
R E S E A R CH A R T I C L E

A high-accuracy vegetation restoration potential mapping
model integrating similar habitat and machine learning

Xiaoyu Meng1 | Huawei Pi1 | Xin Gao2 | Panxing He3 | Jiaqiang Lei2

1Key Research Institute of Yellow River

Civilization and Sustainable Development &

Collaborative Innovation Center on Yellow

River Civilization of Henan Province, Henan

University, Kaifeng, PR China

2State Key Laboratory of Desert and Oasis

Ecology, Xinjiang Institute of Ecology and

Geography, Chinese Academy of Sciences,

Urumqi, PR China

3Ministry of Education Key Laboratory for

Western Arid Region Grassland Resources and

Ecology, College of Grassland Science, Xinjiang

Agricultural University, Urumqi, PR China

Correspondence

Xin Gao, State Key Laboratory of Desert and

Oasis Ecology, Xinjiang Institute of Ecology

and Geography, Chinese Academy of Sciences,

Urumqi 830000, PR China.

Email: gaoxin@ms.xjb.ac.cn

Funding information

The Strategic Priority Research Program of the

Chinese Academy of Sciences, Grant/Award

Number: XDA20030102; The National Natural

Science Foundation of China, Grant/Award

Number: 42107367

Abstract

Vegetation restoration potential (VRP) mapping provides important information for

ecosystem restoration planning. However, the inappropriate assumption of tradi-

tional models that VRPs are identical within an individual similar habitat unit may

result in low accuracy of VRP maps. This study proposes an improved data-driven

model, namely, the similar habitat and machine learning-based VRP mapping

(SHMLVRPM) model. This new model introduces a variety of machine-learning

models to mine information on geographical environment heterogeneity in areas of

similar habitat, which helps to improve the accuracy of VRP maps. Taking Yan'an City,

Shanxi Province, China as our study area, we demonstrate the modelling process and

validate the model. Our results show that the SHMLVRPM model can effectively

construct high-accuracy VRP maps, and its information entropy is approximately 5.8

greater than that derived from the traditional models. The random forest method has

the highest prediction accuracy (R2 = 0.8) among the tested machine-learning

methods. The average VRP value of Yan'an is approximately 68%; counties with the

low VRP achievement are concentrated in the northern part of Yan'an, only 54%.

Our research results can assist policymakers in optimizing vegetation restoration

options and promoting the protection and sustainable development of fragile

ecosystems.
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1 | INTRODUCTION

Vegetation plays an important role in regulating the carbon cycle,

absorbing greenhouse gases, and mitigating climate change (Emamian

et al., 2021). Changes in vegetation coverage, especially in arid and

semi-arid regions, have particularly important influences on land deg-

radation, wind erosion, and dust emission (Duniway et al., 2019; Pi

et al., 2021). As one of the most effective strategies for mitigating cli-

mate change and restoring the ecological environment, vegetation

restoration is receiving increasing attention. Many countries and inter-

national organizations have actively formulated large-scale vegetation

restoration programmes, projects and plans, such as the Grain-for-

Green (GFG) Program in China (Feng et al., 2016), African Forest

Landscape Restoration Initiative (AFR100) (Mansourian, 2021;

Messinger & Winterbottom, 2016), and New York Declaration on For-

ests (NYDF) (Summit, 2021). The Intergovernmental Panel on Climate

Change (IPCC) has stated that an additional 1 billion hectares of forest

are needed to limit global warming to 1.5�C by 2050 (IPCC, 2018).

However, it remains unclear whether these revegetation goals can be

achieved without evaluating revegetation potential. Therefore,

regional vegetation restoration potential (VRP) must be accurately

assessed to formulate scientific restoration plans and improve the

efficiency of ecosystem restoration (Bastin et al., 2019).

Vegetation type, scale, and structure are determined primarily by

the geographical environment (Xu et al., 2020). Therefore, VRP is usu-

ally predicted by constructing a model that relates the geographical
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environment to vegetation information, based on a comprehensive

understanding of regional geographical environment information. VRP

mapping (VRPM) models fall into three categories, depending on how

they are constructed: multi-factor comprehensive prediction models,

similar habitat prediction models, and machine-learning models.

Multi-factor comprehensive prediction models calculate the com-

prehensive VRP by weighting the geographical environment factors

related to vegetation growth (Arianoutsou et al., 2011; Bisson

et al., 2008; Yan et al., 2014). Commonly used multi-factor compre-

hensive evaluation models include post-fire vegetation resilience

index model (Bisson et al., 2008), multi-standard evaluation model

(Arianoutsou et al., 2011), and analytic hierarchy process (AHP) model

(Yan et al., 2014). The main deficiency of multi-factor comprehensive

prediction models lies in the determination of the weights of the geo-

graphical environment factors. Factor weights are typically deter-

mined on the basis of expert knowledge, which is often highly

subjective and considerably influenced by the research scale. There-

fore, the prediction variability of multi-factor comprehensive predic-

tion models is large (Zhang, Xu, et al., 2020).

A similar habitat prediction model predicts the VRP by determin-

ing the optimal vegetation status in areas of similar habitat (Bastin

et al., 2019; Nauman et al., 2017; Xu et al., 2020; Zhang, Xu,

et al., 2020). A massive amount of geographical information provides

essential data for geographical modeling and lays the foundation for

building high-quality prediction models. For example, remote sensing

can quickly obtain large-scale vegetation status information (Ma

et al., 2019; Shen et al., 2018), coupled with a large quantity of geo-

graphical environment element data sets (Abatzoglou et al., 2018),

which provides a strong data basis for the construction of VRP predic-

tion models (Bastin et al., 2019). Based on the geographical law

whereby areas with similar geographical environments have similar

geographical phenomena (Zhu, Liu, et al., 2015), some researchers

have proposed a VRPM approach that combines multi-source remote

sensing monitoring data with GIS spatial statistics methods to form a

similar habitat-based VRP mapping (SHVRPM) model (Gao, Pang,

et al., 2017). Because of its clear mechanism and ease of operation,

the SHVRPM model has been widely used in VRPM in recent years

(Lv et al., 2021; Xu et al., 2020; Zhang, Xu, et al., 2020). However, the

SHVRPM model is a global model, and adapting the model to the

global situation in areas with marked spatial heterogeneity is difficult.

There are also limitations to researchers' understanding of the rela-

tionships between geographical variables, and bias in the model

results is often increased by incomplete selection of geographical

environment factors (Zhang, Jia, et al., 2019). To address these prob-

lems, Zhang, Xu, et al. (2020) and Xu et al. (2020) proposed a sliding-

window-based similar habitat potential mapping model as an improve-

ment on the SHVRPM model. Although the VRPM model based on

similar habitats has been continuously improved, the assumption that

the restoration potential of vegetation within areas of similar habitat

is the same has not changed, which means that the accuracy of the

similar habitat assumption determines the accuracy of the potential

map. However, similar habitat areas are constructed by discretizing

and superimposing geographical environmental factors, and similar

habitat areas are usually presented in patches, resulting in the low

accuracy of the potential map.

Machine learning has powerful nonlinear fitting capabilities

(Meng, Gao, Li, et al., 2021) which can be used as a statistical method

to describe the relationship between the geographical environment

and vegetation information. Rich computing power and geographical

big data make it possible to couple data-driven and machine-learning

methods to considerably improve the accuracy of geographical predic-

tion models. Machine-learning methods are often used to construct

the relationship between biome distribution information and environ-

mental factors and to predict potential natural vegetation research

(Gutierres et al., 2018; Hengl et al., 2018; Raja et al., 2019). Hengl

et al. (2018) showed that the prediction accuracy of the random forest

method was higher than that using other methods, such as neural net-

works, gradient boosting, and k-nearest neighbours. Machine-learning

methods are currently less applied in VRP prediction studies, probably

because vegetation cover is strongly influenced by human activities,

and there are no undisturbed vegetation cover data that can be used

for modeling, especially when human activities are difficult to quan-

tify. To solve this problem, Bastin et al. (2019) collected vegetation

coverage data from global nature reserves and combined machine-

learning methods to predict global forest restoration potential. This

method cleverly excludes areas disturbed by human activities, obtain-

ing more objective vegetation cover data and improving the predic-

tion accuracy of the machine-learning model. However, the approach

of Bastin et al. is not suitable for small-scale studies. This is because

nature reserves tend to be limited in number and are nonuniformly

distributed in small-scale areas; hence, sufficient sample data are

often unavailable.

To solve the aforementioned problems of traditional models, the

objective of this paper is to integrate similar habitat and machine-

learning models to propose a new model for VRP prediction. Our

model has at least two advantages: (1) by abandoning the assumption

that VRP is identical in similar habitat areas (as per the traditional simi-

lar habitat model), we overcome the difficulty in obtaining undis-

turbed vegetation data when there is no nature reserve in the study

area by separating areas of similar habitat and determining the best

vegetation growth information within each habitat area; (2) based on

the best vegetation information and corresponding environmental fac-

tors within each habitat area, the machine-learning method is used to

predict the VRP within similar habitat areas, which achieves the pur-

pose of improving the accuracy of the VRP map.

In the remainder of this paper, we first introduce the principle

and modeling processes of the traditional similar habitat model and

our model, respectively. We then take Yan'an City, northern China, as

a case-study area to compare the two models. Finally, we evaluate the

accuracy of the new model and discuss its advantages, disadvantages,

and reliability. The main objectives of the present study are: (i) to con-

struct a high-accuracy VRP mapping model, integrating similar habitat

and machine learning; (ii) to evaluate the reliability of the new model

by taking Yan'an City, northern China, as a case study; and (iii) to accu-

rately assess the potential of regional vegetation restoration during

the formulation of restoration plans.

