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A B S T R A C T   

The transitional characteristics of desert grasslands in the Sahel determine the ecosystem’s fragility, which is 
extremely susceptible to the expansion and reversal of land desertification under the influence of climate change 
and anthropogenic activities. Accordingly, monitoring desertification dynamics is essential to combat this pro-
cess. Based on Moderate Resolution Imaging Spectroradiometer (MODIS) data, this study analysed the appli-
cability of different feature space models to monitor desertification levels in the Sahel from 2000 to 2020, 
revealing the optimal monitoring model, analysing the spatiotemporal changes and primary driving factors. The 
results were as follows: In the Sahel, the albedo-modified soil adjusted vegetation index (MSAVI) based on the 
point-to-point model is the best for desertification monitoring, with an overall accuracy of 86.78%. Generally, 
the level of desertification was reduced from 2000 to 2020, the area of extremely severe desertification decreased 
by retreating northward; and the areas of light, moderate, and severe desertification increased slowly by 
expanding northward. Light, moderate, and severe desertification lands were more sensitive to climate change 
and anthropogenic activities, undergoing greater change intensity. Precipitation was the most influential factor 
determining the spatial distribution of desertification in the Sahel, with anthropogenic activities also having a 
significant effect on the desertification level. This study comprehensively analysed desertification patterns in the 
Sahel and identified the primary driving factors, which are essential to inform Sahelian desertification control 
mechanisms in the future.   

1. Introduction 

Desertification is a land degradation process in arid, semi-arid, and 
sub-humid areas resulting from climatic variations and unsustainable 
human economic activities (D’Odorico et al., 2013). As an important 
global ecological and socioeconomic problem, desertification not only 
causes the deterioration of ecological environment, but also reduces 
agricultural productivity and income (Cheng et al., 2018; Sterk and 
Stoorvogel, 2020). In recent years, global hotspot areas of desertification 
have expanded to 9.2% (±0.5%) of the arid area, affecting 500 million 
(±120 million) people (Mirzabaev et al., 2019). At present, the global 
surface is desertifying at a rate of 120,000 km2⋅yr− 1, and it is estimated 
that by 2045, approximately 135 million people will be displaced by this 
process (Fust, 2010). Countries in the Sahel have proposed the Great 
Green Wall of Africa, which aims to eliminate land degradation by 2030. 
Berrahmouni et al. (2016) estimated that the recoverable degraded land 

in the Sahel stands at 166 Mha, which requires a restoration rate of more 
than 10 Mha⋅yr− 1. However, up to now, more than 80% of the reforested 
trees have died (Benjaminsen and Hiernaux, 2019). The area of Lake 
Chad has shrunk by more than 90% from natural (e.g., drought) and 
anthropogenic factors, such as local population increase, reclamation of 
farmland, and large-scale irrigation (Policelli et al., 2019). The Horn of 
Africa has also shown clear trends towards drought from 1901 to 2010 
(Tierney et al., 2015). All the situations further exacerbated desertifi-
cation in the Sahel. 

Over the past 30 years, researchers have found that the climate in the 
Sahel has become more humid, with increased vegetation and canopy 
coverage (Giannini et al., 2013; Brandt et al., 2020). Leroux et al. (2017) 
found that 16% of the Sahel has been re-greening. Comprehensive 
remote sensing data and field observation showed that vegetation 
restoration was obvious in the border area between Mali and Niger 
(Dardel et al., 2014). However, deforestation and bush destruction for 
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firewood, raising livestock, and opening arable land have resulted in 
serious land degradation (Sop and Oldeland, 2013), and the lacking pace 
of reforestation has led to increased wind erosion and desertification in 
the Mauritania and Senegal regions (Niang et al., 2008; Rasmussen et al., 
2018). Dimobe et al. (2015) reported that the arable land within the 
Total Wildlife Reserve of Bontioli (TWRB) in Burkina Faso has increased 
by 167.87%, and the natural vegetation land has decreased by 38.46% 
during 2001–2013. In the North Kurdufan State (Sudan), 120,000 km2 

of land has desertified; however, an increase in precipitation has 
improved the survival rate of afforestation, with vegetation regeneration 
covering approximately 200,000 km2 of desertification land in the area 
(Dawelbait and Morari, 2012). Indeed, over the past few decades, there 
has been some controversy between re-greening and desertification in 
the Sahel (Kaptué et al., 2015; Kusserow, 2017). Therefore, it is of great 
practical significance to study the spatiotemporal changes of desertifi-
cation in the Sahel over the recent 20 years. It can more clearly under-
stand the level of desertification in different countries in the Sahel, the 
desertification control can be carried out in a targeted manner. 

Remote sensing technology has provided researchers with novel 
method of monitoring desertification. Zeng et al. (2006) analysed the 
level of desertification by constructing an albedo-NDVI feature space, 
and calculating the desertification monitoring index (DMI) based on the 
results of linear fitting. This relatively simple method produced a higher 
accuracy than using spectral information alone for level division, and it 
has been applied to desertification assessments across different regions 
in recent years (Vorovencii, 2017; Li et al., 2021). In nonlinear situations 
of albedo-NDVI, Guo et al. (2020) proposed a point-to-point model 
based on distance. Since NDVI is highly influenced by soil background, it 
cannot accurately reflect the growth status of sparse vegetation (Kremer 
and Running, 1993); therefore, Qi et al. (1994) proposed the MSAVI, 
which accounts for the bare soil line, thus more thoroughly eliminating 
soil’s spectral influence. Wu et al. (2019) established the albedo-MSAVI 
feature space model to analyse the degree of desertification of Inner 
Mongolia’s grasslands. Further, the topsoil grain size index (TGSI) can 
characterise the mechanical composition of the surface soil and the level 
of desertification; for example, severe desertification corresponds to 
rough surfaced soil particles (Xiao et al., 2006). The Albedo-TGSI model 
is highly sensitive to surface soil changes and it can better extract in-
formation of severe and extremely severe desertification (Wei et al., 
2018). Thus, in order to fully consider the vegetation coverage and 
surface roughness, a variety of surface parameters can be employed to 
construct DMIs based on linear and point-to-point models, respectively, 
to obtain the optimal monitoring model of desertification. 

