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Effects of stand factors on tree growth of Chinese fir in the subtropics of 
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A B S T R A C T   

Stand and climate related variables are the main driving forces controlling individual tree growth. Two machine 
learning algorithms called deep learning and random forest were used to explore how annual diameter growth 
varied with stand and climatic variables. Data was obtained from a long-term spacing trail of Chinese fir 
(Cunninghamia lanceolata (Lamb.) Hook.) plantations in four provinces of southern China. Results from model 
comparisons showed the deep learning model with 8 hidden layers and 90 neurons in each hidden layer achieved 
the best performance, and the RF model ranked 4th among 9 selected models. In addition, sensitivity analysis 
showed that individual tree growth increased with an increase in Gini coefficient, while growth decreased with 
an increase in stand age (A) and the basal area of larger trees (BAL). The relationships between diameter growth 
and summer mean maximum temperature (SMMT), as well as winter mean minimum temperature (WMMT) and 
annual precipitation (AP) were not constant, which depended on the range of values of each climate factor. BAL 
had the greatest influence on diameter growth among all the variables. From an interaction analysis, we found 
that climate factors exacerbated the negative effects of competition on growth. Climate change promoted the 
growth of younger trees but restrained the growth of older trees. With climate variables considered, tree growth 
under high and middle stand structural heterogeneity were similar, and observably higher than that with low 
stand structural heterogeneity. Positive influences of climate tended to promote tree growth under lower 
competition and older individuals were more vulnerable to WMMT changes. Our findings enhance our under-
standing of the mechanisms driving individual Chinese fir growth in southern China in the face of future climate 
uncertainty.   

1. Introduction 

Forests act as the largest component of the terrestrial carbon pool, 
serving a key role in the process of the global carbon cycle and mitiga-
tion of global climate change (Zhang et al., 2019). Tree growth plays an 
important role in determining forest structure and dynamics (Wyckoff 
and Clark, 2002). Stand and climatic factors have long been recognized 
as main driving factors to determine spatiotemporal variation patterns 
in tree growth (Copenhaver-Parry and Cannon, 2016; Devi et al., 2020). 
However, given the complexity of the interactions and the spatial and 
temporal scales involved in dealing with trees, it is meaningful to predict 

tree growth accurately and explore the growth mechanism. 
Among the stand factors, competition is generally considered the 

most important factor affecting tree growth, and is defined as the pro-
cess by which two or more individuals obtain resources from a common 
resource that may be limited in supply (Kunstler et al., 2011; Ford et al., 
2017). This includes aboveground competition for available photosyn-
thetic radiation and belowground competition for water or nutrients 
(Prior and Bowman, 2014). Most research has found the negative effect 
between forest growth and competition (Mainwaring and Maguire, 
2004; Ford et al., 2017; Navarro-Cerrillo et al., 2020). Meanwhile, 
Calama et al. (2019) holds the opinion that competition plays a dual 
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role: (i) competition determines the availability of a subject tree to 
limited resources due to the neighboring effect, which further defines 
resource uptake patterns and spatial variations during forest succession; 
and (ii) competition regulates the response of tree growth to climatic or 
other site variables during forest succession. As an example, for the 
latter one, Jiang et al. (2018) concluded that negative plant-plant in-
teractions such as competitive effects would be intensified in stressed 
environments. In contrast, a widely cited stress gradient hypothesis 
(Callaway and Walker, 1997) postulated that the association of neigh-
bors among stand could be transformed from negative to positive re-
lations under more unfavorable conditions. Calama et al. (2019) 
explained that the contradiction about these opinions can be under-
stood, for the effect of high competition on tree growth could be shifted 
from negative to positive in a short-term if we assume that competition 
is responsible for long-term growth trends along resource availability 
gradients. 

Stand structure is another important factor driving tree growth, but 
many previous studies had overlooked its effect (Forrester and Bauhus, 
2016; Kweon and Comeau, 2019). Stand structure can influence forest 
growth by causing discrepancies in competition intensity and resource 
utilization among individuals from the same forest (Luo and Chen, 
2011). Morin (2015) and Forrester et al. (2018) found that a heteroge-
neous stand structure might promote forest growth by enhancing light 
capture. Stand structure index was often defined as a measurement of 
stem diameter distribution (McElhinny et al., 2005) or spatial hetero-
geneity (McRoberts et al., 2008). There are many indicators to describe 
the size inequality including the Shannon, Simpson indices (Sterba and 
Ledermann, 2006), and size variation coefficient (Staudhammer and 
Lemay, 2001). However, recent studies have emphasized the strength of 
another index: the Gini coefficient for measuring the structural diversity 
(Zhang et al., 2020a; Wang et al., 2021). During forest succession, stand 
structure is considered as an important factor for predicting forest dy-
namics (i.e., mortality, productivity, and growth) since it gives rise to a 
size hierarchy and can affect competition dynamics between individuals 
in a stand (Flake and Weisberg, 2019; Forrester, 2019). Besides, previ-
ous studies suggested that age and site condition also have fundamental 
influences on forest dynamics (Guo and Ren, 2014; Zhang et al., 2019). 

While prior research has commonly assessed the effect of competi-
tion intensity and other stand variables on forest growth and biomass 
(Huang et al., 2013; Curto et al., 2021), the potential impact of climatic 
variables has not received the same considerations. When climate is not 
accounted in exploring drivers of tree growth, an implicit assumption is 
that the climatic situation is stable (Crookston et al., 2008). Despite 
short-term variability, there exist no changes in long-term trends and 
inter-annual variability in environmental drivers will be compensated in 
future years. Without doubt, under the background of climate change 
uncertainty, these assumptions can hardly hold true (Calama et al., 
2019). Several cases of climate influencing forest dynamics have been 
extensively explored (Ford et al., 2017; Liang et al., 2019; Oboite and 
Comeau 2019). Thus, in this study, we incorporated both climate vari-
ables and stand characteristics in exploring individual tree growth. 