2 MENG ET AL.
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2 | MODEL DESCRIPTION

2.1 | Traditional similar habitat model

Similar geographical environments should possess similar geographical

phenomena (Zhu, Liu, et al., 2015). If there is a significant difference

in vegetation growth states between similar geographical environ-

ment areas, it can be considered that there is space for vegetation res-

toration. Therefore, the best state of vegetation in a similar

geographical environment area can be defined as the VRP of the area.

The VRP is generally expressed by numerical indicators, such as the

resilience index (Bisson et al., 2008), vegetation index (Zhang, Xu,

et al., 2020), and vegetation coverage (Bastin et al., 2019). In this

study, vegetation coverage was used to characterize the VRP. The tra-

ditional SHVRPM model is shown in Figure 1. We set X1 and X2 as

two layers of data representing environmental factors of study area A,

and Y as the vegetation coverage data of A. The model first discretizes

X1 and X2 into discrete data values X1h and X2h, respectively, via a dis-

cretization method. Second, the model superimposes the discrete

results for the geographical environment factors to construct similar

geographical environment areas X1h � X2h. Finally, the model

superimposes the similar geographical environment areas and vegeta-

tion coverage Y, recorded as Xh � Y, and then traverses the similar

geographical environment areas to determine the VRP of each area

based on its maximum vegetation coverage value. In this paper, VRP

refers to the possibility of future vegetation development, which is

the level to which an area can be developed, rather than a spatial rep-

resentation of potential (Xu et al., 2020; Zhang, Xu, et al., 2020). The

VRP is expressed as follows:

Pij ¼ max VC E1, E2, E3, …, ENð Þ, ð1Þ

Where: Pij is the VRP of the pixel in row i and column j. E1, E2, E3, …, EN

are the discrete classes of each environmental factor, and N is the

number of environmental factors. VC(E1, E2, E3, …, EN) is the vegeta-

tion coverage data in the same discrete classes as the pixel of row

i and column j, and max VC is the maximum value of VC.

Spatial superposition of discrete factors can form different patchy

areas, that is, similar habitat areas. The SHVRPM model assumes that

the VRP is the same within similar habitat areas, which leads to the

VRP map also being in the form of patches. The greatest flaw of

the model is that it cannot identify the VRP differences for

F IGURE 1 Schematic diagram of the vegetation restoration potential model based on similar habitat. [Colour figure can be viewed at
wileyonlinelibrary.com]

MENG ET AL. 3
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decision-makers involved in vegetation restoration planning within

similar habitat areas. The fundamental reason for this problem is that

the discretization of geographical environmental factors is a process

of information loss.

2.2 | VRPM model based on similar habitat and
machine learning

The similar habitat and machine learning based on VRP mapping

(SHMLVRPM) model proposed in this paper are based on habitat simi-

larity and machine-learning methods. This new model discards the

illogical assumption that VRP is the same within similar habitat areas

and improves the accuracy of VRP prediction by mining the relation-

ship between the heterogeneity of environmental factors and maxi-

mum vegetation coverage. The flowchart of the SHMLVRPM model is

illustrated in Figure 2 and the modeling steps are as follows:

Step 1: Construction of similar habitat areas. First, data relating to

the natural environment factors affecting vegetation growth, including

meteorology, topography and soil, and so on, were collected (e.g., X1,

X2, X3 in Figure 2). Second, based on the principle of maximum similar-

ity within class and minimum similarity between classes, the natural

break method was used to discretize the continuous factor data

(Jenks & Caspall, 1971; Meng, Gao, Lei, & Li, 2021) (e.g., X1h, X2h, X3h

F IGURE 2 Flow chart of the
SHMLVRPM model.
(a) Overlaying the ‘discretized’
environmental factors to form
similar habitat areas.
(b) Extracting the maximum VC
and environmental factors from
each similar habitat area to form
the sample data. (c) Training
models and evaluating them to
determine the optimal model.
(d) Applying the optimal machine-
learning model to calculate the
VRP of the study area. SH, similar
habitats; VC, vegetation
coverage; VRP, vegetation
restoration potential. [Colour
figure can be viewed at
wileyonlinelibrary.com]
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in Figure 2). Finally, discrete factors were spatially overlain to obtain

similar habitat areas, providing the basic statistical unit for the

SHMLVRPM model.

Step 2: Data sampling. First, the modified soil-adjusted vegetation

index (MSAVI) was calculated based on LANDSAT satellite images.

Second, the vegetation cover was calculated using the pixel decompo-

sition model. Finally, the maximum vegetation cover and the corre-

sponding environmental data were extracted from each similar habitat

area to form the sample data.

Step 3: Model selection. Sample data were trained using

machine-learning methods, and the accuracy of the trained models

was evaluated to determine the optimal model. To assess the accuracy

of different machine-learning methods used in the SHMLVRPM

model, six commonly used machine-learning methods were compared:

random forest (RF), support vector machine (SVM), k-nearest neigh-

bors (KNN), gradient boosting regressor tree (GBRT), Bayesian ridge

(BR), and bootstrap aggregating (BAGGING).

Step 4: VRP calculation. The environmental data were substituted

into the optimal machine-learning model to predict the VRP pixel by

pixel.

The SHMLVRPM model can be expressed by the following

equations:

M¼ML max VC E1, E2, E3, …, ENð Þ, X1, X2, X3, …, XNð Þ½ �, ð2Þ

Pij ¼Moptimal X1ij, X2ij, X3ij, …, XNij

� �
, ð3Þ

Where: M is the trained machine-learning model; ML denotes model

training; max VC (E1, E2, E3, …, EN) is the maximum vegetation cover-

age value in a similar habitat area; X1, X2, X3, …, XN are the geographi-

cal environment factor values of the pixels with the same positions as

those of the maximum vegetation coverage in each similar habitat

area; N is the number of environmental factors; Pij is the VRP value of

the pixel in row i and column j. The value of Pij can be obtained by

substituting the environmental data X1ij, X2ij, X3ij, …, XNij into the opti-

mal machine-learning model Moptimal.

3 | CASE-STUDY

To further describe the modelling process of the SHMLVRPM model,

this study takes Yan'an City, Shaanxi Province, China as a case-study.

3.1 | Study area

Yan'an City is located in the middle reaches of the Yellow River, north

of Shanxi (35�210–37�310N, 107�410–110�310E), with a total area of

37,037 km2 (Figure 3a). Yan'an is dominated by hills and ravines on

the Loess Plateau (Xu et al., 2020), with undulating terrain, an eleva-

tion range of approximately 1500 m, and an average elevation of

1200 m (Zhang, Jia, et al., 2020). It has a monsoon climate, with an

average annual precipitation (PREC) of approximately 500 mm and an

average annual temperature (TEMP) of 9�C (Wen et al., 2021).

The main form of land degradation in Yan'an is soil erosion. The

unique geographical location and topography lead to low PREC, high

evaporation and low soil moisture, which intensify soil erosion; this

soil erosion combines with transient heavy rainfall in summer to form

gully landscapes with low vegetation cover (Figure 3b). Hilly/gully

areas account for 39% of the land area of the City (Han et al., 2021).

In addition, agriculture is the main economic activity of the local popu-

lation, and soil erosion caused by the natural environment forces the

local population to abandon low-fertility land (abandoned land)

(Figure 3c) and reclaim new land, thus increasing vegetation destruc-

tion and soil erosion (Xu & Zhang, 2021). In order to protect and

improve the ecological environment and promote the sustainable use

of land, Yan'an launched a pilot large-scale Grain-for-Green (GFG)

Program project in 1999. The main measures of the GFG Program

were to ban grazing on hillsides and return cultivated land to forest

and grass. After more than two decades of the GFG project, the vege-

tation coverage in Yan'an has increased by 50% (He et al., 2021; Wen

et al., 2021). In this paper, VRP denotes the maximum vegetation cov-

erage that can sustainably survive in the natural environment.

Although vegetation restoration in Yan'an has been carried out via

artificial planting, the restored vegetation can still survive without

subsequent artificial irrigation. Therefore, the geographical environ-

ment of Yan'an can be considered to have the ability to restore the

current vegetation coverage. After more than 20 years of the GFG

Program, the current vegetation coverage in Yan'an should be closer

to the estimated VRP. Therefore, Yan'an was selected as a typical

research area for vegetation restoration, which helped to verify the

results of the VRP prediction of our new model.

3.2 | Data sources and preprocessing

The VRP is the predicted maximum vegetation coverage that a natural

geographical environment can support. Based on previous studies and

the local natural geographical environment of Yan'an, vegetation cov-

erage was selected to represent the VRP. We collected a set of nine

geographical environment factors that may conceivably correlate with

VRP. The factors can be approximately grouped into three categories:

meteorology (PREC, TEMP, potential evapotranspiration (PET), and

vapor pressure difference (VPD)), topography (elevation, slope, and

aspect), and soil (soil type and soil moisture). Brief descriptions and

sources of the factors are given in Table 1.

3.2.1 | Vegetation coverage

Vegetation coverage is the ratio of the vegetated area to the total

land area, and the vegetated area is the projected area of plant stems

and leaves on the ground (Carlson & Ripley, 1997; Fang et al., 2016).