Additionally, determining and analysing the influential factors of the 
desertification process are an essential component of desertification 
control (Xu et al., 2011). Some studies have identified only soil or 

vegetation conditions as factors leading to desertification (An et al., 
2013; Turan et al., 2019), the Environmentally Sensitive Area Index 
(ESAI) can be constructed by collecting indicators affecting the desert-
ification level in categories such as soil, climate, vegetation and man-
agement quality (Jiang et al., 2019; Uzuner and Dengiz, 2020). In order 
to clarify the impact of different driving factors on the level of deserti-
fication, most existing researches have analysed the correlation between 
desertification and various influential factors, or they have estimated the 
contribution of various influencing factors by using factor analysis and 
principal component analysis (Wang et al., 2006; Li et al., 2007; Xue 
et al., 2017). Additionally, the residual analysis method has been used to 
quantify the contributions of climate change and anthropogenic activ-
ities to desertification (Kundu et al., 2017). The geographical detector 
model proposed by Wang et al. (2016) only relied on the spatial het-
erogeneity of geographic variables and it did not involve any linear 
assumptions, which can not only quantitatively detect the main driving 
force of desertification level, but also quantitatively evaluate the driving 
force of the two influencing factors on the distribution of desertification 
level (Du et al., 2016; Hua and Hao, 2021). As the ecological environ-
ment of the Sahel is a fragile transitional zone between the desert and 
grasslands, it is very important to determine the dominant factors 
affecting desertification in this area, and any interactions among them. 

This study was based on MODIS data containing several surface pa-
rameters, including NDVI, MSAVI, albedo, and TGSI, to construct a DMI 
based on a linear and point-to-point model for optimal desertification 
model in the Sahel. Using this best model, the level of desertification was 
monitored in the Sahel from 2000 to 2020, and the spatiotemporal 
evolution and intensity of change were further analysed. Finally, the 
main driving factors of desertification were identified by using a 
geographical detector model. 

2. Material and methods 

2.1. Study area 

The Sahel stretches more than 5,900 km from the Atlantic Ocean to 
the Horn of Africa, extending across 11 countries, including Senegal, 
Mauritania, Mali, Burkina Faso, Niger, Nigeria, Chad, Sudan, South 
Sudan, Ethiopia, and Eritrea (Fig. 1). The climate of these countries is 
arid, with high temperatures and variable precipitation throughout the 
year, although it is primarily concentrated in the rainy season (June to 
September). The annual precipitation in the northern desert area is less 
than 100 mm; whereas the southern humid area can reach more than 
1500 mm (Siebert, 2014). The highest temperatures were recorded from 
April to May, and the average maximum temperature can rise to 40to 
42℃. The average minimum temperature decreased to 15℃ from 

Fig. 1. Surface features of the Sahel and the sample point verifying desertification monitoring model. The base map is from Google Earth image.  
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December to January. In some areas in the southwest of the Sahel, the 
temperatures were relatively low due to the cold ocean current brought 
by the Gulf of Guinea (Nicholson, 2018). The overall terrain of the Sahel 
is relatively flat, most of which are distributed between 200 to 500 
meters, although the elevations of the Ethiopian Plateau and Tibesti 
Plateau are more than 3000 m, where large tracts of alpine grasslands 
and thickets exist (Houerou, 1980; Pye and White, 1985). The southern 
edge of the Sahara, resides in the northern part of the Sahel. The central 
transitional zone is a typical tropical savannah, and large tracts of 
farmland and forests are located at the southern end. The Sahel has the 
highest population growth rate in the world, and the regional livestock 
account for more than 25% of that found on the African continent 
(UNDP, 2019; Kamuanga et al., 2008). This massive population increase 
has driven a constant northward encroachment of dryland agriculture, 
and growing competition between animal husbandry and rainfed 
farming. Large numbers of livestock were crowded to the north, where 
sparse vegetation cover was highly susceptible to serious desertification 
under arid conditions (Hein and De Ridder, 2006). 

2.2. Data collection and pre-processing 

MODIS 8-day reflectance data (MOD09A1) was used to synthesise 
the maximum annual NDVI and MSAVI, and MODIS 16-day albedo 
product (MCD43A3) was used to synthesise the minimum annual albedo 
and TGSI (Table S1, Supplementary material). Both of them have a 
spatial resolution of 500 m. Different feature spaces are constructed 
based on the above four surface parameters, and DMIs based on linear 
and point-to-point models are calculated. 

The occurrence and expansion of desertification are the products of 
the joint actions of natural and socioeconomic factors, where the former 
includes climate factors, topography factors, vegetation conditions, and 
soil conditions; whereas the latter mainly includes economic structure 
and land use types. Precipitation (PRE), temperature (TEM), potential 
evapotranspiration (PET), and wind speed (WS) were selected as the 
most influential climatic factors affecting desertification in the present 
study. Elevation (ELEV), slope (SLOP), and aspect (ASP) were selected 
here as the dominant topographic factors influencing desertification. It 
is also essential to define the desertification characteristics of different 
vegetation type (VT) and soil type (ST) for prevention and control 
mechanisms. Soil moisture (SM) has an important impact on vegetation 
distribution and growth. Animal husbandry is the primary economic 
industry in the Sahel, excessive livestock density (LD) can also lead to 
desertification. Land use type (LUT) changes are also closely related to 
desertification, and unsustainable land use, especially via reclamation 
and grazing in unsuitable areas. All driving factors (Table S2, Supple-
mentary material) were resampled to a spatial resolution consistent with 

TerraClimate data, facilitating the use of the geographical detector 
model for driving factor analysis (Fig. S1, Supplementary material). 

