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A B S T R A C T   

In northern China, central heating, as an important source of urban particulate matter (UPM), causes more than 
half of the air pollution during the heating season and has significant spatial-temporal heterogeneity. Owing to 
the limitations of stationary air monitoring networks, few studies distinguish between heating/non-heating 
seasons and few have been conducted in urban areas. However, fixed monitoring cannot accurately capture 
the dynamic exposure of residents to UPM, and there is a lack of comprehensive evaluation of the factors 
affecting UPM. Therefore, this study used wearable Sniffer 4D equipment to monitor the concentrations of UPM 
(PM1, PM2.5, and PM10) in selected typical areas of Shenyang City from March 2019 to February 2020. A random 
forest model was combined with land use and point-of-interest data to analyze the contributions and marginal 
effects of multiple influences on UPM, in both heating and non-heating seasons. The results showed that in the 
eastern part of the study area, UPM showed completely opposite spatial distribution characteristics during the 
two seasons. The concentrations of UPM were higher during the heating season than during the non-heating 
season. The results indicated that temperature and humidity were important factors in diffusing UPM. The 
production and operation of boilers were important for the production of UPM. In two-dimensional landscape 
pattern indices, the percentage of forest and Shannon diversity index were the first and second most important 
factors, respectively. The three-dimensional pattern of buildings had important effects on the transport and 
diffusion of UPM (landscape height range >100, floor area ratio >1.3, and landscape volume density >5). 
Wearable devices could monitor the real situation of residents’ exposure to UPM and quantify the factors 
influencing the spatial-temporal distribution of UPM in an ecological sense. These results provide a scientific 
basis for urban planning and for health risk reduction for residents.   

1. Introduction 

China has undergone rapid urbanization, with the urbanization rate 
of permanent residents increasing from 10.64% in 1949 to 63.89% in 
2020 (China, 2020). The extensive and inefficient pattern of economic 
development has severely damaged the ecological environment. Despite 
an increase from 83.1% in 2016 to 87.0% in the average proportion of 
“good” urban air quality days (AQI <100) across China in 2020 (Zhang 
et al., 2021), extreme air pollution events, such as heavy haze, still occur 
in specific seasons and regions (Chen et al., 2021; Li et al., 2019; Wang 

et al., 2019). Haze occurs when particulate matter less than 2.5 μm in 
aerodynamic diameter (PM2.5) accumulates in the atmosphere, reducing 
visibility (An et al., 2019; Gao et al., 2017a). Because of its small size, 
PM2.5 penetrates deep into various bodily systems, chronic 
low-concentration inhalation and acute high-concentration inhalation 
can adversely affect people’s health, causing neurological and fetal 
damage as well as respiratory and cardiovascular disease (Althuwaynee 
et al., 2020; Azarmi et al., 2016; Weichenthal et al., 2020). This in-
creases the risk of chronic diseases and cancer, premature death, and 
respiratory damage (Khomenko et al., 2021; Kim et al., 2015; Pope et al., 
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2020), as well as health care needs and reduces quality of life (Chen and 
Chen, 2021). In addition, the environmental effects of urban particulate 
matter (UPM) include reduced environmental benefits and a range of 
ecological problems caused by blocking sunlight; it may also act as an 
impediment to economic development (Gao et al., 2017a; Khomenko 
et al., 2021; Pope et al., 2020). Therefore, there is an urgent need to 
control UPM, for both human health and ecological environment pro-
tection reasons. 