Vegetation coverage reflects the size of the photosynthetic area of

MENG ET AL. 5

 1099145x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ldr.4527 by X

injiang B
ranch O

f C
.A

.S, W
iley O

nline L
ibrary on [30/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



vegetation and characterizes the density of vegetation growth (Gao,

Gao, et al., 2017; Wen et al., 2013). In this study, vegetation coverage

was selected as the characterization index for VRP because it has

more definite biophysical characteristics than the vegetation index

(Zhang, Xu, et al., 2020). Vegetation coverage is calculated using the

pixel decomposition model (Qi et al., 2000; Wittich & Hansing, 1995;

Zhang, Chen, et al., 2019). The pixel decomposition model assumes

that a mixed pixel consists of two elements, vegetation and bare soil,

and that the measured signal for each pixel is a linear combination of

the spectral features of ground objects. Therefore, the measured sig-

nal can be used to invert vegetation coverage directly on the mixed

pixel. The vegetation coverage (VC) can be calculated using the fol-

lowing equation:

VC¼ VI�VIs
VIv�VIs

， ð4Þ

Where: VI is the vegetation index of each pixel in the study area, VIs is

the vegetation index of a pure bare soil pixel, and VIv is the vegetation

index of a pure vegetation pixel. In this study, the minimum VI value

in the study area was used to represent the VIs of a pure bare soil

pixel, and the maximum VI value was used to represent the VIv of a

F IGURE 3 Location and landscapes of Yan'an City. (a) Geographical map. (b) Photograph of typical gully landforms. (c) Photograph of typical
abandoned land. Elevation data were obtained from the Shuttle Radar Topography Mission V3 (https://www2.jpl.nasa.gov/srtm/). Wiley acknowledges

that the borders within the figure are subject to multiple territorial claims. [Colour figure can be viewed at wileyonlinelibrary.com]

6 MENG ET AL.
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pure vegetation pixel (Anees et al., 2022; Maselli et al., 2014). VI is

usually represented by the normalized difference vegetation index

(NDVI) (Anees et al., 2022; Gao et al., 2020; Zhang, Chen,

et al., 2019), but numerous studies have shown that the modified soil-

adjusted vegetation index (MSAVI) is more accurate than NDVI in

estimating VC (Fang et al., 2016; Wiesmair et al., 2016; Younes

et al., 2019), especially in areas with sparse vegetation. This is because

MSAVI considers the soil background and adjusts the spectral influ-

ence of the soil to exclude the influence on the vegetation index (Qi

et al., 1994), which is beneficial in improving the VC estimation accu-

racy. The MSAVI is calculated as follows:

MSAVI¼
2NIRþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NIRþ1ð Þ2�8 NIR�REDð Þ

q

2
， ð5Þ

Where: NIR and RED are the reflectance in the near-infrared band and

the red band in the satellite image, respectively.

LANDSAT satellite image data from 1998 to 2020 were used to

calculate MSAVI. The images were all obtained from the

United States Geological Survey (https://www.usgs.gov/) and were

acquired and calculated using the Google Earth Engine cloud com-

puting platform. The LANDSAT images used were real surface reflec-

tance data products, meaning that the data were preprocessed by

systematic radiation correction and atmospheric correction and were

suitable for direct use for surface information extraction (Pekel

et al., 2016; Zhou et al., 2019; Zou et al., 2018; Zurqani et al., 2018).

At the same time, after correction between different sensors, the

LANDSAT reflectivity dataset can be used to analyze ground objects

across different sensors (Huang et al., 2021). For remote sensing

image preprocessing, we used the CFmask method to remove cloud

pollution pixels (Frantz et al., 2018; Zhu, Wang, & Woodcock, 2015).

The MSAVI data of all transit satellite images in Yan'an from 1998 to

2020 were calculated using Equation (5). To eliminate the influence

of large disturbances and sudden changes in meteorological factors,

the vegetation coverage of each year was synthesized by the 95%

quantile method, and the vegetation coverage data from 1998 to

2020 were also synthesized using the 95% quantile method. The

vegetation coverage of Yan'an was obtained using Equation 4

(Figure 4).

3.2.2 | Meteorological data

Meteorological data, including PREC, TEMP, PET, and VPD, were

obtained from the TerraClimate dataset (Abatzoglou et al., 2018). Ter-

raClimate is a global climate dataset with high spatial resolution, pro-

viding climate data on a monthly scale from 1958 to 2019 with a pixel

size of approximately 4 km (1/24�). To facilitate the calculation, the

spline function interpolation method was used to downscale the

meteorological data, so that the spatial resolutions of the meteorologi-

cal data and vegetation coverage data were the same. The spatial dis-

tributions of the mean annual meteorological factors from 1998 to

2020 are shown in Figure 5a–d.

3.2.3 | Topography and soil data

We selected elevation (ELEV) (Figure 3a), slope (SLOPE) (Figure 5e),

and aspect (ASPECT) (Figure 5f) as topographic factors that may affect

vegetation growth. All topographic data were derived from a digital

elevation model (DEM). The DEM data in this study were obtained

from the Shuttle Radar Topography Mission V3 (SRTM Plus) at a reso-

lution of 1 arc-second (approximately 30 m) (Farr et al., 2007). The

SRTM dataset is of high quality, with a horizontal and vertical stan-

dard error of approximately 1 and 0 m, respectively (Jarvis

et al., 2008).

TABLE 1 Geographical environment factors selected for modeling.

Category Factor Factor code Resolution Source/URL

Meteorology Precipitation PREC 4 km, interpolated to 30 m TerraClimate dataset, https://www.climatologylab.

org/terraclimate.html

Temperature TEMP 4 km, interpolated to 30 m TerraClimate dataset

Potential

evapotranspiration

PET 4 km, interpolated to 30 m TerraClimate dataset

Vapour pressure

difference

VPD 4 km, interpolated to 30 m TerraClimate dataset

Topography Elevation ELEV 30 m Derived from digital elevation model (DEM), Shuttle

Radar Topography Mission V3, https://www2.jpl.

nasa.gov/srtm/

Slope SLOPE 30 m Derived from DEM

Aspect ASPECT 30 m Derived from DEM

Soil data Soil type ST Vector data, converted into 30 m

raster

(Shi et al., 2004)

Soil moisture SM 4 km, interpolated to 30 m TerraClimate dataset

MENG ET AL. 7

 1099145x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ldr.4527 by X

injiang B
ranch O

f C
.A

.S, W
iley O

nline L
ibrary on [30/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.usgs.gov/
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
https://www2.jpl.nasa.gov/srtm/
https://www2.jpl.nasa.gov/srtm/


The soil type data (ST) were derived from the 1:1,000,000 scale

vector soil type dataset of the Institute of Soil Sciences of the Chinese

Academy of Sciences (Shi et al., 2004). The data were converted into

a raster dataset with a spatial resolution of 30 m. Fifteen soil types

have been identified in Yan'an: (1) cinnamon soil, (2) calcareous cinna-

mon soil, (3) lou soil, (4) developed cinnamon soil, (5) gray cinnamonic

F IGURE 4 Distribution of
vegetation coverage in Yan'an.
PD, probability density; PDF,
probability density function; VC,
vegetation coverage. [Colour
figure can be viewed at
wileyonlinelibrary.com]

F IGURE 5 Spatial distribution maps of meteorological, topographic, and soil data across Yan'an. (a) Precipitation (PREC). (b) Air temperature
(TEMP). (c) Potential evapotranspiration (PET). (d) Vapour pressure difference (VPD). (e) Slope. (f) Aspect. (g) Soil type (ST). (h) Soil moisture (SM).
[Colour figure can be viewed at wileyonlinelibrary.com]
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soil, (6) black soil, (7) meadow chernozemic soil, (8) loessal soil, (9) red

clay soil, (10) alluvial soil, (11) atteration soil, (12) chisley soil, (13) skel-

eton soil, (14) calcicregosols soil, and (15) rock. The soil type raster

layer in Yan'an is shown in Figure 5g. Soil moisture data (SM) were

also obtained from the TerraClimate dataset. The mean annual soil

moisture spatial distribution from 1998 to 2020 is shown in

Figure 5h.

4 | RESULTS

4.1 | Construction of similar habitat areas

Discretization of environmental factors is the first step in data prepro-

cessing for constructing similar habitat areas. Figure 6 and Table 2

show the results of the discretization of the continuous geographical

environment factors for Yan'an. All environmental factors are discre-

tized into six classes. Here, we take the meteorological factors as an

example for a brief description and analysis. The PREC discretization

results vary along the northwest–southeast direction, where the

zones with PREC <488 mm are mainly located in the northwest, with

an area of approximately 12,324 km2. The zones with PREC ≥488 mm

have an area of about 24,676 km2 and are concentrated in the south

of Yan'an. From the results of TEMP discretization, medium–high

TEMP zones (≥10.2�C) are mainly distributed along the Yellow River

in the east and the valley area in the south, and medium–low TEMP

zones (<10.2�C) are mainly distributed across the western and south-

ern mountainous areas, with areas of 21,796 and 15,204 km2,

respectively. The spatial distribution patterns of PET and VPD have

high a similarity with TEMP. In general, Yan'an has more areas with

F IGURE 6 Spatial distribution diagrams of the discretization of continuous geographical environment factors. (a) Precipitation (PREC). (b) Air
temperature (TEMP). (c) Potential evapotranspiration (PET). (d) Vapour pressure difference (VPD). (e) Elevation (ELEV). (f) Slope. (g) Aspect. (h) Soil
moisture (SM). [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Cut point results of the discretization of continuous geographical environment factors.