2.3. Research methods 

2.3.1. Principles of feature space 
When surface vegetation is severely damaged and coverage is 

dramatically reduced during land desertification, corresponding values 
of NDVI and MSAVI will decrease. Further, the reduction of vegetation 
coverage increases the albedo. Soil particle composition also becomes 
rougher with desertification, and the TGSI value increases correspond-
ingly. Significant negative correlations have been found between albedo 
and NDVI in different desertification areas (Guo and Wen, 2020), and 
the albedo-NDVI feature space model proposed by Zeng et al. (2006) can 
be seen in Fig. 2a. The high albedo line (AC) indicates the level of land 
drought in the study area; whereas the low albedo line (BD) represents 
the maximum surface moisture condition (Fig. 2a). According to the 
research of Verstraete and Pinty (1996), it is possible to distinguish 
different degrees of desertification land by dividing the feature space in 
the vertical direction of the linear regression equation, and it can be 
expressed as the desertification monitoring index (DMILIN; Eq. (1)): 

DMILIN = α × NDVI − Albedo (1)  

whereα = 1/k, k is the slope of the trend line fit to by albedo and NDVI. 
Based on the linear fitting results of the above two variables, most 

researchers have identified the levels of desertification in different re-
gions by using the DMILIN (Vorovencii, 2017; Li et al., 2021); however, 
when the albedo-NDVI relationship is nonlinear, this feature space 
model may not accurately reflect true desertification. To address this 
issue, Guo et al. (2020) proposed a point-to-point model based on dis-
tance from any point C in the feature space, to point D (1,0) with the best 
vegetation and the lowest albedo (Fig. 2b). This desertification moni-
toring index (DMIP2P) was expressed according to Eq. (2): 

DMIP2P =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(NDVI − 1)2
+ Albedo2

√

(2) 

The average of DMIP2P from 2000 to 2020 was divided into five levels 
by using the natural breaks method: extremely severe, severe, moderate, 
light, and no desertification. Using this same method, the DMI of linear 
and point-to-point models based on the albedo-NDVI, albedo-MSAVI, 
TGSI-NDVI, and TGSI-MSAVI feature spaces were further established to 
extract information on Sahel desertification, and obtain an optimal 
monitoring model. 

2.3.2. Related methods of spatiotemporal changes 
The levels of desertification in the Sahel from 2000 to 2020 were 

Fig. 2. Albedo-NDVI (a) feature space line plot and (b) scatter diagram (CD line refers to the distance from any point C in the feature space to the D (1, 0) with the 
best vegetation and the lowest albedo). 
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calculated according to the derived optimal monitoring model, and the 
dynamic evolution of the Sahel from 2000 to 2020 was explored by 
using an array of spatiotemporal analyses. The gravity centre model was 
initially used to calculate the centre coordinates of different desertifi-
cation levels across certain time periods, thus reflecting the changes in 
corresponding spatial patterns (Na et al., 2019). A linear regression 
model based on the least squares method is a common in analyses of 
changing DMI trends (Gou et al., 2021; Hu et al., 2020). Pixel-by-pixel 
trend analyses of the desertification level was conducted, and a t-test 
was used to test the significance of changing DMI trends. Intensity an-
alyses are an explanatory framework for the quantitative analysis of 

changes between desertification levels based on a transition matrix, and 
it has three levels-interval, category, and transition-to explain the 
transformation mechanisms more clearly, and intuitively display the 
changing process of various types over different time periods (Aldwaik 
and Pontius, 2012). The specific introduction for the above-mentioned 
methods can be found in the Supplementary material. 

2.3.3. Geographical detector 
A geographical detector is a tool for detecting the spatially stratified 

heterogeneity of geographic elements, and identifying the driving forces 
behind it (Wang et al., 2016). Its central idea is that if independent 
variable X has an impact on dependent variable Y, the spatial distribu-
tion between them should be similar, and they can be measured by the q 
value (Eq. (3)): 

q = 1 −
∑L

h=1Nhσ2
h

Nσ2 (3)  

where h = 1, …, L are the strata of variable Y or factor X; the N and Nh 
are the number of units in strata h and the whole area, respectively; σ2

h 

Table 1 
Types of two-factor interaction result.  

Description Interaction 

q(X1 ∩ X2) < Min(q(X1), q(X2)) Nonlinear-weaken 
Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X2)) Uni-variable weaken- 
q(X1 ∩ X2) > Max(q(X1), q(X2)) Bi-variable enhance 
q(X1 ∩ X2) = q(X1) + q(X2) Independent 
q(X1 ∩ X2) > q(X1) + q(X2) Nonlinear-enhance  

Fig. 3. Classification of desertification level based on eight feature spaces. Linear models: (a) Albedo-NDVI, (b) Albedo-MSAVI, (c) TGSI-NDVI, (d) TGSI-MSAVI; 
Point-to-point models: (e) Albedo-NDVI, (f) Albedo-MSAVI, (g) TGSI-NDVI, (h) TGSI-MSAVI. 
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and σ2 are the variances of variable Y in strata h and the whole area, 
respectively; and q ranges from [0,1], where larger values indicate a 
more obvious spatial differentiation of Y. 

Geographical detectors are composed of four parts: factor, interac-
tive, risk, and ecological detection. Factor detection can quantify the 
impact of each environmental factor on the distribution of DMIs, where 
higher q values indicate greater impacts on DMI distribution. Interaction 
detection is used to determine the relationship between different influ-
encing factors on the DMI (Table 1), and are further classified into five 
categories by comparing the q value of a single factor (q(X1), q(X2)), the 
sum of two single-factor q values (q(X1) + q(X2)), and the q value of the 
two-factor interaction (q(X1 ∩ X2)). Risk detection is used to identify the 
influence of each environmental factor on DMI, and indicate their 
impact at different levels. Ecological detection is used to reveal any 
significant differences in the effects of any two influential factors, X1 
and X2, on the spatial distribution of DMI, as measured by the F 
statistics. 

3. Results 

3.1. Desertification monitoring based on different characteristic spaces 

Based on a thorough consideration of vegetation coverage and sur-
face roughness, eight DMI models were constructed using four typical 
surface parameters: NDVI, MSAVI, albedo, and TGSI (Fig. 3). The 
resulting spatial distributions of desertification levels in the Sahel from 
these models were similar, albeit with some important localized 

differences. To verify the accuracy of different DMI models in the Sahel, 
900 sampling points were randomly selected throughout the study area 
(Fig. 1). According to the classification standards of existing studies 
(Han et al., 2010; Duan et al., 2019; Na et al., 2019), the desertification 
level of each sampling point was classified one by one in combination 
with Google Earth imagery in 2020 (Table 2). This formed the basis for 
verifying and comparing the monitoring results of the eight models in 
2020. Overall classification accuracy was calculated according to a 
confusion matrix (Table 3), and the results showed that the MSAVI-TGSI 
and MSAVI-albedo models based on the point-to-point and the linear 
models had the overall accuracy of above 80%. In addition, the NDVI- 
albedo and NDVI-TGSI models based on the point-to-point and the 
linear models had the overall accuracy of above 70% as well. The 
MSAVI-albedo based on the point-to-point model had the highest ac-
curacy of 86.78%. In general, the point-to-point models were more ac-
curate than the linear models for monitoring desertification levels in the 
Sahel. MSAVI appeared to have effectively eliminated the influence of 
soil background. 