The primary anthropogenic sources of UPM within cities include 
industrial, traffic, and residential emissions (Karagulian et al., 2015; Liu 
et al., 2016). Petroleum and coal are typical winter energy sources for 
central heating in most of China north of 34◦N (Shi et al., 2018). More 
than half of the air pollution in northern China originates from resi-
dential heating (Lin and Ling, 2021). This unique anthropogenic influ-
ence in the middle and high latitudes creates additional seasonal 
characteristics in the heating (HS) and non-heating (NHS) seasons, 
which differ from the regular four seasons of the year (Wang et al., 
2019). As a result, the spatial-temporal distribution patterns of UPM are 
higher in the HS than in the NHS, and higher in the north than in the 
south (Liu et al., 2019; Pang et al., 2021; Wang et al., 2018; Zhao et al., 
2016). This causes higher health risks for urban residents in the HS than 
in the NHS (Qu et al., 2019). Previous studies of HS and NHS were 
conducted at the national and city group levels but were unable to 
characterize the complex air pollution changes within cities (Chen et al., 
2021; Wang et al., 2018; Yang et al., 2016). Therefore, studying the 
spatial-temporal distribution of UPM at entire city or urban precinct 
scales is of great importance for urban planning and residential health 
(Shi et al., 2020), including distinguishing the characteristics of air 
pollution during different seasons and conducting related studies within 
urban areas. 

The monitoring of air pollutants can be divided into fixed-station 
monitoring and mobile equipment monitoring. Data from fixed urban 
monitoring stations have the advantage of high time continuity and are 
thus widely used (Xie et al., 2017). However, owing to construction and 
maintenance costs and other reasons, monitoring stations are unevenly 
distributed within cities (Castell et al., 2017). Therefore, they cannot 
meet the needs of fine-scale pollutant concentration studies in cities 
(Kumar et al., 2015; Rai et al., 2017). Mobile monitoring equipment has 
emerged to fill this gap and provide data that accurately represent the 
exposure of the population (Bulot et al., 2019; Jovasevic-Stojanovic 
et al., 2015; Karagulian et al., 2019). This mobile equipment simplifies 
monitoring operations and allows users to complete monitoring activ-
ities without the need to learn complicated technical skills (Karagulian 
et al., 2019). These mobile sensors provide local information for deci-
sion makers and urban residents (Mahajan and Kumar, 2020). The pri-
mary mobile monitoring method is vehicle monitoring; however, there 
are spatial differences in pollutant concentrations between motorways 
and sidewalks, and it cannot accurately assess the concentrations of 
pollutants to which residents are exposed (Cao and Thompson, 2017; 
Pattinson et al., 2017; Rakowska et al., 2014). Wearable devices worn by 
volunteers are small and inexpensive and can monitor air pollution on 
sidewalks (Helbig et al., 2021; Mallires et al., 2019), which can then feed 
into a database for studies requiring data with high spatial-temporal 
resolution (Morawska et al., 2018; Rivera et al., 2012). However, most 
of the studies conducted using this approach have been in Europe, with 
similar research in Asia lacking, especially in highly polluted and 
densely populated areas (McKercher et al., 2017). Meanwhile, 
short-term small-area, high-precision monitoring and long-term large--
area, low-precision monitoring are still common data sources used in 
studies (Helbig et al., 2021; Mallires et al., 2019). Because of feasibility, 
long-term series data monitoring and wearable mobile monitoring were 
not chosen simultaneously. The acquisition of long-term, high-precision 
UPM data remains a challenge for researchers studying urban air 
pollution. 

Factors influencing UPM with high spatial-temporal heterogeneity 
are complex and diverse. Natural factors significantly impact air 