Factors

‘Discretization’ results

1 2 3 4 5 6

Precipitation (mm) <442 442–469 469–488 488–506 506–525 >525

Temperature (�C) <9.0 9.0–9.6 9.6–10.2 10.2–10.8 10.8–11.5 >11.5

Potential evapotranspiration (mm) <895 895–932 932–965 965–1003 1003–1038 >1038

Vapour pressure difference (mm) <7.3 7.3–8.2 8.2–9.0 9.0–9.9 9.9–10.8 >10.8

Elevation (m) <845 845–1027 1027–1168 1168–1310 1310–1458 >1458

Slope (�) <8 8–15 15–21 21–26 26–33 >33

Aspect (�) <59 59–118 118–180 180–240 240–259 >259

Soil moisture (mm) <127 127–170 170–218 218–277 277–349 >349

MENG ET AL. 9
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medium–high PREC and TEMP, covering 62% of the city. However,

notably, the spatial distributions of PREC and TEMP in Yan'an City

show obvious inconsistencies. Particularly in the eastern part of

Yan'an, the temperature, PET and VPD are high, while PREC is only

moderate, which indicates that the climatic conditions in the east are

not favorable for vegetation growth.

Discrete factors were used to construct similar habitat areas. Any

pixel in the habitat area layer contains nine attributes, which corre-

spond to the discrete numbers of environmental factors. Here, we

used a 10-digit code to represent similar habitat areas. Digits 1–8 rep-

resent the class numbers of the continuous factors, and the 9th and

10th digits represented the soil type code. The entire study area could

theoretically form up to 68 � 15 = 25,194,240 similar habitat areas.

However, because of the strong collinearity between environmental

factors (e.g., TEMP, ET, and VPD), the actual number of different simi-

lar habitat areas in Yan'an is only 76,307.

4.2 | Accuracy of different machine-learning
models

The sample dataset was divided into five equal parts, and a five-fold

cross-validation method was used to establish the training and testing

data sets for use in testing the prediction accuracy of the six machine-

learning models. The R2 and root mean square error (RMSE) were

used to characterize the model accuracy. The results show that the RF

method yields the highest accuracy (R2 = 0.80, RMSE = 0.036), fol-

lowed by the BAGGING (R2 = 0.75, RMSE = 0.042), GBRT

(R2 = 0.62, RMSE = 0.051), KNN (R2 = 0.62, RMSE = 0.051), BR

(R2 = 0.39, RMSE = 0.065), and SVM (R2 = 0.35, RMSE = 0.067).

Figure 7 shows the consistency between the true and predicted

values of the testing data for the different machine learning methods.

The red points in the figure are the true values, and the colored pixels

are the two-dimensional (2D) histogram. The pixel value refers to the

number of predicted values in pixels. It can be seen from the figure

that the range of values predicted by the RF (Figure 7a) is narrow and

concentrated near the true values, whereas the ranges of values pre-

dicted by the KNN and BR methods are more dispersed. In general,

the RF and BAGGING methods perform best among all methods,

whereas the accuracies of the GBRT, KNN, BR, and SVM methods are

relatively low. However, even the RF method with the highest predic-

tion accuracy has relatively limited performance. This may be caused

by the large differences in sample data between similar habitat areas;

in other words, large differences in vegetation cover may occur in

geographic environments with small differences influenced by human

activities or other anomalous disturbances, which can easily lead to

lower model accuracy when this phenomenon occurs within different

habitat areas. In addition, although machine learning strategies are

considered black box solutions and lack interpretability, machine

learning can provide more accurate and informative maps of VRP than

do the unreasonable simplistic assumptions in traditional models.

Therefore, we used the RF model to predict the VRP.

F IGURE 7 Accuracy of different machine-learning models. (a) Random forest. (b) Bootstrap aggregating. (c) Gradient boosting regressor tree.
(d) K-nearest neighbors. (e) Bayesian ridge. (f) Support vector machine. N, sample size; RMSE, root mean square error; R2, correlation coefficient.
[Colour figure can be viewed at wileyonlinelibrary.com]
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4.3 | VRP comparison of SHMLVRPM and
SHVRPM models

Figure 8a, b shows the VRP results for Yan'an obtained with the

SHMLVRPM and SHVRPM models, respectively. The VRP map of the

SHVRPM model is visibly patchy, whereas the VRP map of the

SHMLVRPM model is more spatially continuous. To further express

the differences between the VRP maps obtained from the two

models, we calculated the VRP information entropy within each simi-

lar habitat area. Information entropy is often used as a quantitative

indicator of the information content of a system, with higher values of

information entropy indicating greater information content; con-

versely, an information entropy of zero implies complete consistency

of information within the statistical aggregate (Gray, 2011; Xia

et al., 2021). Our results show that the average information entropy

of the VRP map of the SHMLVRPM is 5.8, which is much higher than

that of the SHVRPM model (because the SHVRPM model assumes

the same VRP within the similarity habitat areas, the information

entropy of the VRP map is 0). Therefore, the information content of

the VRP map obtained from the SHMLVRPM model is richer. In addi-

tion, the VRP of the SHMLVRPM model is more in line with the con-

tinuous distribution characteristics of the geographical environment

(Figure 8c, d). Here the VRP of the SHMLVRPM model uses the maxi-

mum vegetation coverage in the habitat area and the corresponding

environmental data as sample data, revealing a nonlinear relationship

between the geographical environment and the vegetation coverage.

However, owing to inappropriate assumptions, the SHVRPM model

fails to fully exploit the subtle relationship between environmental

factors and vegetation coverage within habitat areas. Although the

discretization process of both models leads to information loss in simi-

lar habitat areas, which also exaggerates spatial homogeneity and

ignores spatial heterogeneity, the SHMLVRPM model uses a machine

learning approach to compensate for the information loss caused by

the discretization process.

F IGURE 8 VRP of different models. (a) SHMLVRPM. (b) SHVRPM. (c) Local enlarged map of the SHMLVRPM model. (d) Local enlarged map
of the SHVRPM model. VRP, vegetation restoration potential; ML: Machine-learning model (our model); SH: Similar habitat model (traditional
model). [Colour figure can be viewed at wileyonlinelibrary.com]
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4.4 | Spatial distribution characteristics of VRP

The VRP is the performance of the ecological carrying capacity of the

natural geographical environment of a region. A small value of VRP

means that the area is not suitable for vegetation growth. The VRP

results for Yan'an predicted by the SHMLVRPM model (Figure 8a) indi-

cate that regions with higher VRP values are located in the southern

mountains, whereas the northern and eastern regions (near to the Yel-

low River) have lower VRP values. To further analyze the spatial distri-

bution characteristics of VRP, we calculated the mean and standard

deviation of VRP (Table 3) and analyzed the reasons for its value in each

county of Yan'an. It can be seen from Table 3 that the VRP of most

counties in Yan'an is ≥0.6, and half of the values are ≥0.7, which means

that Yan'an generally has a high VRP. Huanglong County has the highest

VRP (up to 0.75); this is mainly because the average annual PREC is rela-

tively large, the elevation is relatively high, and the slope difference is

relatively large, leading to unsuitable conditions for farming (correspond-

ing to less interference from human activities and almost no land degra-

dation). Therefore, the present high vegetation coverage of Huanglong

contributes to a high VRP value for the whole county. The VRPs of

Wuqi, Zichang, Ansai, and Zhidan Counties are relatively low. This is

because these counties are located in the middle of the Loess Plateau

and therefore have relatively low PREC and mainly herbaceous land

cover (Zhang et al., 2006). In the eastern part of Yan'an, low VRP values

are mainly distributed along the Yellow River, where VRP values are

affected by the depressed topography. The TEMP, PET and VPD values

in this area are high, but the PREC value is low.

5 | DISCUSSION

5.1 | Model reliability verification

As described in Section 4, we analyzed the spatial distributions of

VRP obtained using different models. Our results were highly

consistent with those of previous studies on the spatial distribution of

VRP. For example, the VRP in the north of Yan'an is lower than that in

the south (Xu et al., 2020; Zhang, Xu, et al., 2020), which demon-

strates the reliability of our new model to a certain extent. Over the

course of 20-year GFG Program (1999 to date), the vegetation cover-

age should have approached that reflected by the VRP values. We

compared the consistency between vegetation coverage and VRP in

1998, and in2020, to further evaluate the accuracy of the

SHMLVRPM model. Here, we argue that agreement between vegeta-

tion restoration rates and VRP is not sufficient to ensure model accu-

racy (Zhang, Xu, et al., 2020). The reason for this is that vegetation

restoration rates are not only related to regional natural resource

characteristics but also to the process of the GFG Program.

We calculated the vegetation coverage of Yan'an in 1998 and

2020, randomly generated a series of verification points in the study

area, and extracted the vegetation coverage and VRP values corre-

sponding to each verification point in 1998 and 2020. Figure 9 shows

a scatter plot of the vegetation coverage and VRP data. The abscissa

is the VRP, and the ordinate is the vegetation coverage. The vegeta-

tion coverage and VRP deviate from the 1:1 line, and the R2 is only

0.37 for 1998 data. This means that before the implementation of the

GFG Program, there was a significant difference between the vegeta-

tion coverage and VRP, and vegetation coverage was not close to

equaling the VRP. In 2020 however, the vegetation coverage and VRP

were closer to the 1:1 line, and R2 reached 0.47. This indicates that

after the GFG Program, the vegetation coverage of Yan'an in 2020

was closer to the VRP; the effect of the implementation of an ecologi-

cal restoration policy has been remarkable. This result has been con-

firmed in a number of studies of vegetation cover change (Wang

et al., 2019; Zhi et al., 2019). Figure 9 shows that the coefficient of

the linear fitting formula between vegetation coverage and VRP is 1.1

and the overall scatter plot is at the lower right of the 1:1 trend, which

indicates that the areas that do not reach VRP mainly occur in the

north central part of Yan'an. Wang et al. (2019) showed that the

northern part of Yan'an was the main area targeted for vegetation res-

toration during completion of the project, although the vegetation

cover in north–central Yan'an was still lower than that in the south

even after the GFG Program. In the next vegetation restoration plan,

the north–central area should remain the priority area for restoration

(Zhang, Xu, et al., 2020). This is mainly because the northern area was

historically disturbed to a greater extent more by human activities

(Wang et al., 2019) and still has a greater recovery potential even after

20 years of the GFG Program.