3.2. Spatiotemporal variation of desertification 

3.2.1. Spatial variation 
Based on the results of the model accuracy verification, the point-to- 

point albedo-MSAVI model was selected to calculate the DMI of the 
Sahel from 2000 to 2020. Fig. 4 shows the spatial distribution of 
different desertification levels in 2000, 2005, 2010, 2015, and 2020, 
revealing that extremely severe desertification was widely distributed, 
especially in the Sahara located to the north of the study area, as well as 
in the Danakil and Eritrea Coastal Deserts to the east. Severe desertifi-
cation was concentrated in the semi-desert areas south of the Sahara, in 
addition to the Aïr massif and the Adrar des Ifoghas that extend north-
ward into the Sahara. Moderate desertification was primarily located in 
the centre of the study area, where thickets are widespread, in addition 
to in the thorn bush and grassland areas in southeastern Ethiopia. Light 
desertification was mainly distributed in the savanna climate zone; 
whereas the forested area in the south, and dense alpine shrublands and 
grasslands on the Ethiopian Plateau comprised the non-desertification 
land. The areas of extremely severe desertification decreased over the 
analysis period, retreating to the north (Fig. 4). Alternatively, areas of 
severe, moderate, light, and non-desertification all extend to the north, 
particularly in the Aïr Massif of Niger, the Adrar des Ifoghas of Mali, and 
the Hawd Plateau in the southeastern corner of Ethiopia. 

Fig. 5 shows the changes of all spatial gravity centres of desertifi-
cation levels moving northward, consistent with the results shown in 
Fig. 4. The primary reason for the gravity centre shift of non- 
desertification land from the southwest to the northeast is the transi-
tion of a large land area in the southwest of Nigeria from non- 
desertification to light desertification; whereas the non-desertification 
land in the northeast of Ethiopia expanded northward. In terms of 
relevant conditions, the gravity centre of light desertification has 
migrated from the southeast to northwest. The gravity centre of mod-
erate desertification has migrated from the southeast to northwest, 
driven by the decreasing level of desertification in the Tillaberi and 
Dosso regions of Niger. The gravity centre of severe desertification first 
shifted to the northwest, then to the east, and finally to the northeast due 
to the diminishing desertification of the Aïr Massif and Adrar des Ifoghas 
severe levels, prior to increasing again in 2015. The gravity centre of 
extremely severe desertification appeared to migrate northward, 
although randomly about the east-west direction. 

Table 2 
Classification criterion of desertification level.  

Desertification 
level 

Interpretation in 
Google Earth image 

Surface features   

Non 
desertification   

Forests, farmland, 
dense grasslands, 
etc., with high 
vegetation coverage.    

Light 
desertification   

Declining vegetation 
coverage, negatively 
affecting growth of 
native plant species.    

Moderate 
desertification   

Vegetation is 
distributed in 
patches, with 
degraded plants, and 
low shrub sand piles.    

Severe 
desertification   

Vegetation has nearly 
disappeared, with 
only a few shrubs or 
succulents.    

Extremely 
severe 
desertification   

Complete loss of land 
productivity, and 
regional vegetation 
disappearance, 
including bare lands, 
sandy lands, and 
Gobi.   

Table 3 
Accuracy analyses of the different feature space models.  

Models Albedo-MSAVI Albedo-NDVI TGSI-MSAVI TGSI-NDVI 

Linear  85.67%  73.78%  83.44%  72.33% 
Point-to-point  86.78%  75.56%  83.89%  71.11%  
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Fig. 4. Spatial distribution of desertification in the Sahel during 2000–2020.  

Fig. 5. Gravity centre migration of different desertification levels: (a) none, (b) light, (c) moderate, (d) severe, and (e) extremely severe.  
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Fig. 6. Area changes of different desertification levels in the Sahel, 2000–2020.  

Fig. 7. Change trend of DMI (desertification monitoring index) in the Sahel, 2000–2020.  

Fig. 8. Percentage of DMI changes across different vegetation types: DT, Desert; SDT, Semidesert; BT, Bushland and thicket; SG, Savanna grassland; FW, Forest 
and woodland. 
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3.2.2. Temporal variation 
From the statistical analyses of desertification level areas (Fig. 6), it 

was found that the total desertification area (light, moderate, severe, 
and extremely severe) decreased from 72.31% (712.56*104 km2) to 
69.23% (682.21*104 km2) over the analysis period. Overall, the total 
desertification area has remained relatively unchanged; however, 
extremely severe desertification area has substantially dropped from 
38.92% (383.48*104 km2) to 33.27% (327.84*104 km2); whereas all 
other forms of desertification have either remain unchanged, or shown a 
fluctuating upward trend. The area of non-desertification, conversely, 
has increased from 27.69% to 30.77%. 

To further analyse the temporal changes of desertification levels in 
the Sahel, the slope trend and significance results of each pixel were 
obtained through iterative regression calculations (Fig. 7). It was found 
that 18.47% of the Sahel regions underwent significant changes in DMI, 
while the remaining 81.53% showed insignificant or no change. DMI 
was significantly reduced in 14.59% of the regions, primarily 

concentrated in the Aïr Massif, Adrar des Ifoghas, Tibesti Mountains, 
and widely throughout Sudan and South Sudan. The main reason for this 
distribution was likely to the increase in vegetation productivity with 
greater precipitation across the Sahel (Kaptué et al., 2015). The regions 
with a significant increase in DMI accounted for only 3.88%, which were 
concentrated in Nigeria, southern Chad, and parts of Ethiopia. Anthro-
pogenic activities, such as agricultural reclamation and overgrazing, 
may be primary driver of these deepening desertification patterns in 
these regions (Nwilo et al., 2020). 

There were notable differences in the desertification processes of 
different vegetation types across the Sahel (Fig. 8). The forest and 
woodland areas of upward and downward DMI trends were nearly 
equal, accounting for 16.3% and 16.5% of the total area, respectively; 
however, the significantly increased area of DMI was larger than the 
significantly decreased area, indicating that the forests in parts of the 
Sahel have been severely damaged and desertified. The DMI of the 
savanna grassland area showed an increasing trend across 10.43% of the 

Fig. 9. Results from the time interval intensity analysis, where the left side represents the proportion of the area where the desertification categories changed in each 
period, and the right side represents the intensity of annual variability. The dotted red line depicts the proportion of average change over the years (uniform line). 

