content was
determined using the semi-micro Kjeldahl method (Shi et al.,
2013). TP content was determined via colorimetry following
digestion with perchloric acid and sulfuric acid (Zhang and
Shangguan, 2018).

Statistical analysis

We calculated the descriptive statistical parameters of the
collected data, i.e., the mean and standard error. All procedures
were performed using Excel 2010 and IBM SPSS Statistics
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FIGURE 1

Location of the study area at the Xinfengjiang National Forest Park, Guangdong Province, China. EF, broadleaf-conifer mixed forest; MF,
broad-leaved forest; LF, old-growth forest.

22.0. Before performing statistical data analysis, we examined
the normality of the data using the Kolmogorov–Smirnov test
(p = 0.05). One-way ANOVA was performed to assess the
variations in soil properties between the different vegetation
types and soil layers. When the F value was significant
(p < 0.05), Duncan’s test was performed to compare the
differences in soil variables. Principal Component Analysis
(PCA) was used to extract the variables (soil porosity PCA1,
soil chemical properties PCA1, and soil chemical properties
PCA2) formed by soil bulk density, porosity, soil nutrients,
and stoichiometric ratio indices, according to the weight of
each factor. Based on the results of the principal component
analysis’s dimensionality reduction, the path analysis method
was utilized to explore how soil SOC directly or indirectly affects
soil properties to further affect soil SWC. All data were plotted
using Origin 2021.

Results

Changes in soil moisture with forest
restoration

With increasing soil depth, the soil water retention capacity
of each forest gradually decreased (Figure 2). SWC is an

important index of soil moisture conditions that can reflect the
water holding and water supply capacity of the soil and influence
nutrient movement in the soil (Zhao et al., 2017). Across the 0–
100 cm layer in each forest, SWC demonstrated an increasing
trend during forest restoration (Figure 2A), similar to LF
(35.71 ± 1.52%) > MF (26.27 ± 1.90%) > EF (17.28 ± 0.91%).
With the recovery of the forest, the MWHC (47.74 ± 1.91%)
of LF was significantly higher than that of the other forests
(32.63 ± 1.39% in EF and 36.44 ± 1.80% in MF) at an average
depth of 0–100 cm (Figure 2B). When the average value was
taken at a depth of 0–100 cm, the soil CWHC increased from
25.71 ± 1.15% (EF) to 43.92 ± 1.43% (LF) (Figure 2C). The
FWC is considered to have the highest soil water content which
can be stably maintained. The content of FWC at a depth
of 0–100 cm in the forest was LF (41.07 ± 1.65%) > MF
(31.40± 1.87%) > EF (24.62± 1.11%) (Figure 2D).

Changes in soil organic carbon and
organic carbon storage with forest
restoration

A significant surface enrichment of the soil profile was
observed in the SOC content of the three forests (Figure 3A).
As the restoration progressed, the SOC content in the topsoil
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FIGURE 2

Changes in soil SWC (A), MWHC (B), CWHC (C), and FWC (D) in the 0–100 cm soil layer of different forests. Values are the means ± SE (n = 6).
Lowercase letters above the columns represent statistically significant differences among stand types for the same soil layer (Duncan’s tests,
p < 0.05). SWC, soil water content; MWHC, maximum soil water holding capacity; CWHC, capillary water holding capacity; FWC, field capacity;
EF, broadleaf–conifer mixed forest; MF, broad-leaved forest; LF, old-growth forest.

(0–25 cm) in LF was significantly higher than that in EF and
MF with a value of 32.70 ± 3.54 g/kg (p < 0.01), and the soil
organic carbon storage (SOCS) of the 0–25 cm layer in LF was
highest (81.69 ± 12.62 Mg/ha) among three forests. The SOC
content between the 0–100 cm depth in three forests was in the
order LF (15.60 ± 2.30 g/kg) > MF (10.27 ± 1.40 g/kg) > EF
(9.51 ± 1.42 g/kg), and the value of LF was significantly higher
than those of EF and MF (p < 0.05). The change in SOCS
content (Figure 3B) showed the same pattern as the change in
SOC content, which increased from 29.49± 3.59 Mg/ha (EF) to
42.62± 5.78 Mg/ha (LF).

The coupling relationship between soil
moisture content and soil physical and
chemical properties

The results demonstrated a relationship between SWC and
soil physio-chemical properties at each restoration stage in
the 0–100 cm soil layer (Figure 4). Positive correlations were

found between SWC and CP (0.943), TSP (0.906), SOC (0.385),
TN (0.499), and TP (0.825) (p < 0.01), whereas SWC had a
negative effect on BD (–0.655), C:P (–0.310), and N:P (–0.373)
(p < 0.01). There was a negative correlation between soil SWC
and C:N (–0.044) in the 0–100 cm soil layer during natural forest
restoration, although this was not significant (p> 0.05). The soil
physicochemical properties affected the coupling of soil SOC
and SWC (Table 1). Except for C:N, which had no significant
effect on soil SWC, the other indicators showed significant
effects on soil SOC and SWC (p < 0.05).