Machine learning techniques have been widely used and proved to 
be powerful tools in the field of forest management (Nunes et al., 2016; 
Wu et al., 2019), which could provide new solutions dealing with big 
data compared with traditional statistical methods (Christin et al., 
2019). In particular, Artificial Neural Network models (ANN) performed 
well in predicting individual tree and forest growth (Ramazan et al., 
2013). Numerous studies related to ANN have been employed for 
modelling tree or stand level attributes like tree height (Özçelik et al., 
2013), tree volume (Lacerda et al., 2017), tree mortality (Bayat et al., 
2019), stand biomass prediction (Nandy et al., 2017). The Deep 
Learning Algorithm (DLA) stands out from ANN as a more flexible 
artificial intelligence technique used in multi-dimensional data and in 
data mining (Ercanli, 2020). This artificial intelligence technology is 
aimed at achieving more accurate results by working like a human brain. 
It has the ability to learn and make decisions effectively and its complex 

structures can contain 3–10 or more hidden layers and hundreds of 
neurons. However, we have found few studies that used the DLA method 
for modelling annual diameter growth while considering both stand and 
climate factors. The random forest (RF) algorithm is another nonpara-
metric machine learning algorithm that performs well in classification 
and regression (Breiman, 2001). Previous studies suggested that the RF 
approach could generally produce results with higher accuracy and 
predictive abilities than other machine learning algorithms, such as 
ANN, boosted regression trees (BRT), K-nearest neighbor (KNN), and 
support vector machine (SVM) as well as traditional parametric algo-
rithms (Weiskittel et al., 2011; Görgens et al., 2015; Kilham et al., 2019; 
Schratz et al., 2019; Zhao et al., 2019). 

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), a native species 
with a capacity for fast growth, is widely planted in subtropical China 
(Zhang et al., 2013). Due to its excellent timber properties such as 
straight shape and high resistance to decay, Chinese fir has become one 
of the most important tree species in terms of wood production. Wang 
et al. (2012) reported that the carbon stock of Chinese fir plantations 
reached 238.5 Tg C during 2004–2008, occupying 4.32% of the total 
forest carbon in China. Therefore, an accurate prediction of tree growth 
and exploration of growth drivers of Chinese fir plantations would have 
significant implications for understanding forest dynamics in the face of 
future climate change. The aims for this research study are: (1) to model 
tree growth of Chinese fir with stand and climatic variables by using the 
DLA and RF methods; (2) to investigate whether the DLA or RF methods 
are more suitable for tree growth prediction; (3) to explore the specific 
impact of these stand and climatic variables on tree growth and rank 
their relative contributions; and (4) to disentangle the tree growth 
variation under different interactive effects of stand and climatic 
conditions. 

2. Materials and methods 

2.1. Study sites and data 

In this study, the data were derived from permanent sample plots of 
Chinese fir stands, planted with bare-root seedlings and distributed at 
four provinces in subtropical China. The plantation establishment year 
was 1981 in Jiangxi, and 1982 in Fujian, Guangxi, and Sichuan prov-
ince. Fujian, Jiangxi, and Sichuan provinces have a middle-subtropical 
climate while Guangxi province is characterized by a southern- 
subtropical climate. 

Five plantation spacings were replicated three times for a total 15 
plots in each province: spacing level A (2 m × 3 m, 1667 trees/ha), B (2 
m × 1.5 m, 3333 trees/ha), C (2 m × 1 m, 5000 trees/ha), D (1 m × 1.5 
m, 6667 trees/ha), and E (1 m × 1 m, 10,000 trees/ha). Every plot 
comprised a dimension of 20 × 30 m. Two rows of trees were set around 
each plot as a buffer to reduce interference. In Fujian, the field mea-
surement was implemented every year from 1985 to 1990, and every 2 
years from 1990 to 2010; In Jiangxi, the field measurement was 
implemented every year from 1985 to 1989, and every 2 years from 
1989 to 2007; In Sichuan, the field measurement was implemented 
every year from 1985 to 1995, and every 2 or 3 years from 1995 to 2012; 
In Guangxi, the field measurement was implemented every year from 
1990 to 1995, and every 2 years from 1995 to 2012. The field- 
measurements were carried out in the winter. All trees in a plot taller 
than 1.3 m were tagged and the corresponding DBH were measured. 
Fifty more trees were randomly selected to measure the height in each 
plot, and the average height of 6 tallest trees was calculated as the 
dominant height (Hd). 

2.2. Stand factors 

The annual mean diameter growth (ADG, in cm year− 1) was selected 
as a representative of individual tree growth and calculated as: 
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ADG =
DBHi,2 − DBHi,1

Y
(1)  

where DBHi,1 and DBHi,2 (in cm) represents the diameter at breast height 
of ith alive tree at the time of the first and the second measurement 
period, respectively; and Y denotes the time interval (in years) linking 
two successive measurements. 

Four major categories of stand characteristics affecting tree growth 
were considered in this study including stand age (A), competition, site 
condition, and forest structural heterogeneity. Stand dominant height 
(Hd) usually serves as a measurement that represents site condition (Zhu 
et al., 2019). Several competition indices were utilized including: 
number of trees per hectare (N), stand basal area per hectare (Ba), 
quadratic mean diameter (Dq), the basal area of larger trees (BAL), stand 
density index (SDI), and relative diameter (RD = D/Dq) (Pretzsch and 
Biber, 2010; Zhang et al., 2017). SDI was defined to represent the 
relative component of live stocking according to individual size (Stage, 
1968). Gini coefficient defined stand structure by represent structural 
heterogeneity and calculated using the tree DBH in a plot. A smaller 
value of Gini indicated a more homogeneous stand structure. The “ineq” 
package was used to calculate Gini coefficient in R (Zeileis, 2014). 