Fig. 10. Category intensity analysis for the four-time intervals: (a) 2000–2005, (b) 2005–2010, (c) 2010–2015, (d) 2015–2020. Bars extending to the left of zero 
show gross annual area gains and losses across the study region, while bars extending to the right of zero show the intensity of annual gains and losses within 
each category. 
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total area, and decreasing trend across 25.85%. The significantly 
decreased areas were also greater than the significantly increasing areas, 
indicating an overall decrease in desertification levels of the savanna 
from 2000 to 2020. Directionally, the shrub and semi-desert vegetation 
trends were similar to that of the savanna; however, the decreasing DMI 
trends were much more prominent than the upward trends, resulting in 
a significantly decreasing level of desertification in these regions. The 
DMI of desert areas also had an overall downward trend greater than the 
upward, leading to a decreasing area of extremely severe desertification 
as well. 

The above analyses showed that the desertification in the Sahel has 
been improving overall, largely due to more conducive natural condi-
tions over recent decades leading to a decrease in extremely severe 
desertification area; however, the levels of light, moderate, and severe 
desertification in areas with frequent anthropogenic activities are still 
increasing. 

3.3. Intensity analysis of desertification 

3.3.1. Interval level analysis 
Based on the method of intensity analysis, changes in desertification 

at various levels and time periods were explored. Interval intensity was 
used to analyse the change in area and intensity of land desertification 
level from 2000 to 2020 (Fig. 9). Over the entire analysis period, 
desertification intensity in the Sahel has increased, moving slowly from 

2000 to 2015, and more rapidly from 2015 to 2020. By comparing the 
changes in intensity across the four time intervals, it was found that only 
the values during 2015–2020 were above average (uniform intensity =
3.19) over the entire study period, indicating a relatively rapid change 
intensity of desertification during this time interval compared to the last 
years. Indeed, the change in area was proportional to the intensity 
change (Fig. 9), increasing overall from 2000 to 2020, more from 2015 
to 2020 than 2000 to 2015. 

3.3.2. Category level analysis 
Fig. 10 shows the category level analysis results of the four time 

intervals. The change areas on the left side of the figure indicate that the 
gains and losses of light, moderate, and severe desertification land areas 
within each time interval were large; whereas changes in non- 
desertification and extremely severe desertification land areas were 
comparatively small. From 2000 to 2010, the gain area of non- 
desertification land was larger than the loss area, and the loss area of 
extremely severe desertification land was larger than the gain area. 
These patterns of desertification were reversed from 2010 to 2015, prior 
to improving again from 2015 to 2020. Overall, the gain of severe and 
extremely severe desertification land was less than the loss area, and the 
gain of non-desertification and light desertification land was greater 
than the loss area. 

The right side of Fig. 10 indicates whether the area change was due 
to the larger categorical area, or the greater intensity of change within 

Table 4 
Categorical and area (km2) conversions over each time interval analysed.  

From To  

2000–2005 2005–2010 2010–2015 2015–2020 

None Category Light \ Light \ Light  Light \ 
Area 31,137 \ 40,308 \ 50,820 \ 23,158 \ 

Light Category Moderate None Moderate None Moderate None None \ 
Area 24,763 49,387 26,650 40,767 45,736 34,766 74,859 \ 

Moderate Category Light Severe Light Severe Severe Light Light  
Area 43,011 25,360 41,131 17,940 50,213 25,803 82,360  

Severe Category Moderate \ Moderate  Moderate Extremely severe Moderate  
Area 44,508 \ 48,863 \ 25,896 39,272 82,241  

Extremely severe Category Severe \ Severe \ Severe \ Severe \ 
Area 39,935 \ 47,556 \ 22,448 \ 73,426 \  

Fig. 11. Desertification level category changes in the Sahel, 2000–2020. (a) 2000–2005; (b) 2005–2010; (c) 2010–2015; (d) 2015–2020. Here, ﹣1, ﹣2, ﹣3, and ﹣4 
represent the aggravation level of desertification, and the smaller the number, the greater the level of aggravation is. 1, 2, 3, and 4 indicate the levels of deserti-
fication mitigation, and the greater the value, the greater the level of desertification mitigation is. 
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the category. Accordingly, the gain and loss intensity of light, moderate, 
and severe desertification land were active over all time intervals (i.e., 
more than uniform intensity line); whereas non-desertification and 
extremely severe desertification land were in a dormant state (i.e., less 
than uniform intensity line). Thus, it was concluded that the former 
categories (light, moderate, and severe desertification land) are more 
sensitive to climate change and anthropogenic activities, and they are 
more likely to undergo mutual conversion compared to the more stable 
non-desertification and extremely severe desertification environments. 
Overall, levels of desertification has decreased from 2000 to 2020, pri-
marily manifested as a decrease in extremely severe desertification, and 
an increase in non-desertification and light desertification areas. 

3.3.3. Transition level analysis 
The main transformation types and areas by level for each interval 

period were listed according to whether their transition intensity was 
above or below average (Table 4). At each time interval, non- 
desertification areas primarily transformed into light desertification, 
with the conversion increasing from 2000 to 2015, and decreasing from 
2015 to 2020 (23,158 km2). During 2000–2015, both light and mod-
erate desertification experienced a two-way transformation, which 
tended to be higher and lower, respectively. Over the same period, light 
desertification mainly transformed into non-desertification (74,859 
km2), and moderate desertification largely transformed into light 
desertification (82,360 km2). Severe desertification mostly transformed 
into moderate desertification; however, an area of 39,272 km2 was 
transformed into extremely severe desertification during 2010–2015. As 
each interval, extremely severe desertification primarily transformed 
into severe desertification, and this transformed area has increased 
during 2000–2015 (73,426 km2). Overall, the level of desertification has 
improved from 2000 to 2020, and the area of transformation from 
higher to lower levels was greater than that of the inverse. The area of 
extremely severe desertification was greatly reduced, and the total area 
transformed from severe desertification to extremely severe desertifi-
cation was 39,272 km2, and the total area transformed from extremely 
severe desertification to severe desertification was 182,365 km2. The 
change level of the former is more than 4.5 times lower than that of the 
latter. 