The principal component of the soil porosity index (soil
porosity PCA) was extracted according to a characteristic value
greater than one, including the soil bulk density, capillary
porosity (CP), and total porosity. The cumulative variance
contribution rate was 82.82% (Appendix 1). At the same
time, the principal components of soil chemical properties, soil
chemical properties PCA1 (the highest scoring indicators were
C:P and N:P), and soil chemical properties PCA2 (the highest
scoring indicators were TN and TP) were extracted, and the
cumulative variance contribution rate was found to be 95.05%.
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FIGURE 3

The content of soil organic carbon (SOC) (A) and SOCS (B) in the 0–100 cm soil layer of different forests. Values are the means ± SE (n = 6).
Lowercase letters above the columns represent statistically significant differences among stand types for the same soil layer (Duncan’s tests,
p < 0.05). SOC, soil organic carbon; SOCS, soil organic carbon storage; EF, broadleaf–conifer mixed forest; MF, broad-leaved forest; LF,
old-growth forest.

Path analysis was used to understand the influence
mechanism of SOC on soil SWC (Figure 5). SOC affected
soil porosity PCA1 (standardized path coefficient value was
0.537 > 0, p < 0.01), which in turn affected SWC (standardized
path coefficient value was 0.940 > 0, p < 0.01). SOC also
affected soil SWC by affecting soil chemical properties PCA1
(standardized path coefficient value of 0.988 > 0, p < 0.01)
and PCA2 (standardized path coefficient value of 0.842 > 0,
p < 0.01). SOC further affected soil chemical property PCA1
by affecting soil chemical property PCA2 (standardized path
coefficient value of –0.968 < 0, p < 0.01). The change in the
chemical properties of PCA1 ultimately affected the change in
soil SWC (the value of the standardized path coefficient was
–0.257 < 0, p < 0.01).

Discussion

Changes in soil moisture during forest
restoration

Forest ecosystems significantly contribute to the
preservation of water and soil (Niu et al., 2012; Li et al.,
2021). Water storage capacity is a crucial indicator for
determining the water regulation of forest soils. Owing to the
limited water absorption by the forest canopy and litter layer,
the understory soil is primarily responsible for forest water
retention, storage, and transmission (Wang et al., 2021; Francis
et al., 2022). Therefore, soil is the most essential reservoir of
a forest ecosystem, and its storage capacity directly affects the
ability of the forest ecosystem to regulate precipitation (Zhang
et al., 2011). With the restoration process, the composition
and structure of the above-ground vegetation become more

complex, the characteristics of soil hydrologic and physical
properties improve to a certain extent, and the water storage
capacity of soil may gradually increase (Yinglan et al., 2019).
Numerous studies have demonstrated a relationship between
forest restoration and soil (Wu et al., 2017; Pereira et al.,
2021; Qiu et al., 2022). Increasing canopy interception in the
LF reduces the impact of high-intensity rainfall on the soil
and reduces surface runoff (Zhao et al., 2022). Vegetation
restoration changes soil structure by promoting root growth,
and roots secrete organic acids, which further reduces soil BD,
improves soil anti-scouribility, soil shearing strength, and soil
water infiltration capacity, thus further improving soil water
storage capacity (Li et al., 2015; Wu et al., 2016). In addition,
forest restoration changes plant residues, enhances the soil
microclimate, and promotes soil bioactivity. Under the effects of
microbial and SOM breakdown, soil particles fragment, thereby
reducing BD and enhancing SWC and water retention capacity
(Zhang et al., 2018b; Pastore et al., 2020).

Changes in organic carbon during
forest restoration

In this study, the content of SOC in LF was higher than
that in EF, which may be due to the lower accumulation of
SOC in the coniferous forest than that in the broad-leaved forest
(Jia et al., 2005). Soil properties may be affected by plant cover
(Srivastava et al., 2020; Wang et al., 2020). SOC is primarily
derived from tree litter and roots in forest environments, and
both litter quantity and quality and living roots are influenced
by plant characteristics (De Deyn et al., 2008; Olsson et al.,
2019). Evergreen trees usually retain their leaves throughout
the year, and a permanently shaded evergreen forest canopy
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FIGURE 4

The relationship between SWC and soil physico-chemical properties i.e., BD (A), SOC (B), TSP (C), CP (D), TN (E), TP (F), C:N (G), C:P (H), and
N:P (I). BD, bulk density; SOC, soil organic carbon; TSP, total soil porosity; CP, capillary porosity; TN, soil total nitrogen; TP, soil total phosphorus;
C:N, SOC:TN; C:P, SOC:TP; N:P, TN:TP.

TABLE 1 Pearson’s correlation between soil organic carbon (SOC), soil water content (SWC) and soil properties in 0–100 cm soil layer.

