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• Themachine learning (ML)model is effec-
tive in predicting groundwater levels.

• Random Forest performs the best in
predicting groundwater levels in this
study.

• The shapely additive explanationsmethod
is useful for interpreting the ML model.

• No water conveyance for three years will
dramatically shrink vegetation area.
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Regional groundwater level forecasting is critical to water resource management, especially for arid regions which re-
quire effective management of groundwater resources to meet human and ecosystem needs. In this study Machine
Learning and Deep Learning approaches - Support Vector Machine, Generalized Regression Neural Network, Decision
Tree, Random Forest (RF), Convolutional Neural Network, Long Short Term Memory and Gated Recurrent Network-
have been used to simulate the groundwater levels in the lower Tarim River basin (LTRB)which is an extreme dryland.
The results showed thatmodels developed herewith easily available input data such as relative humidity, flowvolume
and distance to the riverbank can fully utilize spatiotemporally inconsistent groundwater monitoring data to predict
the spatiotemporal variation of the groundwater system in arid regions where exist intermittent flow. The shapely ad-
ditive explanations method was used to interpret the RFmodel and discover the effect of meteorological, hydrological
and environmental variables on the regional groundwater. These explanations showed that the flow volume, the dis-
tance to the river channel and reservoir have a critical impact on groundwater changes. Within 300 m distance to the
riverbank, groundwater would mainly be influenced by the flow volume and the distance to the reservoir. While far
from the riverbank, these effects decreased gradually further away from the river course. The RF prediction results
showed that in the next three years (2021−2023), the groundwater level on average may decline to −6.4 m, and
the suitable areas for natural vegetation growth would be limited to 39% if no water conveyance in the LTRB. To
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guarantee the stability of ecosystems in the LTRB, it is necessary to convey the water annually. These results can sup-
port spatiotemporal predictions of groundwater levels predominantly recharged by intermittent flow, and form a sci-
entific basis for sustainable water resources management in arid regions.
1. Introduction

Groundwater, the world's largest freshwater resource, is an important
resource in arid regions. These regions,mostly having average precipitation
between 25 and 500 mm year−1 (Gaur and Squires, 2018), occupy 41% of
global land surface area and are inhabited by roughly more than 2500 mil-
lion people. Since surface water resources are extremely scarce in these re-
gions, groundwater plays a critical role in the ecological balance, domestic
uses, agricultural irrigation, and industrial development (Long et al., 2020).
Therefore, an accurate and reliable regional-scale groundwater prediction
is critical for the sustainable management of water resources in arid re-
gions. However, groundwater process is a complex nonlinear system dy-
namically regulated by both natural and anthropogenic factors at
different temporal and spatial scales (Wang et al., 2018). Monitoring
groundwater levels provides valuable information for understanding sys-
tem dynamics and detecting long term groundwater behaviors such as re-
plenishment and consumption of groundwater. But in arid regions,
groundwater wells are often not adequately distributed spatially across an
aquifer because of limitations such as labor and funding (Ruybal et al.,
2019). In the meantime, groundwater depth data are usually irregularly
collected and have many temporal and spatial gaps in the record. These
present challenges in understanding systemdynamics and selecting reliable
approaches to estimate the spatiotemporal variation of water level fluctua-
tion. In addition, because of climate change, water abstractions, and land
use transitions, many previously perennial streams have become intermit-
tent in the past 50 years (Messager et al., 2021). As precipitation is ex-
tremely scarce in arid regions, groundwater recharge major occurs
through perennial stream, ephemeral stream, and intermittent flow like ar-
tificial recharge of water from the river course (Ghayoumian et al., 2007;
Hashemi et al., 2013). This intermittent recharge mode further increases
the difficulty of regional groundwater simulation in arid regions.

At present, regional groundwater level has been estimated through a va-
riety of techniques, including spatial interpolation models like Kriging In-
terpolation (Hengl, 2007; Varouchakis and Hristopulos, 2013) and
conventional physical-based numerical models such as MODFLOW
(Singh, 2014). Although the form of the spatial interpolation models is rel-
atively simple and does not need any physical data, thesemodels aremostly
applied for the spatial estimation of groundwater level rather than the tem-
poral one (Tapoglou et al., 2014; Sahoo et al., 2017). Nevertheless, the
monitoring wells of arid and semiarid regions are usually sparse and highly
non-uniform, which would limit the extensive application of these statisti-
cal methods. Physical-based numerical models consider more details of
the groundwater processes and provide groundwater fluctuation in the
space-time domain (Sherif et al., 2012). But the complexity of real world
conditions, such as anisotropy and heterogeneity, cannot be fully
expressed. These deficiencies inevitably increase the uncertainty of
physics-based model inputs as well as the corresponding output
(Szidarovszky et al., 2007). In recent years, the data-driven approaches of
Machine Learning (ML) and Deep Learning (DL) are widely used as good al-
ternative approaches compared to conventional models (Wunsch et al.,
2018; Yin et al., 2021; Yoon et al., 2011). ML and DL are making major ad-
vances in directly solving problemswhen the physical relations between as-
sociated explanatory and explained variables are really difficult to express
through conventional process-based models (LeCun et al., 2015). Many
studies have shown the usefulness of ML and DL in the temporal prediction
of water levels at sampled locations (Tapoglou et al., 2014; Wunsch et al.,
2018). To predict groundwater levels in the spatiotemporal domain, vari-
ous researchers have used ML and DL for temporal prediction and com-
bined with interpolation methods like Kriging Interpolation for spatial
estimation (Tapoglou et al., 2014; Sahoo et al., 2017). However, ML and
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DLhave not yet beenwidely used as a direct approach to predict groundwa-
ter levels in the space domain. In fact, ML and DL approaches have already
been implemented in other environmental studies in the space-time do-
main, such as forecasting the spatiotemporal distribution of soil moisture
(Fang and Shen, 2020), precipitation (Nguyen et al., 2009), active layer
thickness, ground temperature and soil organic carbon (Wang et al.,
2020). Hence, it is worth exploring whether ML and DL approaches can
be directly used to simulate the spatial and temporal distribution of ground-
water levels.

With the development of science and technology, ML and DL have
emerged as a collection of advancedmodels which have beenwidely imple-
mented for water sciences (LeCun et al., 2015; Shen et al., 2018; Jeihouni
et al., 2019). From earlier ML approaches such as Support Vector Machine
(SVM), Generalized Regression Neural Network (GRNN), Decision Tree
(DT), and Random Forest (RF) to the state of the art DL approaches such
as convolutional neural network (CNN), Long Short TermMemory network
(LSTM), and Gated Recurrent Units (GRU) neural network, there are vari-
ous models that have shown the possibility to estimate groundwater levels
(Dilip and Rajib, 2021; Koch et al., 2019; Rajaee et al., 2019). All types of
ML and DL models have advantages and disadvantages, and it is challeng-
ing to select the appropriatemodels that simulatewater levels with high ac-
curacy. Furthermore, many water scientists are reluctant to use ML and DL
because they are “black boxes” that we cannot understand how the model
uses input variables to make predictions (Wang et al., 2022). Recently,
Shapely additive explanation (SHAP) has been successfully adopted in the
interpretation of ML and DL (Lundberg and Lee, 2017). SHAP can exhibit
the effect of each input variable on the model output from the local and
global perspective, and it has been successfully applied in many fields
(Wang et al., 2021, 2022; Yang et al., 2021).