Fig. 11 depicts the spatial distribution of the transition intensity 
between the desertification levels in the Sahel at each time interval. The 

level of desertification in the northern deserts, southern forests, and 
Ethiopian plateau remained nearly unchanged throughout the study 
periods. The region of largest fluctuation was distributed in the central 
study area, indicating that this region is more sensitive to climate change 
and anthropogenic activities. Cross-level changes mainly occurred at 
two adjacent levels: none to light desertification, and moderate to light 
desertification, with few areas of cross-multilevel transformation. Dur-
ing 2000–2010, the level of desertification has reduced; whereas from 
2010 to 2015, most areas have shifted towards an increase in deserti-
fication levels, which likely driven by the 2012 drought in the Sahel 
(Boyd et al., 2013). Following this incident, the extent of desertification 
has improved over a wider area during 2015–2020 as the climate 
maintained relatively normalcy. 

3.4. Driving factors of desertification 

3.4.1. Single factor detection 
The geographic detector model was used to attribute the spatial 

differentiation characteristics of the DMIs (Table 5). The factors were 
ranked according to their ability to explain the spatial differentiation 
characteristics of the observed DMI patterns: PRE > LUT > WS > SM >
PET > VT > LD > ST > TEM > ELEV > SLOP > ASP. Moreover, all 
driving factors affecting the spatial differentiation of DMI were signifi-
cant (p less than 0.05). The Sahel is located in the largest tropical arid 
zone; accordingly, precipitation factor dominates the spatial distribution 
of desertification in this area. Lying at the southern end of the Sahara 
Desert, wind speed also significantly affects the process of aeolian 
desertification. The q values of soil moisture, potential evapotranspira-
tion, vegetation type, and livestock density were all greater than 0.5. 

Although these values indicate that types of vegetation and soil have 
a high correlation with DMI, their relationship with desertification is not 
overly simple. The tropical study area experiences a relatively homog-
enous temperature across the east-west direction, save for in the Ethi-
opian Plateau area; accordingly, the spatial differentiation of 
temperature on the distribution of DMI throughout the Sahel is rela-
tively small. Elevation, slope, and aspect affect the growth of vegetation 
through controlling local temperature conditions; however, because of 
temperature’s small q value, factors such as elevation, slope, and aspect 
have the least influence on DMI distribution. Notably, the q values of 
anthropogenic activities—livestock density and land use type were 

Table 5 
The q and p values for all factors of DMI distribution.  

Factors PRE LUT WS SM PET VT LD ST TEM ELEV SLOP ASP 

q  0.9269  0.8135  0.8068  0.788  0.7844  0.6767  0.5817  0.3506  0.1293  0.0975  0.0314  0.0048 
p  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

Note: Precipitation (PRE), Temperature (TEM), Potential evapotranspiration (PET), Wind speed (WS), Elevation (ELEV), Slope (SLOP), Aspect (ASP), Vegetation type 
(VT), Soil type (ST), Soil moisture (SM), Livestock density (LD), Land use type (LUT). 

Table 6 
Interactive detector and ecological detector matrix.   

PRE TEM WS PET ELEV SLOP ASP VT SM ST LD LUT 

PRE  0.9269 Y Y Y Y Y Y Y Y Y Y Y 
TEM  0.9293 0.1293 Y Y Y Y Y Y Y Y Y Y 
WS  0.9316 0.819 0.8068 Y Y Y Y Y Y Y Y Y 
PET  0.932 0.8332 0.8363 0.7844 Y Y Y Y Y Y Y Y 
ELEV  0.9302 0.1968 0.815 0.7984 0.0975 Y Y Y Y Y Y Y 
SLOP  0.9284 0.1671 0.8118 0.7982 0.1187 0.0314 Y Y Y Y Y Y 
ASP  0.9273 0.1387 0.8091 0.7877 0.1054 0.0369 0.0048 Y Y Y Y Y 
VT  0.9286 0.7354 0.8806 0.8644 0.7443 0.6923 0.6786 0.6767 Y Y Y Y 
SM  0.9379 0.8141 0.8759 0.852 0.7962 0.7933 0.7886 0.8659 0.788 Y Y Y 
ST  0.9321 0.4481 0.8256 0.799 0.423 0.3673 0.3571 0.7652 0.8078 0.3506 Y Y 
LD  0.9338 0.657 0.8665 0.859 0.612 0.5914 0.5828 0.7807 0.8824 0.716 0.5817 Y 
LUT  0.944 0.8492 0.908 0.9061 0.8307 0.8195 0.8142 0.8685 0.921 0.8568 0.8415 0.8135 

Note: Precipitation (PRE), Temperature (TEM), Potential evapotranspiration (PET), Wind speed (WS), Elevation (ELEV), Slope (SLOP), Aspect (ASP), Vegetation type 
(VT), Soil type (ST), Soil moisture (SM), Livestock density (LD), Land use type (LUT). 
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0.8135 and 0.5817, respectively, indicating their strong influence on the 
distribution of desertification throughout the Sahel. 

3.4.2. Interaction detection 
Desertification is not the result of a single impact factor, but the 

synergistic interaction of multiple unique factors. The factors combi-
nation with the strongest interaction was precipitation and land use type 
(Table 6), with a q value of 0.944; thus, pointing to the joint effects of 
desertification from both climatic and anthropogenic factors. Further, 
the combination of precipitation and other factors produced higher q 
values. As stated, topographic factors affect temperatures, and their 
combinations reflected a stronger nonlinear-enhance, such as “TEM ∩
SLOP = 0.1671 > TEM (0.1293) + SLOP (0.0314)”. Additionally, a 
nonlinear-enhance interaction was seen between aspect and most fac-
tors, save for the slope & aspect interaction’s q value, which was the 
lowest among all factors (q = 0.0048). Through ecological detector, all 
environmental factors have passed the significance test (Table 6), which 
indicates significant differences between all environmental factors. 