pollution, particularly meteorology (Li et al., 2020). City UPM is sourced 
from traffic (25%), household fuel combustion (20%), and industrial 
activity (15%) (Karagulian et al., 2015). Landscape patterns describe the 
type and diversity of landscape component units and their spatial re-
lationships (Chen et al., 2006). The influence of 2D and 3D landscape 
pattern indices on PM2.5 concentration distribution is significant 
(explanatory power up to 33.85% and 40.94%, respectively; Ke et al., 
2022), and are mainly related to the distribution of parks and water 
bodies, building and population density, traffic, and land cover (Weng 
and Yang, 2006). Green land significantly limits the spread of particu-
late matter within 100–500 m buffers, and more compact and contin-
uous green land contributes to the reduction of air pollution (Greenstone 
et al., 2022; Lowicki, 2019). Dense high-rise buildings provide a barrier 
to the transport and diffusion of air pollution (Weber et al., 2014). The 
concentration of UPM in deep, narrow street valleys is significantly 
lower than that in wide street valleys (Miao et al., 2020; Shi et al., 2020). 
Although previous studies have analyzed various aspects of the factors 
influencing UPM, comprehensive and integrated studies on the influ-
encing factors affecting the spatial-temporal distribution of UPM are still 
lacking. Moreover, quantitatively revealing the correspondence be-
tween patterns and processes has been a challenge in landscape ecology 
(Wu and Hobbs, 2002). Although previous studies have provided qual-
itative analyses of landscape patterns and pollutant distribution pro-
cesses, quantitative analysis can provide better support for improving 
landscape patterns so the urban environment can better mitigate the 
effects of UPM pollution (Wu, 2013). 

Therefore, combining multiple factors could enhance the investiga-
tion of the impact mechanisms of urban air pollution. Among multi-
variate relationship analyses, random forest (RF) is considered a 
classification tree-based algorithm with high accuracy (Breiman, 2001; 
Hu et al., 2017; Ma et al., 2020b). Although the RF method has unex-
plained similarities to the black-box model, it is still widely used in many 
air pollution modeling studies due to its fast training speed and easy 
parallelization (Vu et al., 2019). Although the simulation prediction of 
pollutant concentrations is currently the main use of RF models, another 
advantage of RF is that it can calculate the importance estimates for each 
predictor variable; additionally, the RF model does not need to check for 
covariance or normalize data for different magnitudes (Rahman and 
Islam, 2019; Strobl et al., 2008). 

In this study, wearable air pollution monitors were used to conduct 
long-time series of high-resolution UPM monitoring activities on side-
walks in the built-up area of Shenyang City. This study considered the 
factors influencing pollutant generation, transmission, and dispersion. 
The objective was to quantitatively reveal the relationships between 
natural factors, human activities, and two-dimensional (2D) and three- 
dimensional (3D) landscape patterns on UPM using the RF method. To 
distinguish the changes in the concentrations of UPM between HS and 
NHS, seasonal variations were considered in this study. 

2. Materials and methods 

2.1. Study location and experimental design 

The study was conducted in Shenyang City, northeast China, in the 
middle of Liaoning Province. It has a temperate, semi-humid continental 
climate, with a large annual temperature difference and four distinct 
seasons. Shenyang, located in the center of the Liaohe Plain, provides 
meteorological transport and diffusion because the terrain is flat, the 
average altitude is approximately 50 m, and the maximum elevation 
difference in the city is 29 m. The number of days with winds greater 
than 6 m/s (wind speed is 10.8–13.8 m/s) is concentrated in spring, 
accounting for approximately 46% of the annual number of windy days 
(http://www.weather.com.cn/cityintro/101070101.shtml). However, 
owing to its dense internal population and large-scale industrial enter-
prises, Shenyang has high emissions of various atmospheric pollutants 
(Guo et al., 2021; Ma, 2021). Shenyang, the capital of Liaoning 
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Province, has the second-highest particulate emissions in China, with 
industrial and domestic sources as the primary pollution sources. Heavy 
industry and coal-fired heating in winter lead to frequent extreme air 
pollution, with 105 air pollution days in Shenyang in 2020 (Adminis-
tration, 2021; Chang et al., 2020). Thus, to explore the influence of 
human activities on the concentration of air pollutants, typical areas 
were selected in the center of Shenyang City, including parks, com-
mercial areas, residential areas, tourist attractions, hospitals, and 
schools. Overall, the selected study area has diverse land use types 
representing a range of urban characteristics of the city. 