In this study, the lower Tarim River basin is considered the study site.
Tarim River basin is the largest inland river basin in China and has a dry,
desert climate (Tao et al., 2008). The groundwater level in the mainstream
is mainly recharged by the stream and the survival of natural vegetation
along the lower reaches depends almost entirely on groundwater (Hao
et al., 2010). In the lower reaches of the Tarim River, streamflow has
completely dried up since 1970 due to large scale anthropogenic activities
such as irrigation. To revive the degraded ecosystem of the lower Tarim
River, the Chinese Government started to implement the “Ecological
Water Conveyance” project by intermittently transporting freshwater
from the upper reaches through the river channel to the lower reaches
(Tao et al., 2008). To facilitatemanagement of water resources, an accurate
simulation of groundwater level in the lower Tarim River basin is needed.

The objective of this study is to develop a model to predict the spatio-
temporal distribution of groundwater levels in arid regions where ground-
water recharge major occurs through runoff or intermittent flow like
artificial recharge of water from the river course, and quantitatively esti-
mate the present and future status of groundwater in the lower Tarim
River basin. The model developed here is intended to fully utilize spatio-
temporally inconsistent groundwater monitoring data to reconstruct the
spatiotemporal variation of the groundwater system in arid regions where
exist stream or intermittent flow. Furthermore, the SHAP method can pro-
vide a novel perspective to quantify the relationships between groundwater
variation andmeteorological, hydrological and environmental factors. Spe-
cifically, this work has four objectives: 1) To compare the predictive ability
on regional groundwater levels in the lower Tarim River basin of the four
popular ML models (SVM, GRNN, DT, and RF) and three DL models
(CNN, LSTM, andGRU) and determine the optimummodeling based on sta-
tistical performance metrics; 2) to use SHAP to interpret the optimum
modeling and understand how each input variable affects the regional
groundwater level; 3) to use optimal modeling to simulate the present
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groundwater forced by the “Ecological Water Conveyance” project and de-
tect the interannual variation of groundwater level downstream of Tarim
River; 4) to apply the optimal model to predict future groundwater tables
in the next three years. The prediction of regional groundwater levels can
provide useful information for the study of ecology and hydrology resulting
from groundwater level change on the lower Tarim River basin, and serve
as a reference to arid regions where groundwater recharge major occurs
through runoff or intermittent flow like artificial recharge of water from
the river course.

2. Materials and methods

2.1. Study site and data sources

The Tarim River basin with an area of approximately 1.02 × 106 km2,
which is located near the Taklimakan Desert, is one of the largest closed hy-
drological drainage systems in the world (Fig. 1(a)). In hydrological terms,
the Tarim River was fed by precipitation at middle mountains and glacier
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melt and snowmelt water from high mountainous areas (Yang et al.,
2019). Because of climate change and intensive water exploitation, many
headstreams have lost surface hydraulic links with the mainstream of the
Tarim River basin. At present, only the Aksu, Yarkant, and Hotan Rivers
supply water to the Tarim River basin (Fig. 1(a)). The climate of the
Tarim River basin is characterized by an extremely arid, desert climate
with an annual rainfall below 35 mm, temperatures ranging from −35 °C
to 40 °C, annual sunshine duration of 2800–3100 h, and annual potential
evaporation of approximately 2590 mm (Huang and Pang, 2010). The an-
nual potential evaporation data were calculated using the Penman-
Monteith method (Allen et al., 1998) based on climate data obtained
through the meteorological stations in the Tarim River basin. The vegeta-
tion of this region is sparse and largely follows the riverbank to form
green belts. The vegetation types in the region mainly include herbs like
Poacynum hendersonii, Phragmites communis, Glyzyrrhiza inflate, Alhagi
sparsifolia, and Karelinia caspica, arbors like Populus euphratica, and shrubs
like Tamarix spp., Halimodendron halodendron, Lycium ruthenicum, and
Nitraria sibirica (Hao et al., 2010). Since the precipitation in the area cannot
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Table 1
List of model inputs in the model.

Indicator group Metric
code

Metric description

Meteorological
indicators

tempt Monthly temperature (°C) lead t month, t = 0,1, …,6
humt Monthly relative humidity (%) lead t month, t = 0,1,…,6

Hydrological
indicators

QD-t Monthly total volume of conveyanced water in Daxihaizi
Reservoir lead t month (108 m3), t = 0,1, …,6

QO-t Monthly total volume of conveyanced water in old Tarim
river channel lead t month (108 m3), t = 0,1, …,6

QQ-t Monthly total volume of conveyanced water in Qiwenkur
river channel lead t month (108 m3), t = 0,1, …,6

Environmental
descriptors

DEM Altitude (m)
distD Distance to the Daxihaizi Reservoir (m)
distO Distance to the nearest Old Tarim River channel (m)
distQ Distance to the nearest Qiwenkur River channel (m)
distL Distance to the nearest lower section of lower Tarim River

channel (m)
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meet the requirement of natural vegetation, the survival of the vegetation
communities mainly depends on the groundwater while the groundwater
is mainly recharged by stream (Tao et al., 2008).

In this work, the study focuses on the downstream of Tarim River basin,
which is stretched from Daxihaizi Reservoir to Taitema Lake (Fig. 1(b)).
The lower reaches of the Tarim River is known as the ‘Green Corridor’
since it is located between the Taklimakan Desert and the Kuluke Desert
and protects the railroad along the river (Tao et al., 2008). Since the
1960s, changing climate, and intensive anthropogenic activities in the
upper and middle reaches of the Tarim River have significantly reduced
the stream flow into the lower reaches. Moreover, after the construction
of the Daxihaizi Reservoir in 1972, the downstream streamflow has been
completely dried up (Song et al., 1999). Consequently, having no stream-
flow in the lower reaches, Taitema Lake became dried up, groundwater ta-
bles dropped sharply, the basin's downstream ecosystems were seriously
degraded, and desertification and salinization expanded rapidly. To save
the ‘Green Corridor’, the Central Chinese Government started to “Ecological
Water Conveyance” project since 2000, that is from the upper Tarim River
and neighboring Bosten Lake to the lower reaches (Ling et al., 2016). The
project generally transported water from the Daxihaizi Reservoir, and
then to the lower reaches through the single river canal or double river
canal (i.e., either the Qiwenkur river channel or the Old Tarim river chan-
nel, or both) (Fig. 1(b)). As a result of this project, groundwater tables
have increased significantly and degraded ecosystems have been effectively
restored in the lower reaches of the Tarim River (Mamat et al., 2018).