We divided the stand age, Gini coefficient, and the basal area of 
larger trees (BAL) into three groups (Table1) to analyze the effects of 
stand variables on the annual diameter growth (ADG). Table 2 provides 
the summary statistics of ADG and stand variables in each province. 

2.3. Climate data 

We used ClimateAP program to investigate the effect of climatic 
variables on diameter growth of Chinese fir plantations using climate 
data to provide a spatially interpolated estimation of climate data based 
on the site’s geographical attributes (Wang et al., 2012). Reports have 
concluded that precipitation and temperature are the fundamental 
climate variables affecting forest growth (Ford et al., 2017; Canham 
et al., 2018; Oboite and Comeau, 2019). Ten climate variables were 
selected as candidate dependent variables to fit tree-level growth model 
including annual precipitation (AP), mean annual temperature (MAT), 
winter mean minimum temperature (WMMT), mean coldest month 
temperature (MCMT), degree-days below 0 ◦C (DD0), degree-days above 
5 ◦C (DD5), mean warmest month temperature (MWMT), summer mean 
temperature (SMT), summer mean maximum temperature (SMMT), and 
annual heat-moisture index (AHM) (Table 3). 

To explore the main factors driving tree growth, 9 stand variables 
and 10 climatic variables were chosen to model the annual diameter 
growth. The variables were chosen by referring to previous studies 
(Galván et al., 2014; Ford et al., 2017; Jiang et al., 2018). In order to 
avoid the influence of multicollinearity among variables on model 
fitting, the variance inflation factor (VIF) test was used to screen 
candidate variables. In general, multicollinearity is eliminated among 
variables when VIF < 5 (Zhang et al., 2020a). 

2.4. Deep learning model 

Deep learning is a novel machine learning algorithm, which origi-
nated from a method of initializing weights proposed by Hinton et al. 

Table 1 
The three groups of the basal area of larger trees (BAL), age (A) and Gini coef-
ficient (GC).  

Stand variables Groups 

Age (year) Yong forest (A 
＜10) 

Middle-aged forest 
(10 ≤ A < 20) 

Mature forest (A ≥
20) 

BAL (m2 ha− 1) Low (Top 20% 
of BAL) 

Middle (Medial 60% of 
BAL) 

High (Bottom 20% 
of BAL) 

Gini coefficient 
(-) 

Small (GC <
0.1) 

Middle (0.1 ≤ GC <
0.2) 

Large (0.2 ≤ GC)  

Ta
bl

e 
2 

Su
m

m
ar

y 
st

at
is

tic
s 

of
 s

ta
nd

 a
nd

 tr
ee

 c
ha

ra
ct

er
is

tic
s 

by
 p

ro
vi

nc
e.

  

St
ud

y 
si

te
s 

A
D

G
  

A
  

H
d 

 
N

  
Ba

  
D

q 
 

BA
L 

 
SD

I  
RD

  
G

in
i  

M
ea

n 
SD

 
M

ea
n 

SD
 

M
ea

n 
SD

 
M

ea
n 

SD
 

M
ea

n 
SD

 
M

ea
n 

SD
 

M
ea

n 
SD

 
M

ea
n 

SD
 

M
ea

n 
SD

 
M

ea
n 

SD
 

Fu
jia

n 
 

0.
90

  
0.

42
  

15
.4

5 
 

7.
50

  
11

.2
8 

 
5.

52
 

60
69

 
26

70
  

38
.1

9 
 

22
.0

8 
 

9.
29

  
4.

50
  

23
.4

4 
 

18
.5

8 
15

18
 

59
9 

 
0.

95
  

0.
25

  
0.

14
  

0.
03

2 
G

ua
ng

xi
  

0.
83

  
0.

37
  

17
.9

1 
 

5.
31

  
13

.7
7 

 
2.

99
 

44
81

 
21

67
  

34
.6

3 
 

7.
07

  
10

.7
8 

 
2.

74
  

24
.7

4 
 

11
.2

8 
13

22
 

29
7 

 
0.

96
  

0.
24

  
0.

14
  

0.
01

7 
Ji

an
gx

i  
1.

03
  

0.
49

  
13

.8
5 

 
9.

81
  

10
.4

2 
 

3.
92

 
61

00
 

25
49

  
35

.2
1 

 
17

.3
4 

 
8.

93
  

3.
55

  
17

.3
1 

 
15

.4
4 

13
74

 
64

0 
 

0.
96

  
0.

26
  

0.
16

  
0.

02
9 

Si
ch

ua
n 

 
0.

96
  

0.
35

  
14

.4
3 

 
6.

95
  

10
.6

6 
 

3.
84

 
57

86
 

25
77

  
27

.5
6 

 
11

.8
1 

 
8.

24
  

2.
95

  
22

.0
6 

 
11

.2
2 

11
50

 
46

7 
 

0.
99

  
0.

26
  

0.
15

  
0.

02
7 

To
ta

l  
0.

92
  

0.
47

  
14

.7
2 

 
7.

07
  

11
.1

8 
 

4.
50

 
57

98
 

26
03

  
34

.0
6 

 
17

.3
5 

 
9.

10
  

3.
73

  
21

.7
9 

 
15

.3
7 

12
36

 
86

7 
 

0.
96

  
0.

25
  

0.
15

  
0.