The air pollution monitoring data used in this study were obtained 
using Sniffer4D wearable atmospheric mobile monitoring equipment 
produced by Soarability Technologies. The UPM acquisition module 
(Plantower, model PMplantower 003) operates with a miniature laser 
photometer based on the laser scattering principle (Li et al., 2020). With 
a resolution of 1 μg/m3 and range of 0–1000 μg/m3, the humidity 
correction algorithm was embedded in the module chip. Sniffer4D at-
mospheric mobile monitoring equipment has the characteristics of small 
size, ease of use, anti-electromagnetic interference, excellent internal 
structure damping, high sensitivity, and it passes the authority test of the 
national measurement center. The sampling frequency is once per sec-
ond, and the average error of the sampling data is <± 10% compared 
with scientific-level air monitoring stations; the long-term data corre-
lation (R2) is 0.81–0.95 (www.soarability.tech/sniffer4dV2_hardware). 
The monitoring of UPM was performed by three volunteers using the 
same wearable monitoring equipment in succession every day from 
March 2019 to February 2020. For stable sampling, the monitor was 
worn 1.5 m above the ground (Fig. 1) with a sampling interval of 1 s 
(Choi et al., 2018). Five parameters were obtained: temperature (◦C), 
relative humidity (%), PM1 (μg/m3), PM2.5 (μg/m3), and PM10 (μg/m3). 
Before daily sampling, the equipment was placed in the same environ-
ment as the national standard monitoring station and then calibrated (Li 

et al., 2020). Due to the use conditions of the equipment and because of 
research needs, rainy days were not monitored. Owing to the portability 
of handheld devices, volunteers used the sidewalk (Fig. 1); therefore, the 
sampling period was not affected by morning and evening peak traffic. 
The entire sampling process was conducted from 7 a.m. to 7 p.m. and 
strictly compliant with the Road Traffic Safety Law of the People’s Re-
public of China (http://www.gov.cn/zhengce/2020-12/27/content_55 
74617.htm). 

2.2. Selection of influencing factors 

In this study, 37 impact factors were used to analyze the effects of 
comprehensive factors on UPM concentrations from several aspects 
(Table 1). As mentioned before, temperature and humidity significantly 
impact air pollution (Li et al., 2020), human activity affects UPM gen-
eration and transmission (Karagulian et al., 2015), and 2D and 3D 
landscape pattern indices can significantly affect UPM concentration 
distribution (Ke et al., 2022). For human activity, point of interest (POI) 
data can represent different spatial-temporal patterns (Gao et al., 
2017b). For 2D and 3D landscape pattern indices, those related to air 
pollution were selected (Ke et al., 2022; Qingzu et al., 2019; Yang et al., 
2018; Zhang et al., 2007), and detailed explanations and formulas are 
shown in Supplementary Table S1. The temperature and humidity of the 
natural factors were measured using a wearable monitoring equipment. 
The boiler spatial distribution data in the human activity factor were 
obtained from the latest emission inventory issued by the government of 
Shenyang City, Liaoning Province. All points were spatially interpolated 
using different functions (heating and non-heating) to obtain the steam 
volume and distribution density of the boilers in different seasons in the 
study area. Other human activity factors were obtained from POI data, 
which were collected from the 2019 AutoNavi map; there were 13 cat-
egories: bank, company, restaurant, facility, government, hospital, 

Fig. 1. Air pollution monitoring route map of study area. HS: heating season; NHS: non-heating season. The top right graphic illustrates where a volunteer wears the 
monitoring equipment. 
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hotel, leisure, living service, school, shopping, tourist, and traffic. 2D 
landscape pattern indices were calculated using land use data (Fig. 1) 
derived from 2019 Geographic Country Data. 3D landscape pattern 
indices were calculated using building height data from Baidu Map 
(www.map.baidu.com/), which includes building footprints and build-
ing heights (m), with a total average building height deviation of 1.02 m 
and an accuracy of 86.78% (Liu et al., 2021b). Detailed formulas for the 
2D and 3D landscape pattern indices were provided by previous studies 
(Qingzu et al., 2019; Tian et al., 2019; Uuemaa et al., 2005). Details for 
each factor are presented in Table 1. 