Eleven groundwater monitoring transects, 50 m wide and 450–1500 m
long (including a total of 74 groundwater monitoring wells) were estab-
lished along the river course to observe groundwater levels (Fig. 1(b)).
They are located in the transects of Akdun, Yahepu, Yinsu, old Yinsu,
Abudayi, Kardayi, Bozkule, Tugmailai, Alagan, Yiganbujima, and Kurgan
downstream of the Daxihaizi Reservoir. For each transect, six or five
groundwater monitoring wells were installed at distances of 50, 150, 300,
500, 750, and 1050 m from the riverway in the lower reaches (Fig. 1
(b) and (c)). Groundwater level data were obtained every month during
the period from 2000 to 2020. Fig. 1(d) illustrates the available monthly
groundwater monitoring data for 74 groundwater monitoring wells in the
lower reaches from January 2000 to December 2020. Each column repre-
sents a groundwater monitoring well while each row denotes a month.
Groundwater monitoring wells are arranged from decreasing latitude (top
to bottom). To highlight the irregularity of groundwater table monitoring
and temporal sparseness of the monitoring data, the gray square denotes
the available groundwater table data while the black square denotes the
missing value as some wells were damaged. There were significant spatio-
temporal gaps for the records of groundwater level observations. Some
well records only include periods between 2000 and 2007 whereas others
only included observations between 2009 and 2020 (Fig. 1(d)). Because
of limitations such as labor and funding in arid and semiarid regions, mon-
itoringwells in these regions often lack regular maintenance and rehabilita-
tion (Ruybal et al., 2019). None of the wells had a continuous observation
record between 2000 and 2020, while fewer than 17% of the well records
included a continuous observation of the months between 2009 and 2020
(Fig. 1(d)). This is a generic problem that is prevalent in many arid and
semiarid areas, and will significantly increase the difficulty of groundwater
simulation (Ruybal et al., 2019).

In order to retain the physical meaning of the network, all input param-
eters are directly or indirectly related to thewater balance equation. Among
the input parameters, more specifically, the temperature and relative hu-
midity are related to evapotranspiration (Wunsch et al., 2021; Yin et al.,
2021) while the “Ecological Water Conveyance” project is directly related
to the groundwater recharge. The precipitation is ignored here since it is
too little to contribute to groundwater supply in arid and semiarid regions
(Hao et al., 2010). Because the groundwater levels have a memory with re-
spect to previous climate and human activities over timescales of less than
one year (Russo and Lall, 2017), input parameters of 6 previous months are
considered here. Moreover, groundwater configuration is also controlled
by the topography, and is usually a replication of the topography
4

(Condon and Maxwell, 2015). The digital elevation model (DEM) with a
resolution of 30 m (available at http://www.tpedatabase.cn/), and the dis-
tances to the adjacent river channel and to the Daxihaizi Reservoir, which
are taken as surrogates for the topography, are also selected asmodel inputs
since they directly affect the extent of groundwater recharge. In summary,
the hydraulic head change in the current month (t) is predicted through
temperature, relative humidity, and the volume of water conveyanced
from the river course in the current month (t) and 6 previous months (t-6,
t-5, t-4, t-3, t-2, t-1), and geospatial information (DEM, distances to the
nearest river channel and to the Daxihaizi Reservoir). In order to have a
complete picture of all the variables acting on the modeling, all the input
variables are listed in Table 1, which account for the effects of meteorolog-
ical, hydrological, and environmental factors. In general, these input pa-
rameters are easy to measure and widely available. This makes this
approach, in principle, easily transferable and hence applicable to other
arid regions where groundwater is mainly recharged by the stream or inter-
mittent flow through the river course.

The monthly air temperature and relative humidity data between 1999
and 2020 were collected from climatological station. The monthly volume
of water conveyanced from the Daxihaizi Reservoir to the Qiwenkur River
channel and Old Tarim River channel were obtained from the Tarim River
Basin Administration. To predict the spatiotemporal changes of down-
stream groundwater levels of the Tarim River basin during 2021–2023,
temperature and relative humidity data over the study area were derived
from four climate models (i.e., CanESM5, INM-CM5-0, IPSL-CM6A-LR,
and MRI-ESM2-0) of the coupled model intercomparison project phase 6
(CMIP6) under scenario SSP245 (shared socioeconomic pathway represen-
tative concentration pathway, SSP) (O'Neill et al., 2016). The climatemodel
outputs have been bias-corrected against climate station data.

2.2. Model description and implementation

2.2.1. Model description
In this study, four ML models and three DL models were selected to fit

the groundwater level in the lower Tarim River. The four ML models are
Support Vector Machine (SVM), Generalized Regression Neural Network
(GRNN), Decision Tree (DT) and Random Forest (RF). And the three DL
models are convolutional neural network (CNN), Long Short TermMemory
network (LSTM), and Gated Recurrent Units (GRU) neural network. All the
models are summarized in Table 2. SVM regression is considered a non-
parametric approach since it relies on kernel functions (Smola, 1998).
GRNN is a variant of the radial basis network (Specht, 1991), has only
one adjustable parameter is easy to tune and has less training time. DT is
regarded as the most easily understandable ML approach (Breiman et al.,
1984), but has the risk of overfitting as it tends to fit all the samples within
the training data closely. RF creates a forest by combining the predictions of
multiple DT models, and can effectively avoid overfitting since the averag-
ing of uncorrelated trees reduces the overall variance and prediction error

http://www.tpedatabase.cn/


Table 2
Summary of the support vectormachine (SVM), generalized regression neural network (GRNN), decision tree (DT), random forest (RF), convolutional neural network (CNN),
long short term memory network (LSTM), and gated recurrent units (GRU) neural network.

Category Approach Description Strength Weakness

Machine
learning

SVM Mapping the nonlinear dataset to higher dimensional feature space through
different types of kernel functions.

Less training time. Not suitable for large data sets.

GRNN A variant of the radial basis network, can deal with linear and nonlinear data. Easy to tune. Easy to overfit.
DT Modeling the data as a tree of hierarchical branches and uses a group of binary

rules to calculate the target value.
Easy to explain. Easy to overfit.

RF A collection of DT models that combines the predictions of the DT models to
produce a more accurate prediction.

Not easy to overfit Slower.

Deep
learning

CNN Contains one or more convolutional layers that can be either entirely connected
or pooled.

Works well in feature
extraction.

Large training data needed; hardware
dependence; slower.

LSTM A kind of the recurrent neural network, which avoids the vanishing gradient
problem by gated regulators.

Works well in time series
prediction.

GRU A variant of the LSTM model and does not contain separate memory cells. Faster and simpler than
LSTM.
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(Breiman, 2001). CNN is a DL method that is particularly used for image
and audio processing (LeCun et al., 2015). Li et al. (2018) proposed a
new one-dimensional time series prediction algorithm through two-
dimensional CNNs and is more appropriate for the feature extraction
frommultiple one-dimensional time series. LSTM is a kind of recurrent neu-
ral network that is widely used to model time series in the field of DL, can
effectively avoid vanishing and exploding gradient issues (Fang and Shen,
2020). Similar to LSTM, GRU is also a kind of recurrent neural network
but is simpler and faster than LSTM and often offers comparable perfor-
mance to that of LSTM (Chung et al., 2014).