5.2 | Vegetation restoration potential achievement
in Yan'an

The ratio of the actual VC value to the VRP value is defined as the

degree of VRP achievement (VRPA) (Xu et al., 2020). This

section discusses the spatial distribution characteristics of VRPA and

its relation to different environmental factors. A lower VRPA indicates

that the vegetation has more scope to recover, and also indicates that

the land degradation caused by human activities is more serious

TABLE 3 Vegetation restoration potential of counties in Yan'an.

County Mean SD Area (km2) PREC (mm)

Huanglong 0.749 0.049 2751 529

Luochuan 0.730 0.038 1792 533

Ganquan 0.729 0.040 2276 511

Huangling 0.728 0.051 2291 544

Fuxian 0.723 0.040 4175 522

Baota 0.709 0.046 3536 510

Yichuan 0.691 0.055 2939 511

Ansai 0.677 0.068 2951 481

Zhidan 0.673 0.044 3789 473

Yanchang 0.644 0.050 2362 501

Yanchuan 0.621 0.050 1986 490

Zichang 0.611 0.058 2393 474

Wuqi 0.593 0.075 3789 435

Abbreviations: PREC, precipitation; SD, standard deviation.
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(Yin & Yin, 2010). A higher VRPA means that anthropogenic distur-

bance is relatively small and the vegetation is close to saturation point

under the current resource endowment conditions. Figure 10 shows

the VRPA of Yan'an; areas with lower VRPA are mainly distributed in

the north, whereas those with highter VRPA are distributed in the

south. The counties with the lowest VRPA are Zichang (54%), Wuqi

(55%), and Ansai (59%), and the counties with the highest VRPA are

Fuxian (73%), Huangling (74%), and Huanglong (76%). Vegetation

recovery in Yan'an is closely related to the distribution of PREC (Sun

et al., 2015). High PREC in southern Yan'an determines its high vege-

tation cover (Zhi et al., 2019), which also explains its larger restoration

achievement. Based on MODIS land cover data (University of Mary-

land (UMD) classification), the mean VRPA values corresponding to

different land cover types in Yan'an were extracted. These were as

follows: permanent wetlands: 26%; urban and built-up lands: 46%;

grasslands: 60%; croplands: 68%; woody savannas: 72%; savannas:

72%; cropland/natural vegetation mosaics: 72%; mixed forests: 73%;

closed shrublands: 78%; and deciduous broadleaf forests: 80%. It can

be seen that the VRPA of permanent wetlands is the lowest, which is

because wetlands can provide sufficient water for vegetation to grow

and therefore have excellent recovery conditions. The VRPA values of

urban and built-up lands rank second lowest because urbanization

expansion leads to serious damage to vegetation under favorable geo-

graphical conditions. For example, the VRPA values in urban areas of

Yan'an are observably low, as shown in Figure 10. In terms of land

cover type, broadleaf forests have the highest VRPA values, because

there is almost no vegetation destruction in the southern mountains

of Yan'an. The VRPA in agricultural areas is at a mid-level. This result

is similar to the work of Wang et al. (2019), who found that returning

farmland to forest had a low impact on vegetation restoration in

Yan'an, accounting for only 15% of the total restoration. Therefore,

the focus should be on wetland, urban areas, and grassland in future

vegetation restoration schemes. In terms of soil-types, alluvial soils

have the lowest VRPA (63%). Alluvial soils are mostly located in val-

leys with relatively good water and heat conditions, and can be used

for afforestation and farmland. It can also be seen from Figure 10 that

higher VRPA values are mostly located in the river valley area, which

is distributed in a long, narrow belt. The VRPA of red clay soils is also

relatively low (65%). Red clay soils evolved under a hot and humid cli-

mate where annual PREC was greater than evaporation. It can be seen

from Figure 5g that the red clay soils in Yan'an are mostly located in

the upper reaches of the river valley.

In summary, an analysis of the differences in VRPA values for dif-

ferent environmental factors types shows that the key areas for

future vegetation restoration in Yan'an are mainly concentrated in the

northern region, among which low-lying valleys and wetlands are the

most suitable targets. Although the VRPA of urban building land is

high, restoration work will be limited to further improving the area of

urban greening and landscape construction because of the needs of

urbanization development.

5.3 | Model advantages

For both the SHVRPM and SHMLVRPM models, the criteria for simi-

lar habitats are ambiguous—there is no clear standard to assess

F IGURE 9 Scatter diagram of vegetation
coverage (VC) and VRP before (1998) and after
(2020) the GFG Program. [Colour figure can be
viewed at wileyonlinelibrary.com]
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whether two geographical environments are sufficiently similar to be

considered similar habitats. Therefore, the use of different discretiza-

tion methods can be rather confusing. Discretization refers to dividing

continuous numerical variable data into a specified number of inter-

vals using clustering (Tsai & Chen, 2019). Commonly used discretiza-

tion methods in geography include the equal interval method (Cao

et al., 2013), natural breaks method (Shrestha & Luo, 2017), quantile

method (Luo et al., 2016), geometric interval method (Tian

et al., 2017), and discretization based on expert experience (Du

et al., 2017). In previous research applications of the VRPM model, a

number of the discretization methods mentioned above have been

used to identify similar habitats (Lv et al., 2021; Zhang, Xu,

et al., 2020). However, there is still no unified standard for the selec-

tion of discretization methods for geographical environmental factors,

and different discretization methods have been shown to produce dif-

ferent results for the identification of similar habitat areas, which

directly affects the accuracy of the VRP. In this study, the natural

breaks method was chosen as the method for discretizing environ-

mental factors. This is mainly because the discretization principle of

the natural breaks method best fits the concept of similar habitats

(Meng, Gao, Lei, & Li, 2021). In terms of the environmental factors

themselves, the natural breaks method is the optimal discretization

method to delineate the similar habitat areas. In addition, the

SHVRPM model assumes that the VRP values of similar habitat areas

are the same, and information mining of geographical environment

heterogeneity in similar habitat areas is not sufficient, which also

directly reduces the spatial resolution of the potential map. The VRP

is determined by topographic, climatic, soil and geological conditions.

However, the contribution of each of these factors to vegetation

growth may vary with location because of the heterogeneity of geo-

graphical environments within similar habitat areas. This suggests that

even within an individual similar habitat unit, the potential for vegeta-

tion growth may vary (Zhang, Xu, et al., 2020). The SHMLVRPM

model developed in this study is based on the similar habitat theory

and uses the natural breaks method to discretize geographical envi-

ronmental factors to identify relatively similar habitat areas. We inte-

grate the maximum vegetation coverage and the corresponding

geographical environment factor data in each habitat area, and use

machine-learning methods to construct nonlinear relationships

between variables. Therefore, the new model can overcome or at

least attenuate the adverse effects of spatial heterogeneity, thereby

improving the accuracy of VRP measurements.

5.4 | Uncertainties of the model

The vegetation distribution is usually affected by both the natural

geographical environment and anthropogenic activities, resulting in a

mismatch between the vegetation distribution and the geographical

environment carrying capacity. For example, deforestation leads to a

F IGURE 10 Vegetation
restoration achievement (VRA) in
Yan'an. Region a is Yan'an City.
[Colour figure can be viewed at
wileyonlinelibrary.com]
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reduction in vegetation coverage in high-quality geographical environ-

ments (Bastin et al., 2019). Desert agriculture leads to a marked

increase in vegetation coverage in harsh geographical environments

(Meng, Gao, Li, et al., 2021). The vegetation coverage of the former

does not reach the regional environmental carrying capacity, and the

vegetation coverage of the latter far exceeds the environmental carry-

ing capacity, which leads to biased VRP according to similar habitat-

based models. Therefore, in the actual restoration process, if the esti-

mated potential value is used as the restoration target, the restoration

cost is high, and the sustainability is poor. In the future, methods that

can quantify the potential biases and uncertainties mentioned above

should be designed to provide more comprehensive data support for

vegetation restoration work.

In addition, the VRP derived from the SHMLVRPM model was still

patchy in some areas, as in the case of Wuqi County, northwest of

Yan'an (Figure 8a). This may be caused by the maximum vegetation

cover values within the similar habitat areas being significantly differ-

ent. If the same independent variables data correspond to different

dependent variable values, the accuracy of the trained model will be

reduced (Maino et al., 2022). Therefore, future research should focus

on the delineation of similar habitat areas and the scientific determi-

nation of optimal vegetation cover within the habitat areas.

6 | CONCLUSIONS

In this paper, we propose a new high-accuracy VRPM model based on

the similar habitat theory. This new model divides the geographical

environment into homogeneous regions and integrates the highest

value of vegetation coverage and geographical environment data for

each region into sample data. It then uses machine learning to con-

struct the relationship between geographical environment and vegeta-

tion coverage to improve the accuracy of the potential map. Our case

study results show that the potential map obtained using the new

model has higher accuracy than that obtained using the traditional

models. The potential map is more consistent with the spatial distribu-

tion of geographical environment variables, which provide necessary

data support for the scientific planning of vegetation restoration pro-

jects. Vegetation restoration is an important path to achieving goal

15.3 of the United Nations Sustainable Development Goals and the

land degradation neutrality target proposed by the United Nations

Convention to Combat Desertification. The ability to forecast VRP

with high accuracy will contribute to the scientific formulation of

recovery planning.