2.3. Data processing and analysis 

Extreme values of the monitoring data, where residuals were larger 
than three times the standard deviation, were removed during the pre-
processing stage. To further serve the study, the monitored data during 
sampling were divided into a grid (50 m), and the mean values were 
calculated and assigned to each grid. Within each grid, the values of the 
human activity factors were calculated separately for the factors 
mentioned in Table 1. To calculate the landscape pattern indices, land 
use data in vector format within each grid were converted to raster 
format for importing into Fragstats v4.2.1. All values of the calculated 
indices were assigned to the corresponding grids to obtain the panel 
data. Then, we constructed independent RF models and identified sig-
nificant variables for the two seasons for the three UPM pollutants using 
panel data. Random forest model fitting was implemented using the 
random forest package of the R language (Bischl et al., 2016; Zhang 
et al., 2018). The RF model collects results from randomly selected 
features from each decision classification tree and aggregates the results 
from a large number of decision trees. An increase in node purity 
(IncNodePurity) was used to analyze the importance of each influencing 
factor in the model (Liu et al., 2021a). Node purity is measured by the 
sum of squared residuals, and represents the effect of each variable on 
the heterogeneity of observations at each node of the classification tree, 
thus comparing the importance of the variables. A higher value of 
IncNodePurity indicates greater importance of the variable. 

Therefore, we used the RF model to assess the relationship between 
UPM concentrations and the 37 impact factors for different pollutant 
types in different seasons. Subsequently, model interpretation rates and 
10-fold cross-validation were calculated using the random forest pack-
age of the R language to assess the accuracy of each model (Bischl et al., 
2016). The importance of the impact factors was measured using 
IncNodePurity. To reveal the importance of significant impact factors on 
the concentration of UPMs during HS and NHS, we performed a 10-fold 

cross-validation using the RF model and extracted significant impact 
factors in combination with IncNodePurity. Specifically, 10-fold 
cross-validation divides the dataset into ten parts, nine of which are 
used as training data and one as test data for the experiment. This 
procedure was independently repeated 10 times to avoid the introduc-
tion of any bias when randomly partitioning the dataset in the 
cross-validation (Zhang et al., 2011). In the RF model, the relationships 
between UPM concentrations and these factors were investigated by 
marginal effects analysis, which was implemented in R using the random 
forest package (Bobbia et al., 2011; Jun, 2021; Li et al., 2020). 

3. Results 

3.1. Air pollution concentration and model accuracy verification 

A total of 222,729 data points (79 days) from the HS and 190,156 
data points (122 days) from the NHS were sampled in this study. Table 2 
lists the statistical values for the monitored pollutants. PM10 had the 
highest of all indicators in both the HS and NHS, and PM1 had the 
lowest. The mean values of the three UPM concentrations were higher in 
HS than in NHS, and the standard deviation (SD) values were lower in 
NHS than in NS. These results indicate that HS suffer from more severe 
air pollution, along with more extreme pollution conditions. 

By averaging the UPM monitored by volunteers during HS and NHS, 
this study found that the concentration of UPM in the two seasons had 
different spatial-temporal distribution characteristics (Fig. 2). As the 
diameter of the particulate matter increased, the pollutant concentration 
increased during both seasons. The spatial distributions of the three 
UPM types of particulate matter in the same season were similar. For 
descriptive purposes, this study divided the sampling route into four 
routes (a, b, c, and d; Fig. 2). The UPM concentration in route a showed 
high in the external area and low in the internal area in HS and north-
west high and southeast low in NHS. The spatial distribution of the UPM 
along route b was the same in both seasons, with high values in the north 

Table 1 
Classification and detailed description of impact factors.  