2.2.2. Model training and evaluation
In this study, all the models are trained using a random sample of 75%

of the observation data and tested using the remaining 25% data. In addi-
tion, to converge faster and prevent local extremes from affecting training,
the input variables are normalized to the range of−1 to 1 before training.
Hyperparameters for each model are tuned manually. In addition, each DL
model (i.e., CNN, LSTM, and GRU) is trained for 120 epochs with a mini-
batch size of 512 and data shuffled every epoch tomake the neural network
robust. The Adam algorithm with an initial learning rate of 0.005 and a
dropping factor of 0.2 is employed. Gradient clipping is applied to prevent
gradient explosion. Early stopping is used to prevent overfitting and to
improve the ability of model generalization. The calculations of these
models are performed on the CPU (Intel(R) Core(TM) i5-10210U CPU @
1.60 GHz).

Model performances are assessed for the test data through the following
metrics: squared Pearson's correlation coefficient (R2), root mean squared
error (RMSE), percentual bias (PBIAS), and mean absolute relative error
(MARE):

R2 ¼ ∑n
i¼1 oi − oð Þ pi − pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 oi − oð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 pi − pð Þ2
qr

0
BB@

1
CCA

2

(1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑n

i¼1 pi − oið Þ2
r

(2)

PBIAS ¼ 100
∑n

i¼1 pi − oið Þ
∑n

i¼1 oið Þ (3)

MARE ¼ 1
n
∑n

i¼1∣
pi − oi

omax − omin
∣ (4)

where oi and pi denote the observed and predicted groundwater levels, re-
spectively. i refers to the ith value of the data. n is the number of observa-
tions. o is the mean observation. omax and omin represent the maximum
and minimum values of observation, respectively. R2 is a general determi-
nation coefficient, which compares the linear correlation between
5

predictions and observations. RMSE is the standard deviation of the predic-
tion errors and is penalized by large errors since its errors are squared. The
PBIAS is the average prediction errors concerning the average of the ob-
served data, and it shows whether the model tends to underestimate or
overestimate the observations (Gupta et al., 1999). The MARE indicates
the average magnitude of the relative error between simulated and ob-
served data. The ideal scores for the goodness-of-fit criteria are 1 for R2,
and 0 for RMSE, PBIAS, and MARE. Model performance is assessed using
a repeated loop of 100.

2.3. SHAP

SHAP method is a game theoretic approach that can interpret ML
models (Lundberg and Lee, 2017). Unlike conventional methods that can
only exhibit the degree of influence of input variables on the model output,
SHAP can also show the positive or negative effect of each variable on the
model (Wang et al., 2022). With a trainedMLmodelM, and input variables
x= {x1,⋯,xq}, SHAP can use an explanationmodel E to determine the con-
tribution of each variable to model M. The details of SHAP are described in
the following equations:

E ¼ ϕ0 þ∑q
i¼1ϕiti (5)

where q is the number of input variables, t is the simplification of the vari-
able, and ϕi ∈ R denotes the contribution of each variable to the ML model
(Wang et al., 2022). The function ϕ can be described as:

ϕi M, xð Þ ¼ ∑t⊆x
∣t∣! q − jtj− 1ð Þ!

q!
M tð Þ−M t∖i� �� �

(6)

where \ is the difference-set notation for set operations. The SHAP results
were derived using the “shap” package in Python 3.0.

2.4. Trend analysis

Theil-Sen's slope is a nonparametric approach to estimate the slope of
trend and requires no assumption on the probability distribution of the
dataset (Sen, 1968). The slope S of time series x1, ..., xn is given by

S ¼ Median
xj − xi
j− i

� �
for all i< j (7)

where 1< i< j< n. A positive S denotes an increasing trend, and a negative
S denotes a decreasing trend.
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3. Results and discussion

3.1. Performance assessment for different models

To fully investigate the model performance, the average performances
from all seven models (i.e., SVM, GRNN, DT, RF, CNN, LSTM, and GRU,
each with 100 well-trained models) are summarized and compared in
Fig. 2. Fig. 2 shows that on average, RF models perform the best with a
higher R2 value of 0.87 on average, followed by DT, GRU, LSTM, and
CNNmodels. In contrast, SVM and GRNNmodels exhibit the least accurate
results. This is consistent for all metrics except PBIAS, where SVM and
GRNN models show slightly less bias than GRU, LSTM, and CNN models
(Fig. 2). Additionally, Fig. 2(e) shows the calculation speed of these
model types. As expected, ML methods (i.e., SVM, GRNN, DT, and RF) in
general are less expensive than DL methods (i.e., CNN, LSTM, and GRU).
For example, the associated time needed for the LSTM model is 13 folds
of the time used for the RF model. Because compared with ML approaches,
the learning process of DL models is deep as the structure of DL modeling
has multiple hidden layers (LeCun et al., 2015). Consistent with previous
studies (Chung et al., 2014), LSTM and GRU networks present almost
equal performance since they are based on the recurrent neural network,
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and the computation speed of GRU is faster than that of LSTMdue to its sim-
plicity (Fig. 2(b)).

The general superiority of RF over other ML methods such as DT, SVM,
and GRNN in the prediction of groundwater level is expected because it is
an ensemble-based approach and often performs better than other ML
methods in previous studies (Shen et al., 2018; Yin et al., 2021). However,
RF andDT approaches here are also superior toDL approaches in predicting
groundwater levels. Theoretically, DL approaches, especially the LSTM and
GRU networks, are known as accurate time series predicting models be-
cause of theirmemory cell structures that allow them to remember informa-
tion over a long period (Wunsch et al., 2021). DL methods may perform
better in multistep-ahead forecasting as they are designed to process long
sequence data. However, a one-step-ahead forecast instead of a multistep-
ahead forecast is considered here because the record of groundwater mon-
itoring data hasmany gaps in time and space horizons (Fig. 1d). In addition,
themediocre performance of DLmethodsmay also relate to the size of sam-
ples used in this study, which is not large enough to support the establish-
ment of complex DL methods, and resulting in the underutilization of the
ability of DL methods (Shen et al., 2018). In this study, DL methods still
show superiority over some ML methods such as SVM and GRMM because
SVM and GRNN are not effective for time series prediction as they are not
0.8

1

1.2

1.4
R

M
SE

0.05

0.06

0.07

0.08

0.09

M
AR

E

0.6

(d)

SVM GRNN DT RF CNN LSTM GRU

1500 2000 2500
 (minute)

(b)

F, CNN, LSTM, andGRUmodels (eachwith 100model runs) for the test dataset. The
t on training SVM, GRNN, DT, RF, CNN, LSTM, and GRU models 100 times.