BD TSP CP TN TP C:N C:P N:P

SOC −0.736** 0.481** 0.272* 0.960** 0.419** 0.641** 0.494** 0.424**

SWC −0.655** 0.906** 0.943** 0.499** 0.825** −0.044 −0.310** −0.373**

BD, bulk density; TSP, total soil porosity; CP, capillary porosity; TN, total nitrogen; TP, total phosphorus; SOC, soil organic carbon; SWC, soil water content; C:N, SOC:TN; C:P, SOC:TP;
N:P, TN:TP. *Signs indicate significance (*p < 0.05; **p < 0.01).

facilitates SOC accumulation because the detrimental effects
of high temperature and precipitation on SOC retention are
reduced (Olsson et al., 2019). In addition, forward regeneration
of the forest increased the amount of returning litter (Xu et al.,
2020a). Moreover, the priming effect of broadleaf litter is the
most significant. Thus, the decomposition rate of broad-leaf
litter and the associated organic matter mineralization rate are

faster than those of coniferous litter, which is conducive to
SOC addition (Hou et al., 2020). The SOC formed by litter
and root secretions and their decomposition by microorganisms
first enters the top-soil, which causes the SOC content of
forestland soil to have a “surface aggregation” (Yang et al., 2021).
It has been demonstrated that root biomass is significantly
and positively correlated with SOC (Berhongaray et al., 2019;
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FIGURE 5

The path analysis of the influence mechanism of soil organic carbon (SOC) on soil SWC. The numbers adjacent to the arrows are standardized
path coefficients and ∗ signs indicate significance (∗∗p < 0.01). Positive standardized path coefficients are indicated by continue arrows,
whereas negative standardized path coefficients are indicated by dashed arrows.

Liu et al., 2019). As broad-leaf species generally have larger and
deeper root systems, they also have higher underground biomass
than conifers (Li et al., 2020). Root mass and turnover rate
are greater in evergreen broadleaf forests (Ding et al., 2015).
Therefore, in LF, evergreen broad-leaved roots drive an increase
in SOC input.

The controlling mechanism of organic
carbon on soil moisture during forest
restoration

The primary and most direct effect of SOC in enhancing
the physical qualities of soil is to improve the soil structure and
stimulate the formation of agglomerated structures (Wang et al.,
2022). An increase in SOC promotes the growth of roots and
the activity of soil microorganisms, and the chemical conditions
provided by the secretion of organic acids by roots and
microorganisms promote the decomposition of soil particles,
leading to a reduction in soil BD (Marschner et al., 2011; Pastore
et al., 2020). The input of SOC promoted root development,
which provides soil porosity through decomposition. Coarse
roots can significantly increase soil porosity by increasing inter-
aggregate pore space (Bodner et al., 2014; Naveed et al., 2014;
Hao et al., 2020). The increase in soil porosity further improved
the water-holding capacity and water-storage capacity of the
soil. A significant positive association was found between the
soil TN, TP, and SOC. This is due to the fact that an increase
in SOC makes additional carbon sources accessible to the soil
microorganisms (Kramer and Gleixner, 2008). Simultaneously,

the energy required for microbial activities is fully guaranteed,
which stimulates the decomposition of microorganisms, thereby
leading to an increase in the soil TN and TP content (Fontaine
et al., 2007; Zhang et al., 2018a). Additionally, soil C:P and
N:P stoichiometries were significantly associated with SOC
(Table 1). Consistent with the findings of Tian et al. (2018),
the change in soil nutrient stoichiometry also depended, to
a certain extent, on SOC dynamics. Changes in SOC and
microbial biomass caused by litter input can further alter the
stoichiometry of soil nutrients (Aponte et al., 2010; Tian et al.,
2018). Therefore, changes in SOC content and soil nutrient
concentrations during forest restoration can result in alterations
in soil biological activity (Zhang et al., 2006). The increase
in SOC and nutrient supply improves soil pore connectivity
and enables the soil to have better water holding and storage
capacities in the LF (Naveed et al., 2014).

Conclusion

Our findings revealed that forest restoration in lower
subtropical China had a substantial effect on soil moisture,
which was a result of alterations in the SOC content. In the
natural forest restoration process, SOC was strongly linked with
SWC, and soil BD, CP, TSP, TN, TP, C:P, and N:P were the
major elements that might influence the coupling interaction
between SWC and SOC in the forest restoration stage. With
the progression of forest restoration, the amount of litter
returned increased, SOC increased steadily, and the surface
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accumulation phenomenon became evident. Changes in soil
physical structure and soil nutrients caused by the increase in
SOC intake had additional effects on soil water content and
water-holding capacity. By examining soil moisture and soil
physicochemical properties during forest restoration, our study
provided new evidence on the improvement mechanism of
soil moisture during subtropical forest restoration, which is of
great significance for evaluating the eco-hydrological function
of subtropical forests in southern China and optimizing forest
management programs.
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Appendix

APPENDIX 1 Loading values, character values, and variance percent of soil porosity index and chemical index principal components.

Index Soil porosity PCA

PCA1

BD −0.834

CP 0.912

TSP 0.978

Character value 2.485

Variance percent (%) 82.821

Accumulated variance (%) 82.821

index Soil chemical properties PCA

PCA1 PCA2

TN 0.352 0.914

TP −0.533 0.820

N:P 0.971 0.034

C:P 0.966 0.085

Character value 2.284 1.518

Variance percent (%) 57.112 37.941

Accumulated variance (%) 57.112 95.053
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