Category Metrics Abbreviation Category Metrics Abbreviation 

Natural factor Temperature TEM 2D landscape pattern index Percentage of forest area PLF 
Relative humidity HUM Percentage of grassland area PLG 

Human activity factor Boiler distribution density BDD Percentage of developing land area PLD 
Boiler steam volume BSV Percentage of road area PLR 
Bank BANK Percentage of structures area PLS 
Company COMP Percentage of building area PLB 
Restaurant REST Percentage of water area PLW 
Public facility FAC Road area ROAD 
Government GOV Shannon’s diversity index SHDI 
Hospital HOS Contagion index CONTAG 
Hotel HOTEL 3D landscape pattern index Aspect ASP 
Leisure facility LES Floor area ratio FAR 
Living service LVS Street valley height to width H/a 
School SCH Highest landscape indices HLI 
Shopping mall SHO Landscape height coefficient of variance LHCV 
Tourist TOU Landscape height density LHD 
Traffic facility TRA Landscape height range LHR  

Landscape height standard deviation LHSD 
Landscape otherness LO 
Landscape volume density LVD  

Table 2 
Monitoring concentration (μg/m3) statistics for UPMs.   

Type MIN MAX MEAN SD 

HS PM1 0.00 333.00 38.80 34.23  
PM2.5 0.00 758.00 70.28 68.81  
PM10 1.00 951.00 87.48 87.30 

NHS PM1 0.00 422.00 19.41 18.69  
PM2.5 0.00 718.00 29.96 30.38  
PM10 0.00 760.00 34.42 33.50  
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and low values in the south. Route c showed high UPM concentrations in 
the west and low concentrations in the east, but the opposite was true for 
NHS. The southeast of route d had high concentrations of UPM aggre-
gates in both seasons. 

Accuracy was verified for the six random forest models established 
for the three UPMs in the two seasons. Six models explained 80–90% of 
the relationship between UPM and the impact factors (Table 3). With an 
increase in UPM diameter, the interpretation rates of both the HS and 
NHS models increased. The model’s accuracy was similar for PM2.5, and 
PM10, while the accuracy of the PM1.0 model was at least 0.6% lower. 
Overall, the accuracy of all models was greater than 80%. Although the 
amount of data in the HS model (12,973) was lower than that of the NHS 
(14,713) after averaging to the grid, the interpretation rate of the former 
was always higher than that of the latter. 

We performed 10-fold cross-validation of the six models (Fig. 3). The 
cross-validation error of each model decreased sharply and stabilized 
when the important classes were greater than or equal to nine. The 
smallest cross-validation error was obtained when nine important clas-
ses were used in the HS and 18 important classes were used in the NHS. 
This indicates that certain influencing factors had a greater impact on 
the concentration of UPMs in the HS. The model cross-validation error 
was stable when 9–18 significant classes were used. 

3.2. Importance of influencing factors 

IncNodePurity was used to analyze the importance of each influ-
encing factor in the six models. A higher value of IncNodePurity in-
dicates greater importance of the variable. The results are shown in 
Fig. 4. Natural factors (temperature and humidity) were the most 
important in all six models, and environmental variables were more 
important in the HS model than in the NHS model. Apart from the 
natural factors, boiler distribution density (BDD) and boiler steam vol-
ume (BSV) were the most significant artificial factors affecting pollutant 
concentrations, and the importance of these two factors was slightly 
higher than that of the other factors in the HS. Percentage of grassland 
area and Landscape height density (LHD) had a higher impact on the 
three UPMs in the HS but had less impact on the NHS. Among the six 
models, shopping mall, tourist, traffic facility, hotel, and percentage of 
developing land area had the lowest importance. 