3.4.3. Risk detection 
Desertification risk detection was used to determine the driving 

factors across a specific time interval that could produce higher DMIs 
(Fig. 12). Understanding the extent of desertification risks helps identify 
the mechanisms controlling its occurrence and development, as well as 
target combative measures. The mean DMI value decreased with an 
increase in precipitation and soil moisture. The first level (PRE ≤ 133 
mm) was the area with the highest DMI, while the sixth level (PRE 
greater than 706 mm) maintained the lowest. The monotonic decrease in 
DMI with precipitation and soil moisture further supports the dominant 
role of hydrological parameters in desertification. Wind speed and po-
tential evapotranspiration were also important, positively correlated 
factor with DMI. Specifically, with conditions of WS > 3.24 m⋅s− 1 and 
PET > 2444 mm, the risk of desertification is greater. As the overall 
temperature across the Sahel is relatively stable, the temperature range 
associated with the highest risk of desertification was primarily 
distributed in the third level (23.7℃ < TEM ≤ 26.2℃), where the mean 
DMI was ≤ 0.6783. The topographic condition factors held little influ-
ence on the spatial differentiation of desertification, so the mean DMI 
values were relatively unchanged. However, vegetation and soil type 
were highly correlated with DMI. Aridosols and Arenosols had the 

highest average DMI values (0.7270 and 0.6903, respectively), as did 
desert vegetation (0.8725). Livestock density and land use type were 
also highly consistent with the spatial differentiation of DMIs, where 
areas with high mean DMI maintained lower livestock densities, and the 
values with high mean DMI were primarily located in unused land areas. 

4. Discussion 

4.1. Desertification monitoring method and accuracy verification 

A large number of data were missing due to cloud and fog pollution 
in the high spatial resolution Landsat data in the tropics and the defects 
of the sensor itself. Therefore, MODIS data with complete data quality 
was selected for remote sensing monitoring of desertification in the 
Sahel. However, the medium spatial resolution MODIS data was pro-
hibited extraction of finer details (Duan et al., 2019). For example, the 
nbon both sides of a desert river were pretty, but the distribution range 
was relatively small. Such details cannot be reflected in the medium- 
resolution MODIS data, and the area was incorrectly classified as 
desertification land. In the future, Landsat data can be used for more 
detailed research in small areas with frequent changes in desertification 
level in the Sahel. Here, only four reference variables-NDVI, MSAVI, 
albedo, and TGSIwere selected for the construction of a desertification 
monitoring model. More variables can be considered in the future to 
identify a more efficient feature space model that better reflects 
desertification changes in the Sahel (Guo et al., 2020). In the method of 
desertification remote sensing monitoring, machine learning methods 
can construct a relationship model between each index factor and 
desertification information to fit their non-linear relationships, poten-
tially generating desertification assessment models with higher gener-
alisation ability (Lamchin et al., 2016). Meng et al. (2021b) used six 
machine learning methods to classify the level of desertification in 
Mongolia, finding that the maximum entropy model had the highest 
accuracy. In the future, machine learning method can be used to monitor 
desertification in the Sahel, and the suitability of feature space model 
and machine learning model in the Sahel can be compared. 

Previous studies have primarily used indicators, such as soil mois-
ture, vegetation coverage, or land cover, for indirect verification of 
desertification level (Wei et al., 2018); and direct verification through 
the use of Landsat true colour synthesis images, or Google Earth high- 

Fig. 12. Average DMI of driving factors in each level. 1–6 represent the six levels. But in particular, vegetation types are divided into 5 levels, soil types are divided 
into 15 levels, and land use types are divided into 8 levels. The red bar indicates that this level is most likely to have a higher DMI, and the blue bar indicates that this 
level has the least DMI. 
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resolution imagery (Meng et al., 2021b), although verification results 
based on field survey data remains the most reliable (Qi et al., 2019). 
Guo et al. (2020) cross-verified the desertification monitoring results 
through Google Earth imagery and field observations, improving the 
reliability of the desertification monitoring model. Due to the impact of 
COVID-19, the field investigation portion of the present research was 
postponed, and the results of desertification monitoring in the Sahel 
were solely verified through Google Earth Landsat imagery, with an 
accuracy of 86.78%. 

4.2. Further analyses of desertification driving factors 

Under different spatial resolutions, the ability of each driving factor 
to interpret DMI is different. Moreover, in order to ensure the smooth 
operation of the geographic detector, all data need to be resampled to a 
consistent spatial resolution. In fact, the spatial differences of variables 
have been changed, which will have a certain impact on the final result. 
In the geographical detector, continuous variables must be discretized 
into categorical variables. Song et al. (2020) used a variety of traditional 
discretization methods for each X, and selected the optimal method 
according to the maximum q value to improve the geographical detec-
tor; however, obtaining a globally optimal discretization result is never 
optimal when considering only the X distribution, because Y is ignored. 
Therefore, the research here adopted a multiscale discretization method 
that was improved by Meng et al. (2021a), where for Y, the information 
loss of the discrete X obtained was minimized (i.e., q value was 
maximized). 

The research here analysed the driving factors of desertification 
levels throughout the Sahel (Fig. 13a), in which the spatial heteroge-
neity of the interior was neglected, but the factors across varying cli-
matic zones, topographic regions, or vegetation types may differ (Meng 

et al., 2020). The effect of driving factors on the spatial differentiation of 
DMI across vegetation types were compared (Fig. 13b1-b5), revealing 
that precipitation, soil moisture, and land use types were still the pre-
dominant factors for forests and woodlands, bushlands and thickets, 
savanna grasslands, and semi-desert vegetation areas, while topo-
graphical factors maintained little influence. While the effect of each 
factor on desert vegetation area was small, soil conditions and livestock 
density effects were high. In general, the dominant factors affecting the 
spatial differentiation of DMI in different vegetation types were still 
hydrological conditions and land use type, highlighting the issues of 
water and unsustainable land use that must be resolved for adequately 
managing Sahel desertification. 