Q. Liu et al. Science of the Total Environment 831 (2022) 154902
suitable for large sample feature scale and sensitive to outliers (Gaye et al.,
2021; Montano et al., 2011). GRNN tends to show poor generalization abil-
ity for highly correlated data (Montano et al., 2011). These results also in-
dicate that the model should be selected carefully although ML and DL
models can capture the groundwater variations in arid regions, there still
exists some divergence in the performance of different model types.

ML/DL approaches were initially used as alternatives to process-based
models in the prediction of groundwater levels due to their high accuracy
with less time and cost (Yin et al., 2021; Wunsch et al., 2018; Yoon et al.,
2011). Many studies also have compared the performance of groundwater
level prediction between theML/DL approaches and process-basedmodels,
andmost of them found thatML/DLmodels can providemore accurate pre-
dictions than physically-based models (Zeydalinejad, 2022; Chen et al.,
2020; Moghaddam et al., 2019). However, physically-basedmodels possess
simplified expressions of the underlying physical mechanismof the ground-
water system, while data-driven ML/DL approaches contain no such infor-
mation explicitly. And it suggests potential in hybrid physics-ML
approaches that can combine hydrological mechanisms with high predic-
tion accuracy. Therefore, some studies recently have integrated ML with
physics-based models to develop physics informed neural networks,
which contain the law of physics described by the physics-based models
(Chen et al., 2021; Raissi et al., 2017, 2018). Besides, ML/DL models also
were used to learn a global mapping between raw inputs and parameters
of the process-based model, which are then fed into the differentiable
process-based model, and can be a surrogate of traditional parameter cali-
bration (Tsai et al., 2021). In summary, with the development of artificial
intelligence, the relation betweenML/DLmodels and process-basedmodels
has now changed from solely competitive to integrative and cooperative.
However, the ML models used in this study were merely a data-driven sur-
rogate to a process-based model. Further research should attempt to de-
velop a new hybrid physics-ML model that injects the physical
mechanism of groundwater dynamics into ML algorithms and thereby
make it more understandable.

3.2. Model interpretation

Because the RF model performs best in simulating groundwater levels,
the SHAP method was used to interpret the RF model. The overall impor-
tance of each input variable (Table 3) was calculated as the average of
the absolute SHAP values for each input variable. A greater mean SHAP
value corresponds to a greater influence on the model output (Wang
et al., 2022). Table 3 shows that the variables distQ, distO, QD-1, QO-6, QQ-6
Table 3
variable importance for the prediction of groundwater in the lower Tarim River basin.

Old Tarim river channel Qiwenkur river channel

Variable Importance Variable Importance

distQ 1.03 distQ 0.92
QO-6 0.27 QD-1 0.18
QD-1 0.19 distO 0.17
distO 0.12 QQ-6 0.17
QD-6 0.11 QD-6 0.12
QD-3 0.1 distD 0.11
QD-0 0.09 QD-3 0.06
distD 0.07 DEM 0.06
QO-5 0.07 QQ-1 0.05
QO-3 0.06 QO-5 0.05
hum2 0.05 QD-0 0.05
hum3 0.05 QD-2 0.04
QD-2 0.05 QO-2 0.03
QO-0 0.04 QO-3 0.03
hum6 0.04 hum2 0.03
QD-4 0.03 hum3 0.03
QO-2 0.03 QD-4 0.03
QQ-1 0.03 temp4 0.03
hum4 0.03 QQ-0 0.02
QQ-6 0.03 QO-6 0.02

7

and distD (see Table 1 for the explanation of the acronyms) all have a
large impact on the groundwater level.

The SHAP summary plot (Fig. 3) was used to further see the magnitude
and direction of the effect of a variable (Lundberg and Lee, 2017). We pres-
ent the twentymost important features and visualize their associationswith
groundwater level. It is obvious from Fig. 3 that the volume of conveyanced
water with a lead of 0–6months, distQ, and distO are the variables that most
affect groundwater level in the lower reaches of the Tarim River. Where an
increase in the volume of conveyancedwater, especially of QO-6, QD-1, QD-6,
and QQ-6, correspond to an increase in SHAP value and shows a potentially
positive impact on groundwater level (Fig. 3). A closer distance to the river
course has a higher SHAP value,with a larger positive impact on groundwa-
ter levels (Fig. 3). Environmental factors like distD and DEM are the next
most critical factors while the effect of meteorological factors on the change
of groundwater depth in the lower Tarim River is small. Large values of
distD and DEM correspond to negative SHAP values and show negative cor-
relations with groundwater level (Fig. 3).

SHAP interaction plots (Fig. 4) show how the effect of a variable on
model output varies with other variables (Lundberg and Lee, 2017). We
present the SHAP interaction values between the important variables
distQ, QD-1, distD, and DEM, and visualize their interaction effects on
groundwater level. The interaction effects of distQ with variables QD-1,
distD, and DEM (Fig. 4a – f) show how the effect of distQ on groundwater
depth varies with them. Within 300 m distance to the river course
(i.e., distQ < 300 m), conveyanced more water (i.e., QD-1 > 0.7 × 108 m3)
and the nearest distance toDaxihaizi Reservoir (i.e., distD< 45 km) can dra-
matically lifts the groundwater level (Fig. 4b–c). While far from the river
channel (i.e., distQ > 300 m), lower altitude can lift the groundwater level
(i.e., DEM < 820 m; Fig. 4d), and the effects of variables QD-1, distD on
groundwater depth decreased gradually further away from the river course
(Fig. 4b–c). Similarly, the interaction effects within QD-1, distD, and DEM
(Fig. 4e–j) show consistent results that compared with places far from the
Daxihaizi Reservoir and higher altitude, having the nearest distance to
the Daxihaizi Reservoir and lower altitude can lift the groundwater level.
These results (Figs. 3 and 4) agree with existing literature (Tao et al.,
2008; Chen et al., 2010; Liu et al., 2019) that the water conveyance project
in the lower Tarim River basin plays an important role in lifting the ground-
water level close to the river channel, and the response of groundwater
level decreased gradually further down the river course and decreased
gradually further away from the river course. This might be because the
rainfall in the lower Tarim River basin is scarce, and conveyanced water
is the dominant recharge source of groundwater (Tao et al., 2008).
Lower section of lower Tarim River Overall model

Variable Importance Variable Importance

distQ 0.75 distQ 0.89
QO-6 0.23 QO-6 0.21
distD 0.17 QD-1 0.18
QD-1 0.16 distO 0.18
distO 0.11 distD 0.11
QD-6 0.09 QD-6 0.1
QD-3 0.08 QD-3 0.08
QD-0 0.06 QD-0 0.06
QO-5 0.06 QO-5 0.06
QD-2 0.05 DEM 0.06
DEM 0.05 QD-2 0.05
hum3 0.05 QO-3 0.04
hum2 0.05 hum2 0.04
QD-4 0.04 hum3 0.04
hum6 0.04 hum6 0.03
QO-2 0.04 QD-4 0.03
QO-3 0.04 QO-2 0.03
hum5 0.03 QQ-1 0.03
hum4 0.03 hum4 0.03
QQ-6 0.03 QQ-6 0.03



(a) Old Tarim river channel (b) Qiwenkur river channel

(c) lower section of lower Tarim River
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Furthermore, the variable DEM shows a negative impact on groundwater
level while an increase in DEM also implies a drop in the groundwater
level. This result is consistent with previous analysis (Condon and
Maxwell, 2015) that, on a regional scale, the groundwater level is con-
nected to the topography, and is usually a subdued version of topography.