02
8 

N
ot

e:
 A

D
G

: a
nn

ua
l d

ia
m

et
er

 g
ro

w
th

 (c
m

 y
ea

r−
1 ); 

A
: s

ta
nd

 a
ge

 (y
ea

r)
; H

d:
 st

an
d 

do
m

in
an

t h
ei

gh
t (

m
); 

N
: n

um
be

r o
f t

re
es

 p
er

 h
ec

ta
re

; B
A

: s
ta

nd
 b

as
al

 a
re

a 
(m

2 
ha

−
1 ); 

D
q:

 st
an

d 
qu

ad
ra

tic
 m

ea
n 

di
am

et
er

 (c
m

); 
BA

L:
 th

e 
ba

sa
l 

ar
ea

 o
f l

ar
ge

r 
tr

ee
s 

(m
2 

ha
−

1 ); 
SD

I: 
st

an
d 

de
ns

ity
 in

de
x;

 R
D

: r
el

at
iv

e 
di

am
et

er
 (

cm
); 

G
in

i: 
G

in
i c

oe
ffi

ci
en

t o
f t

re
e 

si
ze

 (
di

am
et

er
) 

di
ve

rs
ity

. 

Z. Wang et al.                                                                                                                                                                                                                                   



Forest Ecology and Management 520 (2022) 120363

4

(2006). DLA has grown rapidly since its inception and shows excellent 
performance in various applications in recent time, such as speech 
recognition and image classification. Thus, DLA has become the most 
widely used algorithm in artificial intelligence (AI). The artificial neural 
network (ANN) usually consists of an input layer, hidden layer (one or 
two as depends), and an output layer in the model structure. Originated 
from the ANN model, the DLA possesses an input layer, an output layer, 
and a more complex model structure by comprising many (3–10 or >10) 
hidden layers. Therefore, the DLA model can process high-dimensional 
data accurately and efficiently. 

DLA methods were used for modelling annual diameter growth 
related with stand and climate variables in this study so as to achieve 
high accuracy of tree growth prediction. Furthermore, deep learning 
models have several key attributes that affect model performance: 
number of hidden layers and neuron numbers in each hidden layer, 
transfer function choice (between the two neurons, the transfer function 
takes the input signal and transforms it, and the transformed signal 
greater than the weight will be allowed to pass), and some parameter 
tuning. From our preliminary analyses on fitting results, the “Rectifier” 
function was chosen as the transfer function constitutes the DL regres-
sion model, which is consistent with the selection process of Ercanli 
(2020). Adaptive learning rate algorithm (ALRA), a method for opti-
mizing model parameters and improving model self-learning from 
training data, was used to train the DLAs (Zeiler, 2012), with parameter 
rho and epsilon set to the default value to describe the initial rate of ALRA 
at 0.99 and 1 × 10-8, respectively. The epochs parameter (defined as the 
number of iterations accepted in the training network) was set to 800 in 
model construction as this value achieved the best predictive results in 
various neural network analyses. The loss function choice (defined as a 
function seeking the minimum gap between observed and predicted 
values in training the DLAs) was set to the “Automatic” function, while 
the Gaussian distribution model based on the mean squared error was 
used for our regression objective. 

Apart from these parameters of DLA, two additional parameters 
required special attention to obtain the best parameter estimation: the 
number of hidden layers in the network and the number of neurons 
existing in these hidden layers. In training DLAs, we set the hidden layer 
at eight levels from 3 to 10 and the number of neurons in each hidden 
layer was set at 10 (10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 neurons). 
Consequently, 80 different DLA models were developed to predict 
annual tree diameter growth. The DLA models were constructed using 
h2o package based on R software (LeDell et al., 2021). 

2.5. Random forest model 

Except DLA models, random forest (RF) stands out as a nonpara-
metric machine learning method which could be developed for both 
regression and classification (Breiman, 2001). In consideration of the 
strong performance of RF model in previous studies, RF algorithm was 
used as a regression model to fit tree growth with stand and climatic 
variables. RF works by creating a forest aggregated of decision trees, and 
each tree in the regression takes input from randomly selected subsets of 
the training data. Every decision tree in the random forest grows to its 
maximum without pruning till the end of the prediction has been 
reached decisively. The randomness of the random forest comes from 
the fact that the training samples of each decision tree are randomly 
selected by bootstrapping, and the attribute set of nodes splitting in each 
decision tree is also randomly selected. 

RF has two main parameters that are most affected by parameter 
tuning: mtry (predictor numbers randomly chosen to split at each node in 
decision trees) and ntree (decision tree numbers concluded in the random 
forest). The mtry was usually given its default value at one third of the 
number of all predictive variables (Yang et al., 2016). We set ntree =

1000 as a replacement to minimize the model error during model 
development, as the default value of 500 has been shown to be incapable 
of stabilizing the model (Grimm et al., 2008). Ta
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2.6. Model performance evaluation 

Five evaluation statistics were used to quantify the performance of 
each DLA and RF models and its ability to make accurate predictions, 
and included the coefficient of determination (R2), the root-mean- 
square error (RMSE), the average of residuals (AR), the variance of re-
siduals (VR) and the total relative error (TRE), which are listed as 
follows: 

R2 =

⎧
⎪⎨

⎪⎩

∑n
i=1(Pi − P)(Oi − O)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Pi − P)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(Pi − P)2

√

⎫
⎪⎬

⎪⎭

2

(2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Pi − Oi)

2

√

(3)  

AR =

∑n
i=1(Oi − Pi)

n
(4)  

VR =

∑n
i=1(Oi − Pi −

∑n

i=1
(Oi − Pi)

n )
2

n − 1
(5)  

TRE =

∑n
i=1Oi −

∑n
i=1Pi

∑n
i=1Pi

× 100 (6)  

where Pi and Oi represent the predicted and observed ADG; P and O 
indicate the mean values; and n denotes the total alive trees in a sample 
plot. The model with higher R2 and lower RMSE, AR, VR and TRE usu-
ally reflects better performance. The model with the best comprehensive 
performance was selected for final prediction and the function to rank 
the relative importance for all retained predictors were based on the 
final model. 