Fig. 5 shows a stacked Nightingale Rose diagram which illustrates 
the importance ranking of the factors influencing pollutant concentra-
tions, which can be divided into four levels. Temperature (TEM) and 
relative humidity (HUM) ranked first with BDD and BSV being in the 
second rank, indicating that boiler use was the most important artificial 
factor affecting pollutant concentrations during any season. Most land-
scape pattern factors rank third. Percentage of forest area has the highest 
influence on the three UPM concentrations in the HS, followed by 
Shannon’s diversity index (SHDI). The POIs with the least importance 
are ranked fourth. The importance of each variable increases with par-
ticle size. For the model of PM1, the importance of percentage of water 
area was higher than that of the other factors, but this was not reflected 
in the models of the other two pollutants. In both models, percentage of 

Fig. 2. Average sampling concentrations of PM1, PM2.5 and PM10. HS: heating season; NHS: non-heating season.  

Table 3 
Interpretation rate of the random forest model.  

Type HS NHS 

PM1.0 87.39% 80.2% 
PM2.5 88.1% 80.81% 
PM10 88.49% 80.86%  
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building area and percentage of forest area (PLF) were more important 
than PLW. SHDI showed higher importance in the PM1 and PM2.5 models 
but was not reflected in PM10. This indicates that different landscape 
patterns have different impacts on different UPMs. 

3.3. Marginal effects of influencing factors 

Based on the importance of the impact factors calculated by the RF 
model and the results of the 10-fold cross-validation, 14 impact factors 
were selected for the marginal effects analysis (Fig. 6). In general, the 
marginal effect of each influencing factor on UPM increased with 
diameter of the UPM, with HS changing more dramatically than NHS. 
The effect of TEM on UPM concentration tended to decrease and then 
increase, with the lowest effect on UPM concentration at 25 ◦C (NHS) 
and 3 ◦C (HS). This oscillation was due to the exceptionally high levels of 
UPM generated by central heating in the study area during winter when 
the atmospheric quasi-stationary fronts hinder the transport and diffu-
sion of UPM. The effect of HUM on UPM concentration increased rapidly 
with increasing HUM, especially in HS, because high HUM contributes 
to UPM condensation. The effect of BDD on UPM concentration varied 
considerably in different seasons. Its effect on UPM increased sharply in 
HS when the BDD reached 6, which indicated that central heating 
boilers are the major cause of air pollution in the study area. As BSV 
increased, it had a large, stabilizing effect on the concentration of UPM 
in the HS. Regardless of the BSV, boilers can cause considerable pollu-
tion once they are in operation. 

The effect of PLF steady increased by 75% (HS) and 25% (NHS), 
whereas the overall change in PLW was flat because of the low per-
centage of these two land types in the study area. The impact of the SHDI 
on UPM reaches a minimum of approximately one (1) in the HS, but the 
changes are flat in the NHS, which suggests that an appropriately 
complex mix of land types can reduce the impact on UPM. Compared 
with other 3D landscape pattern indices, the marginal effect increased 
sharply when the landscape height range reached 100 in the HS. Thus, 
low-rise built-up areas had less effect on UPM concentrations than single 

tall buildings. The effects of street valley height to width (H/a) and LHD 
on UPM showed a similar slow increase, with dense and tall buildings 
hindering pollutant dispersion when large amounts of pollutants enter 
such spaces. The effects of floor area ratio and landscape volume density 
were lowest at 1.3 and 5, respectively, so, for this factor, tall buildings or 
low-built-up areas had the least effect on the dispersion of UPM. The 
effect of landscape height standard deviation (LHSD) remained stable 
after a slow increase to 50, indicating that the vertical differences in the 
surface landscape reached their maximum impact on the ability to 
disperse pollutants at a certain level. Simple surface morphology thus 
facilitates the dispersion of UPM. 