Because traditional process-based models such as MODFLOW,HYDRUS
can efficiently reproduce the physical process of groundwater dynamic,
they are widely used to explore the mechanism of a groundwater system
(Sherif et al., 2012). However, there are still many deficiencies in the imple-
mentation of process-basedmodels to groundwater prediction, and they are
plagued by issues of complexity and nonlinearity of physical processes, un-
certainty in parameterization processes, and contradictions in spatial and
8

temporal scales (Basu et al., 2022; Govindaraju, 2000). In recent years, as
data-driven models like ML and DL methods can obtain robust results
with less time and cost in various complex groundwater systems, many re-
searchers have gradually adopted them for groundwater prediction (Sahoo
et al., 2017; Wunsch et al., 2018; Yoon et al., 2011). Nevertheless, the defi-
ciency of these data-driven models is that they are of the “black box” type
and do not provide any explicit expression to quantify the effect of each var-
iable on themodel output (Basu et al., 2022). Therefore,many scientists are
reluctant to adopt ML and DL models in the field of water environment sci-
ences (Nearing et al., 2020). To overcome this constraint, the SHAPmethod
(Lundberg and Lee, 2017), which studies how the model uses variables to
make predictions, can compensate for the ML's shortcomings and
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quantitative analyses the effect of the variables on model output based on
the comprehensive analysis (Wang et al., 2022). Therefore, the SHAP
method is used to interpretML algorithms and discover the influence of hy-
drological, environmental, and meteorological factors on groundwater dy-
namics in the lower Tarim River basin from global perspectives. These
results help us understand how the “black box”model uses input variables
to make predictions of regional groundwater levels, and also provide us a
further understanding of the complex processes that give rise to the varia-
tion of groundwater.

3.3. The projection of present groundwater table

The lower reaches of TarimRiver basin is known as the “green corridor”
since it is located between the Taklamakan Desert and KurukeDesert (Chen
et al., 2010). However, the “green corridor” has disappeared in the 1970s as
the streamflow in the lower reaches and the terminal lake Taitema Lake
dried out because of dramatically increased water consumption for irriga-
tion and domestic use in the upper-middle reaches (Tao et al., 2008; Song
et al., 1999). This drying dramatically dropped the downstream groundwa-
ter level and destroyed the ecosystems, many plants decreased extensively.
The Kuruk Desert and the Taklamakan Desert have tended to converge.
Land desertification has intensified, and many catastrophic climatic events
such as sand storms have increased. To revive the degraded ecosystems of
the lower Tarim River basin, the Management Bureau of the Tarim River
Basin started implementing the “Ecological Water Conveyance” project in
9

2000. Water was intermittently transferred from the Daxihaizi Reservoir
to the downstream of the Tarim River basin through a single river channel
(i.e., Qiwenkur River or Old Tarim River channel) or through double chan-
nels and finally to Taitemar Lake (Fig. 1(a) and (b)). The total volume of
water conveyanced from the Daxihaizi Reservoir, Qiwenkur River channel,
and Old Tarim River channel is presented in Fig. 5(a)–(c), respectively.
Until 2020, a total volume of 8.445 × 109 m3 water has already been
conveyanced (Fig. 5).

However, the date, duration, and volume of each water conveyance
were not fixed and were entirely controlled arbitrarily. Water conveyance
duration ranged from 1month to 10months (Fig. 5). Although the “Ecolog-
ical Water Conveyance” project considerably lifted the groundwater level
to meet the water demand of natural vegetation in the lower reaches,
many researchers have figured out that the date, duration, and volume of
water conveyance were random and need to be optimized (Chen et al.,
2010; Tao et al., 2008; Zhou et al., 2020). For example, the diversion
time of the “Ecological Water Conveyance” project in the Tarim River
basin is always duringwinter (Chen et al., 2010; Tao et al., 2008). However,
the time period from August to September in each year is the seed ripening
and dispersal periods of native vegetation like Populus euphratica, Tamarix
ramosissima and Alhagi sparsifolia (Cheng et al., 2007). The water convey-
ance during this period will assist the spreading, germinating and natural
regeneration of seeds along river channel margins (Cheng et al., 2007;
Chen et al., 2010). Besides, as groundwater level is the crucial factor affect-
ing the growth of vegetation in the lower Tarim River basin (Hao et al.,
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Fig. 5. The volume of water conveyanced (a) from the Daxihaizi Reservoir, (b) in
the Old Tarim river channel, and (c) in the Qiwenkur river channel from January
2000 to December 2020.
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2010; Zhou et al., 2020), the groundwater depth must be maintained at a
minimum of 6 m in depth to meet the normal growth of natural vegetation
in the lower reaches (Hao et al., 2010; Zhou et al., 2020). Therefore, it is
necessary to fix the date, duration, and volume of the “Ecological Water
Conveyance” project each year to timely maintain optimal groundwater
depth for long-term riparian forest development since the water resource
of the project is limited by upstream water inflow and agricultural water
consumption, under limited water resources (Tao et al., 2008).

The RF model was selected to simulate the past and present groundwa-
ter levels because of its good accuracy among all models. The spatiotempo-
ral distribution of the groundwater table downstream of the Tarim River
from 2000 to 2020 is presented in Fig. 6. Because the “Ecological Water
Conveyance” project was started in 2000 and the available groundwater
levelmonitoring data during this time, this study focuses on the time period
from 2000 to 2020. Among the several selected points, the time series plots
from 2000 and 2020 (Fig. 6(a)) clearly present the variation of groundwa-
ter levels at different locations. These points include locations (Fig. 6c) at
the Akdun transect (A), at the Yahepu transect (B), at the Yinsu transect
(C), at the Kardayi transect (D), at the Alagan transect (E), at the
Yiganbujima transect (F) with intervals of 150–300 m away from the
river channel. In general, groundwater levels in all points exhibit a consis-
tently increasing trend with water conveyance, as well as an obvious de-
creasing trend between 2008 and 2010 due to no water conveyance over
the period (Fig. 6(a)). Compared with groundwater levels in other points,
the groundwater level in point A shows an immediate increase in the first
“Ecological Water Conveyance” project while groundwater levels in points
E and F are found to rise after several “Ecological Water Conveyance” pro-
jects. This is intuitive since the groundwater depth in the upper section of
the lower Tarim River is sensitive to the water conveyanced from the
Daxihaizi Reservoir, and the response of the groundwater table gradually
decreased down the riverbank (Tao et al., 2008; Chen et al., 2010).