ACKNOWLEDGMENTS

This research was funded by the Strategic Priority Research Program

of the Chinese Academy of Sciences (No. XDA20030102) and the

National Natural Science Foundation of China (No. 42107367).

CONFLICT OF INTEREST

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influ-

ence the work reported in this paper.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

ORCID

Xiaoyu Meng https://orcid.org/0000-0001-9372-0899

Huawei Pi https://orcid.org/0000-0002-3877-6213

REFERENCES

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018).

TerraClimate, a high-resolution global dataset of monthly climate and

climatic water balance from 1958–2015. Scientific Data, 5, 1–12.
https://doi.org/10.1038/sdata.2017.191

Anees, S. A., Zhang, X., Shakeel, M., Al-Kahtani, M. A., Khan, K. A.,

Akram, M., & Ghramh, H. A. (2022). Estimation of fractional vegetation

cover dynamics based on satellite remote sensing in Pakistan: A com-

prehensive study on the FVC and its drivers. Journal of King Saud

University—Science, 34, 1–7. https://doi.org/10.1016/j.jksus.2022.

101848

Arianoutsou, M., Koukoulas, S., & Kazanis, D. (2011). Evaluating post-fire

forest resilience using GIS and multi-criteria analysis: An example from

Cape Sounion National Park, Greece. Environmental Management, 47,

384–397. https://doi.org/10.1007/s00267-011-9614-7
Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D.,

Zohner, C. M., & Crowther, T. W. (2019). The global tree restoration

potential. Science, 365, 76–79. https://doi.org/10.1126/science.

aax0848

Bisson, M., Fornaciai, A., Coli, A., Mazzarini, F., & Pareschi, M. T. (2008).

The vegetation resilience after fire (VRAF) index: Development, imple-

mentation and an illustration from central Italy. International Journal of

Applied Earth Observation and Geoinformation, 10, 312–329. https://
doi.org/10.1016/j.jag.2007.12.003

Cao, F., Ge, Y., & Wang, J.-F. (2013). Optimal discretization for geographi-

cal detectors-based risk assessment. GIScience & Remote Sensing, 50,

78–92. https://doi.org/10.1080/15481603.2013.778562
Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI,

fractional vegetation cover, and leaf area index. Remote Sensing of

Environment, 62, 241–252. https://doi.org/10.1016/S0034-4257(97)
00104-1

Du, Z., Zhang, X., Xu, X., Zhang, H., Wu, Z., & Pang, J. (2017). Quantifying

influences of physiographic factors on temperate dryland vegetation,

Northwest China. Scientific Reports, 7, 1–9. https://doi.org/10.1038/
srep40092

Duniway, M. C., Pfennigwerth, A. A., Fick, S. E., Nauman, T. W.,

Belnap, J., & Barger, N. N. (2019). Wind erosion and dust from US dry-

lands: A review of causes, consequences, and solutions in a changing

world. Ecosphere, 10, 1–28. https://doi.org/10.1002/ecs2.2650
Emamian, A., Rashki, A., Kaskaoutis, D. G., Gholami, A., Opp, C., &

Middleton, N. (2021). Assessing vegetation restoration potential under

different land uses and climatic classes in Northeast Iran. Ecological

Indicators, 122, 1–13. https://doi.org/10.1016/j.ecolind.2020.107325
Fang, S., Tang, W., Peng, Y., Gong, Y., Dai, C., Chai, R., & Liu, K. (2016).

Remote estimation of vegetation fraction and flower fraction in oil-

seed rape with unmanned aerial vehicle data. Remote Sensing, 8, 416.

https://doi.org/10.3390/rs8050416

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,

Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,

Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., &

Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of

Geophysics, 45, 1–33. https://doi.org/10.1029/2005RG000183
Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng, Y., Li, Y.,

Jiang, X., & Wu, B. (2016). Revegetation in China's loess plateau is

approaching sustainable water resource limits. Nature Climate Change,

6, 1019–1022. https://doi.org/10.1038/nclimate3092

MENG ET AL. 15

 1099145x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ldr.4527 by X

injiang B
ranch O

f C
.A

.S, W
iley O

nline L
ibrary on [30/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-9372-0899
https://orcid.org/0000-0001-9372-0899
https://orcid.org/0000-0002-3877-6213
https://orcid.org/0000-0002-3877-6213
https://doi.org/10.1038/sdata.2017.191
https://doi.org/10.1016/j.jksus.2022.101848
https://doi.org/10.1016/j.jksus.2022.101848
https://doi.org/10.1007/s00267-011-9614-7
https://doi.org/10.1126/science.aax0848
https://doi.org/10.1126/science.aax0848
https://doi.org/10.1016/j.jag.2007.12.003
https://doi.org/10.1016/j.jag.2007.12.003
https://doi.org/10.1080/15481603.2013.778562
https://doi.org/10.1016/S0034-4257(97)00104-1
https://doi.org/10.1016/S0034-4257(97)00104-1
https://doi.org/10.1038/srep40092
https://doi.org/10.1038/srep40092
https://doi.org/10.1002/ecs2.2650
https://doi.org/10.1016/j.ecolind.2020.107325
https://doi.org/10.3390/rs8050416
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1038/nclimate3092


Frantz, D., Haß, E., Uhl, A., Stoffels, J., & Hill, J. (2018). Improvement of

the Fmask algorithm for Sentinel-2 images: Separating clouds from

bright surfaces based on parallax effects. Remote Sensing of Environ-

ment, 215, 471–481. https://doi.org/10.1016/j.rse.2018.04.046
Gao, Y., Gao, J., Wang, J., Wang, S., Li, Q., Zhai, S., & Zhou, Y. (2017). Esti-

mating the biomass of unevenly distributed aquatic vegetation in a

lake using the normalized water-adjusted vegetation index and scale

transformation method. Science of the Total Environment, 601–602,
998–1007. https://doi.org/10.1016/j.scitotenv.2017.05.163

Gao, D., Pang, G., Li, Z., & Cheng, S. (2017). Evaluating the potential of

vegetation restoration in the Loess Plateau. Acta Geographica Sinica,

72, 863–874. https://doi.org/10.11821/dlxb201705008
Gao, L., Wang, X., Johnson, B. A., Tian, Q., Wang, Y., Verrelst, J., Mu, X., &

Gu, X. (2020). Remote sensing algorithms for estimation of fractional

vegetation cover using pure vegetation index values: A review. ISPRS

Journal of Photogrammetry and Remote Sensing, 159, 364–377. https://
doi.org/10.1016/j.isprsjprs.2019.11.018

Gray, R. M. (2011). Entropy and information theory. Springer Science &

Business Media.

Gutierres, F., Gomes, P., Rocha, J., & Teodoro, A. C. (2018). Spatially

explicit models in local dynamics analysis: The potential natural vege-

tation (PNV) as a tool for beach and coastal management. In C. M.

Botero, O. Cervantes, & C. W. Finkl (Eds.), Beach management tools—
concepts, methodologies and case studies (pp. 159–177). Cham, CH:

Springer International Publishing. https://doi.org/10.1007/978-3-

319-58304-4_8

Han, L., Huo, H., Liu, Z., Zhao, Y.-H., Zhu, H.-L., Chen, R., & Zhao, Z.-L.

(2021). Spatial and temporal variations of vegetation coverage in the

middle section of Yellow River basin based on terrain gradient:Taking

Yan'an City as an example. The Journal of Applied Ecology, 32, 1581–
1592. https://doi.org/10.13287/j.1001-9332.202105.014

He, Z., Shang, X., & Zhang, T. (2021). Spatiotemporal evaluation and driv-

ing mechanism of land ecological security in Yan'an, a typical hill-gully

region of China's Loess Plateau, from 2000 to 2018. Forests, 12, 1–21.
https://doi.org/10.3390/f12121754

Hengl, T., Walsh, M. G., Sanderman, J., Wheeler, I., Harrison, S. P., &

Prentice, I. C. (2018). Global mapping of potential natural vegetation:

An assessment of machine learning algorithms for estimating land

potential. PeerJ, 6, 1–36. https://doi.org/10.7717/peerj.5457
Huang, W., Duan, W., Nover, D., Sahu, N., & Chen, Y. (2021). An integrated

assessment of surface water dynamics in the Irtysh River basin during

1990–2019 and exploratory factor analyses. Journal of Hydrology, 593,

1–15. https://doi.org/10.1016/j.jhydrol.2020.125905
IPCC. (2018). Global Warming of 1.5�C. An IPCC Special Report on the

impacts of global warming of 1.5�C above pre-industrial levels andrelated

global greenhouse gas emission pathways, in the context of strengthening

the global response to the threat of climate change, sustainable develop-

ment, and efforts to eradicate poverty (pp. 1–616). Cambridge, UK and

New York, NY: Cambridge University Press.