4.3. Climate change and anthropogenic activities on desertification 

The Earth’s changing climate is an important factor affecting the 
dynamic development of desertification. Precipitation was found here to 
be the primary driving factor controlling desertification in the Sahel. In 
the 1970 s and 1980 s, a reduction of precipitation in the Sahel resulted 
in moderate-to-severe drought, bringing about a deterioration of vege-
tation, and increased of desertification (Hein et al., 2011; Brandt et al., 
2014). Tucker and Nicholson (1999) found that the vegetation boundary 
in the Sahel varied with precipitation, fluctuating less than or equal 150 
km from north to south, highlighting the sensitivity of this region to 
climate change, and any correlated changes in precipitation. Thomas 
and Nigam (2018) found that the rain belt oscillated in the Sahel, and 
the Sahara’s boundary line retreated northward during the rainy season, 
before expanding southward again during the dry season. Over the past 
30 years, the vegetation coverage conditions in the Sahel have improved 
significantly, likely a result of the recovery of precipitation regimes after 
the great drought of the 1970 s and the 1980 s. The western Sahel has 

Fig. 13. Variations of q values for environmental factors on DMI distribution in Sahel: (a) as a whole, and (b1-b5) for different vegetation types (BT: Bushland and 
thicket; DT: Desert; FW: Forest and woodland; SDT: Semidesert; SG: Savanna grassland). 
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become humid, total precipitation has been increasing, and the drought 
period was reduced. Overall, the Sahel has shown a state of re-greening, 
and reduced desertification, as evidenced by remote sensing observa-
tions revealing greater NDVI values due to increased vegetation 
coverage and reduced land degradation (Stith et al., 2016). 

Notably, however, the spatial distribution of the re-greening did not 
perfectly align with trends of precipitation, and levels of desertification 
are still increasing in some areas (Herrmann et al., 2005). It is speculated 
that in addition to precipitation, the intensity of anthropogenic activities 
also impacts desertification dynamics. With human population growth, 
a corresponding increase in food demand and farmland is expected, both 
of which promote the use and conversion of natural forests and grass-
lands (D’Odorico et al., 2013; Bestelmeyer et al., 2015). Simultaneously, 
expanding agriculture has pushed animal husbandry areas north, into 
regions with poorer vegetation that are more susceptible to climate 
change and desertification. Indeed, Nwilo et al. (2020) found that the 
vegetation coverage in northern Nigeria widely decreased with no sig-
nificant correlation to precipitation, but a strong negative correlation 
with population density and corresponding land degradation due to 
increased anthropogenic activities. Farmland in the Western Sahel has 
doubled since 1975, with settlement land has increased by a factor of 1.5 
(Traore et al., 2014). Land use change maps of the Sahel from 2000 to 
2020 identify the areas where natural vegetation is being converted into 
agricultural land mainly include southern Mali, most of Nigeria, 
southern Chad, and southern Sudan (Fig. 14). Notably, these areas have 
driven the increased levels of desertification under a general trend of 
reduction throughout the Sahel over the last 20 years. 

The geographic detector model can be used to quantify the contri-
bution of each influencing factor of desertification and the dominant 
factor affecting desertification can be identified. However, we did not 
have enough data on anthropogenic activities (for example, livestock 
data are only available in 2005 and 2010), and we cannot quantify the 
relationship between livestock density change and desertification index 
change by using geographic detector model, so it is unclear whether 
anthropogenic activity or climate change is more important to changes 
in the desertification level in the Sahel. This needs to be proved by 
collecting more and more comprehensive data. 

5. Conclusions 

Based on the surface parameters of NDVI, MSAVI, albedo, and TGSI 
generated by MODIS data from 2000 to 2020, different feature space 
models were constructed. The spatiotemporal variation was analysed by 
using the gravity centre migration method, slope trend analysis, and 
intensity analysis, and the driving factors of desertification were ana-
lysed via a geographical detector. 

It was revealed that the point-to-point albedo-MSAVI model main-
tained the highest ability to extract desertification information in the 
Sahel, with an overall accuracy of 86.78%. From 2000 to 2020, the 
overall level of desertification in the Sahel has decreased: the area of 
extremely severe desertification has decreased from 38.92% 
(383.48*104 km2) to 33.27% (327.84*104 km2); whereas the area of 
non-desertification has increased from 27.69% to 30.77%. The regions 
with significantly reduced DMI accounted for 14.59%. Light, moderate, 
and severe desertification land was more sensitive to climate change and 
anthropogenic activities, and mutual transformation was frequent. 
Precipitation factors dominated the spatial distribution of desertification 
in the Sahel (q value = 0.9269). The q value of the two-factor, enhanced 
interaction of precipitation and land use type was 0.944, indicating that 
desertification is dependent upon both climate and anthropogenically 
derived activity. 

Therefore, Sahelian countries should strengthen desertification 
control with the help of the international community in the aspects of 
the mitigation and adaptation of climate change, the restoration of 
degraded arid landscapes, and the guidance of local residents to sus-
tainable use of forests and pastures. 
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Fig. 14. Land use (farming land and natural vegetation) changing map in the Sahel.  

Z. Yang et al.                                                                                                                                                                                                                                    



Catena 213 (2022) 106213

14

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.catena.2022.106213. 

References 

Aldwaik, S.Z., Pontius, R.G., 2012. Intensity analysis to unify measurements of size and 
stationarity of land changes by interval, category, and transition. Landsc. Urban 
Plan. 106 (1), 103–114. https://doi.org/10.1016/j.landurbplan.2012.02.010. 

An, Y., Gao, W., Gao, Z., Liu, C., Shi, R., 2013. Assessment of desertification in the agro- 
pastoral transitional zone in Northern China (1982-2006) using GIMMS NDVI data. 
Rem. Sens. Model. Ecosyst. Sustain. X 8869, 181–190. https://doi.org/10.1117/ 
12.2021857. 

Benjaminsen, T.A., Hiernaux, P., 2019. From Desiccation to Global Climate Change: A 
History of the Desertification Narrative in the West African Sahel, 1900–2018. 
Global Environ. 12 (1), 206–236. https://doi.org/10.3197/ge.2019.120109. 

Berrahmouni, N., Laestadius, L., Martucci, A., Mollicone, D., Patriarca, C., Sacande, M., 
2016. Building Africa’s Great Green Wall: Restoring Degraded Drylands for Stronger 
and More Resilient Communities. Food and Agriculture Organization of the United 
Nations, Rome, Italy.  

Bestelmeyer, B.T., Okin, G.S., Duniway, M.C., Archer, S.R., Sayre, N.F., Williamson, J.C., 
Herrick, J.E., 2015. Desertification, land use, and the transformation of global 
drylands. Front. Ecol. Environ. 13 (1), 28–36. https://doi.org/10.1890/140162. 

Boyd, E., Cornforth, R.J., Lamb, P.J., Tarhule, A., Lélé, M.I., Brouder, A., 2013. Building 
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