The spatial distribution of the long-term average groundwater table and
the increasing trend of groundwater table from January 2000 to December
2020 simulated by the RF model is shown in Fig. 6(b) and (c), respectively.
In general, the shallower groundwater levels are mainly found in the areas
near the riverbank, and the groundwater level deepens with the distance
from the riverbank (Fig. 6(b)). Similarly, the SHAP results (Figs. 3 and 4)
also show that the distance to the river course have the greatest impact
on the variation of groundwater, and this is intuitive in most arid and
10
semiarid regions since the groundwater close to the river course is fed
more from river flow than that of the region away from the course (Tao
et al., 2008). Geographically, groundwater levels in most areas exhibited
an obvious increasing trend due to water conveyance between 2000 and
2020 (Fig. 6(c)). The groundwater level near the river channel, especially
the Qiwenkur river channel, indicated a slightly increasing trend over
2000 to 2020 (Fig. 6(c)). Groundwater depths close to the river course
were shallow during the entire study period and had relatively insignificant
increases. While the long watering duration and large volumes of water
conveyance played an important role in raising the groundwater depth
far from the rive course (Bao et al., 2017; Chen et al., 2010). Besides, the
groundwater table is not only affected by the “Ecological Water Convey-
ance” project, but also by altitude. The altitude gradually reduces from
846.25m in the Daxihaizi Reservoir to 801.5m in the lower sections down-
stream of the Tarim River (Liu and Chen, 2007). As illustrated in Fig. 6(b),
in the lower TarimRiver basin, the deeper groundwater depth generally oc-
curs in high altitude areas (i.e., the northern and eastern regions) and grad-
ually rises with decreasing altitude, while the highest groundwater depth
distributes in the western and southern regions (Fig. 6(b)). This result is
also consistent with the SHAP plot (Figs. 3 and 4) that the variable DEM
shows a negative impact on the variation of groundwater while an increase
in DEM also a drop in the groundwater table.

The overall changes in groundwater levels in the lower Tarim River be-
tween 2000 and 2020 simulated by the RF model are summarized in Fig. 7
(a). As expected, the groundwater levels in downstream Tarim River exhib-
ited a similar trend with water conveyance (Figs. 5 and 7(a)). For example,
groundwater levels on average increased from−6.6 m in 2000 to−5.2 m
in 2003, −6.2 m in 2011 to −4.6 m in 2020 because of more frequent
water conveyance, and decreased from −5.8 m in 2004 to −7.4 m in
2010 due to reduced water conveyance between 2004 and 2010 (Fig. 7
(a)). Fig. 7(b) illustrates the proportion and spatial distribution of optimum,
basic, and unsuitable groundwater table for natural vegetation growth
downstream of the Tarim River from 2000 to 2020. In the downstream
Tarim River basin, the basic groundwater level needed by plants is 0–6 m,
and the species diversity is highest at 2–4 m level (Hao et al., 2010).
When the water table dropped to below 6 m, species diversity decreases
greatly (Hao et al., 2010). It is clear fromFig. 7(b) that the proportion of un-
suitable regions for vegetation (i.e., groundwater depth below 6 m)
gradually decreased from 63.78% in 2000 to 24.68% in 2020 with the in-
crease of water conveyance (Fig. 7(b)). This is consistent with previous
studies that many herbaceous plants, such as Apocynum venetum,
reappeared along the riverbank (Tao et al., 2008; Mamat et al., 2018),
and the species composition of natural vegetation changed from 17 species
before water conveyance (2000) to 46 species after conveyance. The “Eco-
logical Water Conveyance” project in the lower Tarim River has a vital role
in lifting the groundwater table, as well as creating a suitable environment
for ecosystem rehabilitation. Notably, the government should convey the
water at a reasonable frequency. It seems that a stable watering scheme
(i.e., conveyancewater annually) ismore important inmaintaining suitable
areas for natural vegetation from a long-term perspective. For example,
suitable areas for natural vegetation (i.e., groundwater levels at 0–2 m
and 4–6 m) decreased from 62.65% in 2004 to 5.95% in 2010 due to re-
ducedwater conveyance between 2004 and 2006 and almost nowater con-
veyance between 2007 and 2010 (Fig. 7(b)).

3.4. The projection of future groundwater table

To project the possible future changes of the groundwater level down-
stream of the Tarim River with no water conveyance during 2021–2023,
the optimal model (i.e., the RF model) was employed to predict the spatio-
temporal distribution of groundwater depth. The temperature and relative
humidity over the study region are assumed to be under the scenario
SSP245, which represents the medium pathway of future greenhouse gas
emissions with an additional radiative forcing of 4.5 W m−2 by 2100.
This scenario assumes that climate protection measures are being taken
(O'Neill et al., 2016). To quantify the impacts of water diversion, the



Fig. 6. (a) Time series plots of groundwater table at six different locations simulated by the RF model. (b) The long-term average groundwater table. (c) Increasing trend of
groundwater table from January 2000 to December 2020, and the locations of the chosen points.
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predicted results for the period 2021–2023without water conveyancewere
compared with the groundwater level in the year 2020 based on the simu-
lation of the RF model (Fig. 8(a1)). As expected, without water recharge,
groundwater levels in the lower Tarim River deepens gradually as time in-
creases. The average groundwater level decreases from−4.6 m in 2020 to
−6.4 m in 2023 (Fig. 8(a2)–(a4)). Because the groundwater table deepens
with the distance from the river course in the lower Tarim River (Fig. 8
(a1)–(a4)), the basic and appropriate areas for desert riparian vegetation
(Fig. 8(b1)–(b4)) are mainly found near the riverbank, and the area de-
creases with the distance from the riverbank (Fig. 8(b1)–(b4)). Notably,
without water conveyance, the unsuitable region for plant growth in-
creased from 25% in 2020 to 61% in 2023 under the SSP245 scenario,
and the optimal region for plant growth (i.e., groundwater levels at 2–4 m)
11
decreased from 37% in 2020 to 2% in 2023 (Fig. 8(b4)). To guarantee
the stability of groundwater-dependent ecosystems in the lower Tarim
River basin, it is necessary to convey the water continuously at annual
time scales (Liu et al., 2022).

Climate change is intensifying the conflict between water supply and
demand as droughts increase in many regions of the world (Yuan et al.,
2019). There are previous studies focusing on the impacts of climate change
on water resources in the lower Tarim River basin (Li et al., 2021; Shen
et al., 2018; Tao et al., 2011). In the lower reaches of TarimRiver, the “Eco-
logicalWater Conveyance” project is the onlywater source for groundwater
(Tao et al., 2008), and water supplies in the project are controlled by the
streamflow coming from the headstreams to the upper-middle reaches.
On the one hand, although the stream from the headstreams of Tarim
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River is susceptible to climate change and show increasing trends because
increases in precipitation and temperature directly increase streamflow
and snowmelt runoff in headstreams (Shen et al., 2018; Tao et al., 2011),
anthropogenic activities such as domestic use and irrigation strongly re-
duce the main stream of Tarim River (Tao et al., 2011). On the other
hand, global climate change may lead to an earlier start and a later end of
the growing season (Li et al., 2021), which would cause more drought,
and warming would also intensify potential evapotranspiration (Su et al.,
2018). These all influence the variation of the groundwater table in the
lower Tarim River. Further research will be implemented in future work
to quantitatively assess the impact of climate change on the lower Tarim
River.