2.7. Sensitivity and interactive analysis 

After the model comparison, ADG was predicted based on the final 
model. A sensitivity analysis was performed to explore the effect of in-
dependent variables on ADG through the DALEX package using R soft-
ware (Biecek, 2018). On one hand, this procedure could provide the 
change of ADG of Chinese fir under the influence of a specific factor, 
while keeping other factors at their mean value. On the other hand, it is 
considered that the changes in tree growth are the result of multiple 
factors, instead of the accumulation of single factors. Therefore, how 
ADG changes under the interactive effect between stand and climatic 
variables is more worthy of exploration. In this section, we explored the 
changes of ADG under the interactions by using the Random Forest 
package in R software (Liaw and Wiener, 2002). 

3. Results 

We used annual diameter growth (ADG) as a measure of individual 
tree growth which ranged from 0.041 to 8.3 cm year− 1. Based on the VIF 
test, 6 variables were selected to develop the deep learning and random 
forest models including the basal area of larger trees (BAL), stand age 
(Age), Gini coefficient (Gini), and 3 climatic factors including summer 
mean maximum temperature (SMMT), annual precipitation (AP), and 
winter mean minimum temperature (WMMT). 

3.1. Final model-Deep learning model 

Based on the 6 variables which passed the VIF test, the fitting criteria 
of R2, RMSE, AR, TRE, and VR for the prediction results of 8 deep 
learning models and RF model are provided in Table 4 which represents 
the best performance models for each level of hidden layers. RF model 
did not obtain the highest accuracy (Table 4): R2 = 0.6509, RMSE =

0.4693, AR = 0.0597, TRE = 0.6375, and VR = 0.4836. RF ranked 4th 
among the 9 models. The model with 8 hidden layers and 90 neurons in 
each hidden layer achieved the best comprehensive performance, and 
represented the best predictive fitting results with R2 = 0.7332, RMSE =
0.3583, AR = 0.00919, TRE = 0.2931, and VR = 0.2019, and further 
sensitivity and interaction analysis were carried out based on the pre-
diction results of this final model. The other 7 models performed poorly 
in the evaluation phase, in which the model with 10 hidden layers and 
60 neurons performed worst, with the following model results: R2 =

0.4647, RMSE = 0.7730, AR = 0.1104, TRE = 1.238, and VR = 0.6138. 
Based on the final model, the effect of BAL on ADG was the largest, 

followed by A (age), Gini, SMMT, WMMT, and AP (Fig. 1). In addition, 
the final model had values of R2 = 0.7332 and RMSE = 0.3583 cm/year 
(Fig. 2). 

3.2. The effects of stand variables on ADG 

From the results of sensitivity analysis, 3 stand variables all showed 
significant influence on ADG, but the magnitude and direction of the 
influence were not completely consistent (Fig. 3). As the most influential 
variable, the relationship between BAL (competition intensity) and ADG 
was negative. While the other five variables were kept constant, BAL’s 
influence on ADG ranged from 0.93 to 1.68 cm/year (Fig. 3A). The 
sensitivity analysis curve of Age and ADG was similar to that of BAL, and 
had an inverted “J” shape. Moreover, the relationship between Age and 
ADG could be divided into two parts: for the first, ADG decreased rapidly 
with the increase of Age (5 ≤ Age < 10); and second, the value of ADG 

Table 4 
The goodness-of-fit statistics (coefficient of determination (R2), root mean 
square error (RMSE), average of residuals (AR), total relative error (TRE), and 
variance of residuals (VR)) for the best predictive deep learning (DL) models 
under 8 levels of hidden layer and random forest (RF) model.  

Hidden L Neural R2 RMSE AR TRE VR 

3 70  0.5131  0.7105  0.0814  1.136  0.5753 
4 60  0.5718  0.6524  0.0731  0.799  0.5279 
5 60  0.5854  0.6383  0.0501  0.739  0.4950 
6 80  0.5641  0.6691  0.0766  0.818  0.5518 
7 60  0.6883  0.3913  0.0173  0.5248  0.3953 
8 90  0.7332  0.3583  0.00919  0.2931  0.2019 
9 70  0.6750  0.4114  0.0367  0.5578  0.4278 
10 60  0.4647  0.7730  0.1104  1.238  0.6138 
Random Forest model 0.6509  0.4693  0.0597  0.6375  0.4836 

Note: Values in bold indicates the best performance. 

Fig. 1. Variable relative importance rank acquired from the final deep learning 
model, where variable importance was calculated as the relative proportion of 
each factor in model R2. These variables including the basal area of larger trees 
(BAL, m2ha-1), age (A, year), Gini coefficient (Gini), summer mean maximum 
temperature (SMMT, ◦C), winter mean minimum temperature (WMMT, ◦C) and 
annual precipitation (AP, mm) explained 0.7332 of the diameter growth vari-
ation (R2 = 0.7332). 
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dropped slowly with further increase of Age (Age ≥ 10). The impact of 
Age on ADG ranged from 0.6 to 1.4 cm/year (Fig. 3B). In addition to BAL 
and Age, Gini (stand structure) is another stand variable that affects 
ADG greatly. The value of Gini under 0.13, and above 0.18 showed a 
gentle positive relationship with ADG, while a rapid growth of ADG 
occurs in 0.13 ≤ Gini＜0.18. The total range of ADG was 0.95–1.12 cm/ 
year under the influence of Gini (Fig. 3C), while keeping other variables 
constant. 