Jarvis, A., Guevara, E., Reuter, H. I., & Nelson, A. D. (2008). Hole-filled

SRTM for the globe: version 4. CGIAR Consortium for Spatial Informa-

tion SRTM 90m Database. https://srtm.csi.cgiar.org

Jenks, G. F., & Caspall, F. C. (1971). Error on Choroplethic maps: Definition,

measurement, reduction. Annals of the Association of American Geographers,

61, 217–244. https://doi.org/10.1111/j.1467-8306.1971.tb00779.x
Luo, W., Jasiewicz, J., Stepinski, T., Wang, J., Xu, C., & Cang, X. (2016). Spa-

tial association between dissection density and environmental factors

over the entire conterminous United States. Geophysical Research Let-

ters, 43, 692–700. https://doi.org/10.1002/2015GL066941
Lv, Z., Li, S., Fan, J., Liu, G., Wang, H., & Meng, X. (2021). Natural restora-

tion potential of vegetation in Mongolia. Journal of Desert Research,

41, 192–201. https://doi.org/10.7522/j.issn.1000-694X.2021.00047
Ma, J., Xiao, X., Miao, R., Li, Y., Chen, B., Zhang, Y., & Zhao, B. (2019).

Trends and controls of terrestrial gross primary productivity of China

during 2000–2016. Environmental Research Letters, 14, 1–14. https://
doi.org/10.1088/1748-9326/ab31e4

Maino, A., Alberi, M., Anceschi, E., Chiarelli, E., Cicala, L., Colonna, T., De

Cesare, M., Guastaldi, E., Lopane, N., Mantovani, F., Marcialis, M.,

Martini, N., Montuschi, M., Piccioli, S., Raptis, K. G. C., Russo, A.,

Semenza, F., & Strati, V. (2022). Airborne radiometric surveys and

machine learning algorithms for revealing soil texture. Remote Sensing,

14, 1–16. https://doi.org/10.3390/rs14153814
Mansourian, S. (2021). Review of forest and landscape restoration in Africa

2021. FAO and AUDA-NEPAD. https://doi.org/10.4060/cb6111en

Maselli, F., Papale, D., Chiesi, M., Matteucci, G., Angeli, L., Raschi, A., &

Seufert, G. (2014). Operational monitoring of daily evapotranspiration

by the combination of MODIS NDVI and ground meteorological data:

Application and evaluation in Central Italy. Remote Sensing of Environ-

ment, 152, 279–290. https://doi.org/10.1016/j.rse.2014.06.021
Meng, X., Gao, X., Lei, J., & Li, S. (2021). Development of a multiscale dis-

cretization method for the geographical detector model. International

Journal of Geographical Information Science, 35, 1650–1675. https://
doi.org/10.1080/13658816.2021.1884686

Meng, X., Gao, X., Li, S., Li, S., & Lei, J. (2021). Monitoring desertification in

Mongolia based on Landsat images and GoogleEarth Engine from

1990 to 2020. Ecological Indicators, 129, 1–15. https://doi.org/10.

1016/j.ecolind.2021.107908

Messinger, J., & Winterbottom, B. (2016). African forest landscape restora-

tion initiative (AFR100): Restoring 100 million hectares of degraded

and deforested land in Africa. Nature & Fauna, 30, 14–17. https://
www.fao.org/3/i5992e/i5992e.pdf

Nauman, T. W., Duniway, M. C., Villarreal, M. L., & Poitras, T. B. (2017).

Disturbance automated reference toolset (DART): Assessing patterns

in ecological recovery from energy development on the Colorado Pla-

teau. Science of the Total Environment, 584–585, 476–488. https://doi.
org/10.1016/j.scitotenv.2017.01.034

Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-

resolution mapping of global surface water and its long-term changes.

Nature, 540, 418–422. https://doi.org/10.1038/nature20584
Pi, H., Huggins, D. R., & Sharratt, B. (2021). Wind erosion of soil influenced

by clay amendment in the inland Pacific northwest, USA. Land Degra-

dation & Development, 32, 241–255. https://doi.org/10.1002/ldr.3709
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A

modified soil adjusted vegetation index. Remote Sensing of Environ-

ment, 48, 119–126. https://doi.org/10.1016/0034-4257(94)90134-1
Qi, J., Marsett, R. C., Moran, M. S., Goodrich, D. C., Heilman, P., Kerr, Y. H.,

Dedieu, G., Chehbouni, A., & Zhang, X. X. (2000). Spatial and temporal

dynamics of vegetation in the San Pedro River basin area. Agricultural

and Forest Meteorology, 105, 55–68. https://doi.org/10.1016/S0168-
1923(00)00195-7

Raja, N. B., Aydin, O., Çiçek, _I., & Türko�glu, N. (2019). A reconstruction of

Turkey's potential natural vegetation using climate indicators. Journal

of Forestry Research, 30, 2199–2211. https://doi.org/10.1007/

s11676-018-0855-7

Shen, X., An, R., Feng, L., Ye, N., Zhu, L., & Li, M. (2018). Vegetation

changes in the Three-River headwaters region of the Tibetan Plateau

of China. Ecological Indicators, 93, 804–812. https://doi.org/10.1016/
j.ecolind.2018.05.065

Shi, X. Z., Yu, D. S., Warner, E. D., Pan, X. Z., Petersen, G. W.,

Gong, Z. G., & Weindorf, D. C. (2004). Soil database of 1:1,000,000

digital soil survey and reference system of the Chinese genetic soil

classification system. Soil Survey Horizons, 45, 129–136. https://doi.
org/10.2136/sh2004.4.0129

Shrestha, A., & Luo, W. (2017). An assessment of groundwater contamina-

tion in Central Valley Aquifer, California using geodetector method.

Annals of GIS, 23, 149–166. https://doi.org/10.1080/19475683.2017.
1346707

Summit, U. C. (2021). New York declaration on forests. New York, NY: For-

est Declaration Platform. Retrieved from https://

forestdeclaration.org/

Sun, W., Song, X., Mu, X., Gao, P., Wang, F., & Zhao, G. (2015). Spatiotem-

poral vegetation cover variations associated with climate change and

16 MENG ET AL.

 1099145x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ldr.4527 by X

injiang B
ranch O

f C
.A

.S, W
iley O

nline L
ibrary on [30/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.rse.2018.04.046
https://doi.org/10.1016/j.scitotenv.2017.05.163
https://doi.org/10.11821/dlxb201705008
https://doi.org/10.1016/j.isprsjprs.2019.11.018
https://doi.org/10.1016/j.isprsjprs.2019.11.018
https://doi.org/10.1007/978-3-319-58304-4_8
https://doi.org/10.1007/978-3-319-58304-4_8
https://doi.org/10.13287/j.1001-9332.202105.014
https://doi.org/10.3390/f12121754
https://doi.org/10.7717/peerj.5457
https://doi.org/10.1016/j.jhydrol.2020.125905
https://srtm.csi.cgiar.org
https://doi.org/10.1111/j.1467-8306.1971.tb00779.x
https://doi.org/10.1002/2015GL066941
https://doi.org/10.7522/j.issn.1000-694X.2021.00047
https://doi.org/10.1088/1748-9326/ab31e4
https://doi.org/10.1088/1748-9326/ab31e4
https://doi.org/10.3390/rs14153814
https://doi.org/10.4060/cb6111en
https://doi.org/10.1016/j.rse.2014.06.021
https://doi.org/10.1080/13658816.2021.1884686
https://doi.org/10.1080/13658816.2021.1884686
https://doi.org/10.1016/j.ecolind.2021.107908
https://doi.org/10.1016/j.ecolind.2021.107908
https://www.fao.org/3/i5992e/i5992e.pdf
https://www.fao.org/3/i5992e/i5992e.pdf
https://doi.org/10.1016/j.scitotenv.2017.01.034
https://doi.org/10.1016/j.scitotenv.2017.01.034
https://doi.org/10.1038/nature20584
https://doi.org/10.1002/ldr.3709
https://doi.org/10.1016/0034-4257(94)90134-1
https://doi.org/10.1016/S0168-1923(00)00195-7
https://doi.org/10.1016/S0168-1923(00)00195-7
https://doi.org/10.1007/s11676-018-0855-7
https://doi.org/10.1007/s11676-018-0855-7
https://doi.org/10.1016/j.ecolind.2018.05.065
https://doi.org/10.1016/j.ecolind.2018.05.065
https://doi.org/10.2136/sh2004.4.0129
https://doi.org/10.2136/sh2004.4.0129
https://doi.org/10.1080/19475683.2017.1346707
https://doi.org/10.1080/19475683.2017.1346707
https://forestdeclaration.org/
https://forestdeclaration.org/


ecological restoration in the Loess Plateau. Agricultural and Forest

Meteorology, 209–210, 87–99. https://doi.org/10.1016/j.agrformet.

2015.05.002

Tian, L., Li, Y., Yan, Y., & Wang, B. (2017). Measuring urban sprawl and

exploring the role planning plays: A Shanghai case study. Land Use Pol-

icy, 67, 426–435. https://doi.org/10.1016/j.landusepol.2017.06.002
Tsai, C.-F., & Chen, Y.-C. (2019). The optimal combination of feature selec-

tion and data discretization: An empirical study. Information Sciences,

505, 282–293. https://doi.org/10.1016/j.ins.2019.07.091
Wang, J., Liu, Y., & Li, Y. (2019). Ecological restoration under rural restruc-

turing: A case study of Yan'an in China's Loess Plateau. Land Use Pol-

icy, 87, 1–9. https://doi.org/10.1016/j.landusepol.2019.104087
Wen, J., Hou, K., Li, H., Zhang, Y., He, D., & Mei, R. (2021). Study on the

spatial-temporal differences and evolution of ecological security in the

typical area of the Loess Plateau. Environmental Science and Pollution

Research, 28, 23521–23533. https://doi.org/10.1007/s11356-021-

12372-4

Wen, J., Lai, X., Shi, X., & Pan, X. (2013). Numerical simulations of frac-

tional vegetation coverage influences on the convective environment

over the source region of the Yellow River. Meteorology and Atmo-

spheric Physics, 120, 1–10. https://doi.org/10.1007/s00703-013-

0241-0

Wiesmair, M., Feilhauer, H., Magiera, A., Otte, A., & Waldhardt, R. (2016).