Groundwater level prediction is critical for sustainable management of
water resources, particularly for drylands where there is a strong need to
manage groundwater resources in a dynamically effective way so that
they should be available for human and ecosystem needs (Tapoglou et al.,
Fig. 8. The groundwater table in the downstreamTarim River (a1) estimated using the R
conveyance during 2021 and 2023 under future climate scenarios SSP245. The area and
of Tarim River (b1) estimated using the RF model from January 2020 to December 202
future climate scenarios SSP245.
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2014; Zuo et al., 2021). The lower Tarim River basin is an extremely arid
regionwith annual precipitation approximately of 17–35mm, groundwater
dynamics mainly dominated by the “Ecological Water Conveyance” project
(Tao et al., 2008). And it is representative in many arid regions where
groundwater is mainly fed by intermittent streams like the “Ecological
Water Conveyance” project, such as the Heihe River basin, and the Shiyang
River basin in Northwest China, and the Aral Sea basin in Central Asia
(Shen et al., 2017; Shumilova et al., 2018). An accurate and reliable
regional-scale groundwater estimation is necessary in these regions as
groundwater depth is the crucial environmental factors affecting the
growth of desert vegetation (Hao et al., 2010). This intermittent recharge
mode increases the difficulty of regional groundwater simulation. More-
over, groundwater monitoring data in arid regions are usually spatiotempo-
ral discontinuous because of limitations like labor and funding (Ruybal
et al., 2019). For example, groundwater level observations in the lower
Tarim River basin have many spatiotemporal gaps in the record, and less
Fmodel from January 2020 to December 2020, and (a2–a4) predictedwith nowater
spatial distribution of groundwater table for desert riparian vegetation downstream
0, and (b2–b4) predicted in case of no water diversion during 2021 and 2023 under
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than 17% of the well records included a continuous observation of the
months between 2009 and 2020 (Fig. 1(d)). Such case also increases the
difficulty of the extensive application of geostatistical methods in regional
groundwater simulation in arid regions.

Many studies on the variation of groundwater depth in the lower Tarim
River were focused on the changes of groundwater depth in groundwater
monitoring wells (Chen et al., 2010; Tao et al., 2008; Hao and Li, 2014). Be-
cause traditional physical-based models require explicit quantification of
physical properties (Szidarovszky et al., 2007), given the inadequate infor-
mation and uncertain parameters (Liu et al., 2021), thewidespread applica-
tion of physical-basedmodels in the prediction of groundwater depth in the
lower Tarim River was limited. Most physical-based modelings of ground-
water were merely developed in some sections of the downstream Tarim
River (Liu et al., 2019, 2021; Ye et al., 2009). The ML modeling developed
in this study is able to utilize such spatiotemporally inconsistentmonitoring
data (Fig. 1d) to generate the spatiotemporal variation of the groundwater
system in arid regions where exist stream or intermittent flow. Because un-
like physical-based models which require explicit and accurate characteri-
zation of the physics, these data-driven models can find the complicated
nonlinear connections within the sample data without a prior assumption
that specific relationships exist the inputs and outputs (LeCun et al.,
2015; Yin et al., 2021). The model developed here with easily available
input data such as temperature, relative humidity, distance to the river
channel, and volume of the stream or conveyanced water, are capable of
extracting the relation between inputs and groundwater levels.

4. Conclusions

In this study, an evaluation and comparison of the accuracy of SVM,
GRNN, DT, RF, CNN, LSTM, and GRU models in predicting the spatiotem-
poral distribution of groundwater levels in the arid lower Tarim River
basin have been conducted. RF is superior to other models in one-step-
ahead predictions of groundwater depth in the space-time domain. RF
model developed here with easily available input data, such as tempera-
ture, relative humidity, flow volume, and geospatial information like
DEMand the distance to the riverbank, can fully utilize spatiotemporally in-
consistent groundwater monitoring data to modeling the spatiotemporal
variation of groundwater in arid regions where groundwater recharge is
mainly dominated by intermittent flow like water conveyance projects.
Using the SHAP method to interpret the ML models, which are plagued
by their characteristic of “black box”, can quantitatively analyze the magni-
tude and direction of the impact of meteorological, hydrological, and envi-
ronmental factors on the regional groundwater table. According to the
SHAP analysis, the flow volume and the distance to the river channel and
reservoir have critical impacts on groundwater changes in the lower
Tarim River basin. Within 300 m distance, conveyanced more than 0.7 ×
108 m3 water can dramatically lift the groundwater level in the lower
TarimRiver basin.While far from the riverbank, the effects on groundwater
depth decreased gradually further away from the river course. Because this
study major focused on the prediction of groundwater in the lower Tarim
River using SHAP for model interpretation, it has more explanatory
power than previous studies using data-driven models (Xu et al., 2008,
2013; Zuo et al., 2021).

From the simulated results, “Ecological Water Conveyance” projects
played a very important role in lifting the groundwater table in the lower
Tarim River: the groundwater depth on average increased from −6.6 m
in 2000 to−4.6 m in 2020, and the appropriate areas for plant growth in-
creased from 36.22% in 2000 to 75.32% in 2020. Within the next three
years (2021–2023), the average groundwater level may be reduced to
−6.4 m, and the suitable areas for natural vegetation are limited to 39%
of the geographic space if no stream or intermittent flow is recharged. Ri-
parian vegetation is an integral component of ecosystems and is essential
for maintaining many critical ecosystem services. Maintaining an appropri-
ate groundwater level is necessary to sustain the stability and structure of
vegetation communities since the survival of riparian vegetation in the
arid region depends almost entirely on groundwater. Continuous annual
14
water conveyance is necessary for long-term riparian forest development.
The findings of this study have demonstrated the present and future varia-
tions of groundwater level from a quantitative perspective, which have im-
portant scientific implications for informed decision making regarding
sustainable water resources management in arid regions where groundwa-
ter recharge is mainly dominated by streams or intermittent flow like water
conveyance projects. To obtain higher precision of regional groundwater
level prediction, further research is needed. For example, because past
groundwater level data is often limited for most regions in a real-world sce-
nario and cannot be used as model input to improve the model perfor-
mance, further research could also be extended to include the Gravity
Recovery and Climate Experiment (GRACE) satellites data, which provides
the changes in total water storage at all depths, among its input variables to
improve the performance of groundwater level predictions. Further re-
search should attempt to integrate the process-based model to add the
physical mechanism in ML algorithms and thereby make it more under-
standable. SHAP method shows the positive and negative relationship
between groundwater depth and meteorological, hydrological, and envi-
ronmental variables, and helps us to understand the processes that give
rise to the variation of the groundwater system in arid regions and is useful
for interpreting ML models in water science research.
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