3.3. The effects of climate variables on ADG 

Three climatic variables consisting of WMMT, SMMT, and AP were 
selected for model development (Fig. 1), and all showed great impact on 
individual tree growth. Overall, the influence of these three climate 
variables on ADG was dependent on a different range of values. On one 
hand, ADG decreased with increasing WMMT generally with several 
fluctuations in the curve, while the impact turned into a positive rela-
tionship between 9 and 10.9 ◦C clearly (Fig. 3D). On the other hand, 
ADG increased dramatically with the increase of SMMT within the range 
of 32–33.1 ◦C while decreased within the ranges of 30.7 < SMMT < 31.4 
and SMMT > 33.1 ◦C (Fig. 3E). As for the effect of annual precipitation 
(AP) on ADG, the sensitivity curve showed a similar pattern like SMMT. 
ADG increased with the increase of AP within the range of 1300–1650 
mm and decreased with the increase of AP when 1100 < AP < 1300 and 
AP > 1850 mm. Notably, a sharp decline of ADG happened around AP at 
1700 mm followed by a sharp increase (Fig. 3F). 

3.4. Climate influence on the relationship between stand factors and ADG 

In general, the interaction curves were similar to the climate factor 
influence curves, but differences exist under the influence of stand 
variables. As the most influential factor on the tree growth, when we 
only consider the effects of BAL (competition intensity) on growth, the 
corresponding influence on ADG ranges from 0.93 to 1.68 cm/year 
(Fig. 3A). When taking climatic factors into account, we found that the 
peak value of ADG decreased from 1.68 to 1.48 cm/year, and the valley 
value decreased from 0.93 to 0.67 cm/year (Fig. 4; Fig. 3A). At the same 
time, we can clearly see that the difference of growth under middle and 
low competition intensity was significantly larger than that under 
middle and high competition intensity (Fig. 4). 

Fig. 2. Predicted and observed annual diameter growth. The solid line in-
dicates the predicted value. 

Fig. 3. Sensitivity analysis plot based on the predicted result from final deep learning model, showing the mean marginal influence of six explanatory variables the 
basal area of larger trees (BAL), age (A), Gini coefficient (Gini), winter mean minimum temperature (WMMT), summer mean maximum temperature (SMMT), and 
annual precipitation (AP) on annual diameter growth (ADG). Each graph represents the effect of variables on ADG, while the other variables were kept constant. 
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A similar pattern can be found in the interaction curve of Age (stand 
age) and climatic factors (Fig. 5). Young trees achieved the highest 
annual diameter growth, which was far more than the growth of middle- 
age trees under the same climate condition. The average growth dif-
ference was around 0.6 cm/year. Meanwhile, the difference of annual 
growth between middle-age and matured trees was small, and the mean 
growth difference under the climatic condition changes were nearly 
0.05 cm/year (Fig. 5). The peak value of the three age groups increased 
from 1.40 to 1.55 cm/year, and the valley value decreased from 0.70 to 
0.55 cm/year when taking climate factors into consideration (Fig. 5; 
Fig. 3B). 

The results showed a positive correlation between Gini and ADG 
(Fig. 3C). Considering the effects of climatic variables, we found that 
there were small differences in tree growth between the stands with high 
and middle stand structure. The trees belonging to low stand structure 
forests always exert the lowest annual diameter growth (Fig. 6). The 
peak value of tree growth among all stand structure categories increased 
from 1.12 to 1.30 cm/year, and the valley value decreased from 0.95 to 
0.77 under the influence of climatic factors (Fig. 6; Fig. 3C). 

In addition, from the change of curves in the interaction diagrams, 
two more points could be concluded. Firstly, positive influences of 
climate conditions (SMMT and AP) tended to promote tree growth under 
low competition intensity, while negative relations with climate 
(WMMT) variables were more likely to decrease tree growth under high 
competition intensity (Fig. 4). Secondly, older trees were more likely to 

be affected by climate conditions, which were reflected by a greater 
volatility in annual diameter growth when facing environmental varia-
tion. Most obviously, the negative effect of WMMT on old trees was 
significantly greater than that of young trees; however, the impact of 
WMMT on tree growth was negligible among all age categories when 
WMMT > 6 ◦C (Fig. 5). 

4. Discussions 

4.1. Model comparison 

Based on 6 variables (i.e., BAL, Age, Gini, SMMT, WMMT, and AP), 
the RF model and 80 deep learning models were constructed for fitting 
annual diameter growth (ADG), in which the DL model with 8 hidden 
layers and 90 neurons achieved the best performance while the perfor-
mance of RF model ranked 4th among all 9 models. Our results indicated 
that DLA might be superior to RF method in individual tree growth 
prediction based on multi-dimensional big data. Bond-Lamberty et al. 
(2014) studied the tree growth across the western United States using 
the RF method and found that the accuracy of RF models was not very 
high in predicting individual tree growth: their model only explained 
approximately 23%-44% diameter growth variation. Fiosina et al. 
(2019) compared deep learning (DL) and random forest (RF) methods 
and found that DL could significantly outperform classical random forest 
in prediction accuracy, given enough training data. However, the 

Fig. 4. Predicted annual diameter growth (ADG) from final deep learning model, and further analysis through random forest algorithm. Graphs demonstrated the 
interactive effect of basal area of larger trees (BAL) and three climatic factors on ADG when the other variables are kept at their average. Shaded areas represent a 
95% confidence interval. 
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accurate prediction of DLA is still a “black box”, lacking necessary ex-
planations. By contrast, some scholars proposed two methods to 
improve the interpretability of RF: the relative importance of predictive 
variables and the partial dependence plot (Breiman, 2001; Friedman, 
2001). In other words, we cannot obtain both accuracy and explanation 
by only one machine learning method so far. 

It is worth noting that DL models with more neurons in each hidden 
layer (neurons ≥ 60) tend to achieve better performance (Ercanli, 2020). 
Meanwhile, from the value of the average residual (AR) of model fitting, 
the prediction results of deep learning models tend to be underestimated 
(Table 4; Fig. 2). 