Estimating vegetation cover from high-resolution satellite data to

assess grassland degradation in the Georgian Caucasus. Mountain

Research and Development, 36, 56–65. https://doi.org/10.1659/MRD-

JOURNAL-D-15-00064.1

Wittich, K.-P., & Hansing, O. (1995). Area-averaged vegetative cover frac-

tion estimated from satellite data. International Journal of Biometeorol-

ogy, 38, 209–215. https://doi.org/10.1007/BF01245391
Xia, X., Lin, K., Ding, Y., Dong, X., Sun, H., & Hu, B. (2021). Research on the

coupling coordination relationships between urban function mixing

degree and urbanization development level based on information

entropy. International Journal of Environmental Research and Public

Health, 18, 242. https://doi.org/10.3390/ijerph18010242

Xu, X., & Zhang, D. (2021). Evaluating the effect of ecological policies from

the pattern change of persistent green patches—A case study of

Yan'an in China's Loess Plateau. Ecological Informatics, 63, 1–10.
https://doi.org/10.1016/j.ecoinf.2021.101305

Xu, X., Zhang, D., Zhang, Y., Yao, S., & Zhang, J. (2020). Evaluating the veg-

etation restoration potential achievement of ecological projects: A

case study of Yan'an, China. Land Use Policy, 90, 104293. https://doi.

org/10.1016/j.landusepol.2019.104293

Yan, H., Zhan, J., Liu, B., Huang, W., & Li, Z. (2014). Spatially explicit

assessment of ecosystem resilience: An approach to adapt to climate

changes. Advances in Meteorology, 2014, 1–10. https://doi.org/10.

1155/2014/798428

Yin, R., & Yin, G. (2010). China's primary programs of terrestrial ecosystem res-

toration: Initiation, implementation, and challenges. Environmental Man-

agement, 45, 429–441. https://doi.org/10.1007/s00267-009-9373-x
Younes, N., Joyce, K. E., Northfield, T. D., & Maier, S. W. (2019). The

effects of water depth on estimating fractional vegetation cover in

mangrove forests. International Journal of Applied Earth Observation

and Geoinformation, 83, 1–18. https://doi.org/10.1016/j.jag.2019.

101924

Zhang, S., Chen, H., Fu, Y., Niu, H., Yang, Y., & Zhang, B. (2019). Fractional

vegetation cover estimation of different vegetation types in the

Qaidam basin. Sustainability, 11, 864. https://doi.org/10.3390/

su11030864

Zhang, D., Jia, Q., Wang, P., Zhang, J., Hou, X., Li, X., & Li, W. (2020). Anal-

ysis of spatial variability in factors contributing to vegetation restora-

tion in Yan'an, China. Ecological Indicators, 113, 1–13. https://doi.org/
10.1016/j.ecolind.2020.106278

Zhang, D., Jia, Q., Xu, X., Yao, S., Chen, H., Hou, X., Zhang, J., & Jin, G.

(2019). Assessing the coordination of ecological and agricultural goals

during ecological restoration efforts: A case study of Wuqi County,

Northwest China. Land Use Policy, 82, 550–562. https://doi.org/10.
1016/j.landusepol.2019.01.001

Zhang, J.-T., Ru, W., & Li, B. (2006). Relationships between vegetation and

climate on the Loess Plateau in China. Folia Geobotanica, 41, 151–163.
https://doi.org/10.1007/BF02806476

Zhang, D., Xu, X., Yao, S., Zhang, J., Hou, X., & Yin, R. (2020). A novel simi-

lar habitat potential model based on sliding-window technique for veg-

etation restoration potential mapping. Land Degradation &

Development, 31, 760–772. https://doi.org/10.1002/ldr.3494
Zhi, Z., Yin, H., Lu, N., Zhang, X., Yu, K., Guo, X., & Qi, H. (2019). Spatial-

temporal changes of vegetation restoration in Yan'an based on MODIS

NDVI and Landsat NDVI. In 2019 IEEE international conference on sig-

nal, information and data processing (ICSIDP) (pp. 1–5). IEEE. https://
doi.org/10.1109/ICSIDP47821.2019.9173313

Zhou, Y., Dong, J., Xiao, X., Liu, R., Zou, Z., Zhao, G., & Ge, Q. (2019). Con-

tinuous monitoring of lake dynamics on the Mongolian Plateau using

all available Landsat imagery and Google Earth Engine. Science of the

Total Environment, 689, 366–380. https://doi.org/10.1016/j.scitotenv.
2019.06.341

Zhu, A. X., Liu, J., Du, F., Zhang, S. J., Qin, C. Z., Burt, J., Behrens, T., &

Scholten, T. (2015). Predictive soil mapping with limited sample data.

European Journal of Soil Science, 66, 535–547. https://doi.org/10.

1111/ejss.12244

Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion

of the Fmask algorithm: Cloud, cloud shadow, and snow detection for

Landsat 4–7, 8, and entinel 2 images. Remote Sensing of Environment,

159, 269–277. https://doi.org/10.1016/j.rse.2014.12.014
Zou, Z., Xiao, X., Dong, J., Qin, Y., Doughty, R. B., Menarguez, M. A.,

Zhang, G., & Wang, J. (2018). Divergent trends of open-surface water

body area in the contiguous United States from 1984 to 2016. Pro-

ceedings of the National Academy of Sciences, 115, 3810–3815.
https://doi.org/10.1073/pnas.1719275115

Zurqani, H. A., Post, C. J., Mikhailova, E. A., Schlautman, M. A., &

Sharp, J. L. (2018). Geospatial analysis of land use change in the Savan-

nah River basin using Google Earth Engine. International Journal of

Applied Earth Observation and Geoinformation, 69, 175–185. https://
doi.org/10.1016/j.jag.2017.12.006

How to cite this article: Meng, X., Pi, H., Gao, X., He, P., & Lei,

J. (2022). A high-accuracy vegetation restoration potential

mapping model integrating similar habitat and machine

learning. Land Degradation & Development, 1–17. https://doi.

org/10.1002/ldr.4527

MENG ET AL. 17

 1099145x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ldr.4527 by X

injiang B
ranch O

f C
.A

.S, W
iley O

nline L
ibrary on [30/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.agrformet.2015.05.002
https://doi.org/10.1016/j.agrformet.2015.05.002
https://doi.org/10.1016/j.landusepol.2017.06.002
https://doi.org/10.1016/j.ins.2019.07.091
https://doi.org/10.1016/j.landusepol.2019.104087
https://doi.org/10.1007/s11356-021-12372-4
https://doi.org/10.1007/s11356-021-12372-4
https://doi.org/10.1007/s00703-013-0241-0
https://doi.org/10.1007/s00703-013-0241-0
https://doi.org/10.1659/MRD-JOURNAL-D-15-00064.1
https://doi.org/10.1659/MRD-JOURNAL-D-15-00064.1
https://doi.org/10.1007/BF01245391
https://doi.org/10.3390/ijerph18010242
https://doi.org/10.1016/j.ecoinf.2021.101305
https://doi.org/10.1016/j.landusepol.2019.104293
https://doi.org/10.1016/j.landusepol.2019.104293
https://doi.org/10.1155/2014/798428
https://doi.org/10.1155/2014/798428
https://doi.org/10.1007/s00267-009-9373-x
https://doi.org/10.1016/j.jag.2019.101924
https://doi.org/10.1016/j.jag.2019.101924
https://doi.org/10.3390/su11030864
https://doi.org/10.3390/su11030864
https://doi.org/10.1016/j.ecolind.2020.106278
https://doi.org/10.1016/j.ecolind.2020.106278
https://doi.org/10.1016/j.landusepol.2019.01.001
https://doi.org/10.1016/j.landusepol.2019.01.001
https://doi.org/10.1007/BF02806476
https://doi.org/10.1002/ldr.3494
https://doi.org/10.1109/ICSIDP47821.2019.9173313
https://doi.org/10.1109/ICSIDP47821.2019.9173313
https://doi.org/10.1016/j.scitotenv.2019.06.341
https://doi.org/10.1016/j.scitotenv.2019.06.341
https://doi.org/10.1111/ejss.12244
https://doi.org/10.1111/ejss.12244
https://doi.org/10.1016/j.rse.2014.12.014
https://doi.org/10.1073/pnas.1719275115
https://doi.org/10.1016/j.jag.2017.12.006
https://doi.org/10.1016/j.jag.2017.12.006
https://doi.org/10.1002/ldr.4527
https://doi.org/10.1002/ldr.4527

	A high-accuracy vegetation restoration potential mapping model integrating similar habitat and machine learning
	1  INTRODUCTION
	2  MODEL DESCRIPTION
	2.1  Traditional similar habitat model
	2.2  VRPM model based on similar habitat and machine learning

	3  CASE-STUDY
	3.1  Study area
	3.2  Data sources and preprocessing
	3.2.1  Vegetation coverage
	3.2.2  Meteorological data
	3.2.3  Topography and soil data


	4  RESULTS
	4.1  Construction of similar habitat areas
	4.2  Accuracy of different machine-learning models
	4.3  VRP comparison of SHMLVRPM and SHVRPM models
	4.4  Spatial distribution characteristics of VRP

	5  DISCUSSION
	5.1  Model reliability verification
	5.2  Vegetation restoration potential achievement in Yan'an
	5.3  Model advantages
	5.4  Uncertainties of the model

	6  CONCLUSIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