4.2. Tree growth in response to climate factors 

Climate factors have been considered as vital drivers of tree growth 
(Macias et al., 2006; Hlásny et al., 2017; Quadri et al., 2021; Zhirnova 
et al., 2021). In this study, Chinese fir tree growth was greatly affected 
by climatic factors mainly associated with SMMT, AP and WMMT. 
However, the influence of these three climatic factors on tree growth 
was not always positive or negative (Fig. 3), which was dependent on 
specific ranges of the climatic conditions. Results showed that tree 
growth increased with increasing SMMT, generally, while growth 

decreased when 30.7 < SMMT < 31.4 and SMMT > 33.1 ◦C (Fig. 3E). Liu 
et al. (2020) concluded that the positive response of tree growth to 
summer temperature might be caused by increased photosynthesis. 
However, when rising temperatures exceed the growth optimum, 
excessive photorespiration would increase consumption of carbohydrate 
reserves and further inhibits tree growth. Previous studies considered 
that WMMT might exert a more complex growth pattern for tree growth 
(Ryan, 2010; Wilmking et al., 2020). With an increase in WMMT, our 
results showed that tree growth decreased markedly first followed by a 
gentle reduction and then returning to an increase, and lastly, further 
increment of WMMT result in a growth decrement (Fig. 3D). The above 
phenomenon can be explained by the following research studies. 
Decreased winter temperature could lead to an inhibition of tree growth 
by causing bud damage, frost desiccation and reduced root activity (Luo 
et al., 2017). Furthermore, increased winter temperature could result in 
less frost damage to roots and leaves (Chen et al., 2015a; Su et al., 2015), 
and thereby advance the onset of growth. Gea-Izquierdo et al. (2012) 
reported that increased winter temperatures could lead to biomass loss 
of individuals through enhanced respiration rate and further causing a 
reduction in growth. 

The tree growth in response to annual precipitation was significant in 
our study and AP exerted a positive association with tree growth when 

Fig. 5. Predicted annual diameter growth (ADG) from final deep learning model, and further analysis through random forest algorithm. Graphs demonstrated the 
interactive effect of stand age (Age) and three climatic factors on ADG when other variables are kept constant at their mean values. Shaded areas represent 95% 
confidence interval. 
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1300 < AP < 1650 (Fig. 3F), while more precipitation during the range 
of 1100 < AP < 1300 and AP > 1850 led to a decrease in growth. Many 
studies have proved that precipitation was an important driver of tree 
growth (Canham et al., 2018; Devi et al., 2020). However, the impor-
tance of water resources to growth varied by regional climatic condi-
tions. The positive driving force of rainfall would not be as strong 
compared with temperature in humid regions (Zheng et al., 2012; Chen 
et al., 2015b; Su et al., 2015). In addition, it is understandable that 
excessive rainfall leads to a reduction in radial growth (Dannenberg 
et al., 2019), for high annual precipitation and a concomitant increase in 
cloud cover, would likely shorten the photoperiod. 

4.3. Tree growth in response to stand variables 

In this study, stand structure represented by the Gini coefficient, 
showed a positive relation with tree growth (Fig. 3C), which was 
consistent with Vanhellemont et al. (2018). High stand structural het-
erogeneity might promote tree growth by exploiting unused space and 
light (De Boeck et al., 2006), thereby improving water and resources 
utilization (Silva Pedro et al., 2017; Jactel et al., 2018). However, for 
regions with poor site conditions, trees might be incapable of utilizing 
the underlying resources created by structural heterogeneity. In other 
words, the relationship between stand structure and growth may not be 
obvious and may even be negative, which is dependent on the envi-
ronment of the study area (Jactel et al., 2018). Notably, our study sites 

are not lacking water or soil nutrients, and Chinese fir is a light- 
demanding species. Thus, it is understandable that tree growth in-
creases with an increase in stand structural complexity. 

Age was another main driver of tree growth which has been 
confirmed by other studies (e.g., Chen et al., 2016). Derived from the 
sensitivity analysis, tree growth decreased rapidly with the increase of 
Age (5 ≤ Age < 10), and a further increase in age would cause growth to 
decline slowly (Age ≥ 10) (Fig. 3 B). The results might indicate that the 
negative effects of age on tree growth were greater for young trees rather 
than older trees. 

Competition intensity has been considered as the main driving factor 
influencing diameter growth (Aakala et al., 2013; Buechling et al., 2017; 
Jiang et al., 2018). In our study, the variable importance ranking 
showed that the basal area of larger trees (BAL) exerted the most 
important influence on Chinese fir growth (Fig. 1), which was consistent 
with previous studies (Zhang et al., 2020b; Hatami et al., 2020). 
Nevertheless, the relationship between competition and tree growth can 
have different response patterns. Some studies suggested that competi-
tion could be a driving force influencing individual growth but it doesn’t 
play a major role (Calama et al., 2019; Wang et al., 2021). Liang et al., 
(2019) hold the opinion that other factors mediate the relation between 
growth and competition intensity, such as latitude for instance. In fact, 
the mediating effect of latitude on competition is also reflected in 
geographical and environment characteristics, such as the interaction 
between competition and climatic factors, and this dimension was also 

Fig. 6. Predicted annual diameter growth (ADG) from final deep learning model, and further analysis through random forest algorithm. Graphs demonstrated the 
interactive effect of stand structural diversity (Gini) and three climatic factors on ADG when the other predictors are kept constant. Shaded areas represent a 95% 
confidence interval. 
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explored in this paper. We used the basal area of larger trees (BAL) to 
measure tree-level competition, and results indicated that the tree 
growth decreased with an increase in BAL (Fig. 3A). Based on our 
analysis, we found that younger trees belonging to young forests have 
low BAL and tend to achieve high diameter growth rate. Other studies 
also concluded similar results: for instance, Oboite and Comeau (2019) 
investigated the western boreal forest and found that competition (BAL) 
had a negative effect on black spruce growth. Ford et al. (2017) studied 
the montane forests in western North America and found individual tree 
growth was strongly constrained by competition (BAL). 

4.4. Climate factors modulate the response of tree growth to stand 
conditions 

Age, competition intensity, stand structure, and climate are the main 
factors driving tree growth. However, these factors do not act depen-
dently on individual growth, but by means of interactions (Calama et al., 
2019). The tree growth of Chinese fir varied with climatic factors under 
different stand conditions. Combining the results of sensitivity and 
interaction analysis, the general trend of individual trees in response to 
climate factors kept constant under the impact of varied stand condi-
tions, while climatic variables modulated the response of tree growth to 
different site conditions, which was consistent with Tomáš et al., (2017). 
Moreover, as the greatest impact factor, highest annual diameter growth 
was associated with the lowest BAL (Fig. 3A), and tree growth ranged 
from 0.93 to 1.68 cm/year. When considering the climatic factors, the 
trend of growth decreasing with increasing BAL did not change. At the 
same time, we could clearly see that trees under low competition in-
tensity achieved the highest radial growth, which was much higher than 
the growth under middle and high competition intensity (Fig. 4). The 
difference of growth between middle and high competition intensity was 
small, which might indicate that the negative effects on growth gradu-
ally decreased across a low to highly competitive gradient. In terms of 
the growth range, we found that tree growth decreased from 0.93 to 1.68 
to 0.67–1.48 cm/year under the influence of climate. This suggested that 
climate factors might exacerbate the negative effects of competition on 
growth (Oboite and Comeau, 2019). 

The response of tree growth to competitive intensity and age was 
very similar no matter whether climate conditions were considered or 
not (Figs. 3, 4, and 5). Tree growth decreased with increasing age, and 
young trees achieved the highest diameter growth (Fig. 5). The differ-
ence lies in the growth range. Among all three age categories, the value 
of tree growth range varied from 0.60 to 1.40 to 0.55–1.55 cm/year, the 
peak value of growth increased from 1.40 to 1.55 cm/year, while valley 
value decreased from 0.60 to 0.55 cm/year. It was expected that climate 
conditions would promote the growth of younger trees but restrain the 
growth of older trees, and that climatic factors might intensify the 
negative effect of age on tree growth. 

In contrast, tree growth under different stand structural conditions 
(represented by three levels of the Gini coefficient) showed a different 
response pattern to climate conditions, and the curves representing 
annual diameter growth of trees with high and middle stand structural 
heterogeneity were close, and higher than the growth of trees with low 
stand structure (Fig. 6). Jactel et al. (2018) suggested that the positive 
correlation between stand structure and tree growth could be eliminated 
by poor site conditions, and this might provide an explanation for this 
phenomenon. The growth range influenced stand structure by trans-
forming annual diameter growth from 0.95 to 1.12 to 0.77–1.30 cm/ 
year when climate was not considered versus considered, respectively 
(Fig. 3C; Fig. 6). Results suggested that climatic factors might amplify 
the effect of stand structural heterogeneity on growth, including the 
reduction of the positive effect of low stand structure, and expanding the 
promotional effect of high stand structure on growth. In addition, we 
found that positive climate change (i.e., SMMT and AP) tended to pro-
mote tree growth at low-level competition intensity, compared with the 
other two competition categories. Trees in a higher competitive 

environment were more likely to suffer damage under climate deterio-
ration (i.e., WMMT), leading to a greater growth decline. Older trees 
were more likely to be affected by climate conditions. In particular, the 
negative effect of WMMT on older trees was significantly greater than 
that of younger trees. Our study results indicated that suitable site and 
climate conditions are the prerequisites for high growth of individual 
trees. 

Based on our study, competition was the most influential variable on 
tree diameter growth, and trees under weak competition level tend to 
achieve higher growth increments, which indicated the balance between 
competition and tree growth should be considered whether through 
thinning or low-density afforestation. Older trees were more sensitive to 
climate variables, especially the negative effect of climatic stress. 
Therefore, we should pay more attention on developing adaption stra-
tegies for older trees to enhance their resilience to extreme weather, 
such as extreme summer or winter temperatures. Trees under high stand 
structure diversity tend to achieve higher annual diameter growth. Thus, 
suitable replanting and thinning measures can be carried out to promote 
single tree growth. 

5. Conclusion 

Exploring how stand and climatic factors impact tree growth of 
Chinese fir plantations is of great importance. Here we used the random 
forest algorithm (RF) and deep learning approach (DLA) to model the 
individual tree growth with stand age, competition intensity and stand 
structure and three climatic variables which were acquired from long- 
term spacing trails in subtropical China. Results showed the model 
with 8 hidden layers, and 90 neurons in each hidden layer achieved the 
best comprehensive performance. Further sensitivity analysis and 
interactive effect analysis were carried out based on the prediction re-
sults of the deep learning model. Results showed that individual tree 
growth of Chinese fir increased with an increase in stand structural di-
versity (Gini), but decreased with an increase in competition intensity 
(BAL) and stand age (Age). Moreover, BAL had the greatest influence on 
diameter growth among all the variables. 

Meanwhile, the relationships between tree growth and three climatic 
variables were not constant, which was dependent on the range of values 
of each climatic factor. In addition, we found that: (i) Climatic condi-
tions might exacerbate the negative effects of competition on growth; 
(ii) Climate conditions could promote the growth of younger trees but 
restrain the growth of older trees; (iii) With the climate variables 
considered, the value of tree growth under high and middle stand 
structural heterogeneity were similar, and was significantly higher 
compared with trees under low stand structural complexity; (iv) Positive 
influences of climate variables tended to promote tree growth under 
lower competition while growth of trees dealing with high competition 
were more likely to suffer under climate deterioration; and (v) Older 
trees were more sensitive to climate conditions since middle-age and 
mature trees were more vulnerable to the change of WMMT. Our find-
ings provide important implications for understanding the mechanisms 
of tree growth of Chinese fir plantations in the face of future climate 
change. 
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