4. Discussion 

4.1. Importance of influencing factors under different models 

The RF model was used to perform an importance analysis of the 
factors influencing UPM. In this study, we included a more compre-
hensive set of influencing factors, and the results suggest that the RF 
model is highly applicable in analyzing the importance of complex 
influencing factors on UPM. Among the 37 influencing factors, TEM and 
HUM were the most important. This is the same conclusion reached in 
previous studies that used different models (Gao et al., 2011; Li et al., 
2017). However, a greater effect of TEM and HUM on air pollution 
during HS was found in this study, distinguishing between HS and NHS. 
Unique climatic conditions can exacerbate air pollution events during 
HS (Huang et al., 2015). Industrial production and residential heating 
boilers are the primary artificial factors causing air pollution, especially 
PM2.5, and PM10 in HS. This is because the combination of unfavorable 
meteorological conditions and energy consumption due to central 
heating in northern China causes frequent air pollution (Lin and Ling, 
2021; Shi et al., 2020). Previous studies have shown that the spatial 
allocation of urban buildings and green spaces and the combined pattern 
of buildings of different heights could significantly affect the dispersion 
of pollutants (Abhijith et al., 2017; Yang et al., 2020). However, our 

Fig. 3. 10-fold cross-validation of six models.  
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study further found that for urban landscape patterns, PLF, SHDI, H/a, 
PLB, and LHSD are important influences on the concentration of each 
pollutant during HS and NHS, but NHS requires more major factors to 
influence UPM. 

4.2. Marginal effects of the main factors on the UPM concentration 

The marginal effects method for the RF model was used to quanti-
tatively analyze the main factors. Some studies have been conducted to 
quantitatively analyze the relationship between UPM and various 

influencing factors using marginal effects methods from other models (Li 
et al., 2020). The results of our study enrich the available models for 
existing marginal effects analysis. The lower the TEM of the HS, the 
greater its effect on UPM concentration, which may be because more 
energy consumption at lower temperatures leads to more pollution 
emissions (Luo and Xia, 2020). The effect also increased when the 
temperature rose above 3 ◦C. This is because of the formation of 
quasi-stationary fronts by equally matched warm and cold air masses 
that stop the spread of UPM (Huang et al., 2015). Owing to the limited 
distance of heat transfer, heating boilers are often located in dense 

Fig. 4. IncNodePurity of each impact factor under the six models. TEM: temperature; HUM: relative humidity; BDD: boiler distribution density; BSV: boiler steam 
volume; BANK: bank; COMP: company; REST: restaurant; FAC: public facility; GOV: government; HOS: hospital; HOTEL: hotel; LES: leisure facility; LVS: living 
service; SCH: school; SHO: shopping mall; TOU: tourist; TRA: traffic facility; PLF: percentage of forest area; PLG: percentage of grassland area; PLD: percentage of 
developing land area; PLB: percentage of building area; PLS: percentage of structures area; PLR: percentage of road area; PLW: percentage of water area; ROAD: road 
area; SHDI: Shannon’s diversity index; CONTAG: contagion index; ASP: aspect; FAR: floor area ratio; H/a: street valley height to width; HLI: highest landscape 
indices; LHCV: landscape height coefficient of variance; LHD: landscape height density; LHR: landscape height range; LHSD: landscape height standard deviation; LO: 
landscape otherness; LVD: landscape volume density. 
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built-up urban areas (Kauko et al., 2020; Xu et al., 2014). Therefore, it is 
disadvantageous to diffuse UPM during winter (Su et al., 2018). How-
ever, this study found that once a boiler is put into service, a BDD of 6 or 
more will have a significant impact on UPM, no matter how large the 
BSV is, which indicates that compared with dispersed small boilers, a 
large centrally distributed boiler production system within the city 
would be more beneficial to the management of UPM. This is also in line 
with the reform program proposed in China’s Blue Sky Plan in recent 
years (Jiang et al., 2021). The impact of road on UPM in different sea-
sons shows that traffic and residential sources may work collaboratively 
to aggravate winter haze events in areas with high traffic density(Sun 
et al., 2013). Previous studies have found that the climate in northern 
China causes vegetation to have a reduced or even a negative impact on 
air purification capacity (Setala et al., 2013). Our study further revealed 
that a rapid change in this impact occurred when the vegetation area 
reached 75% in HS; otherwise, the change was flat. Simple urban 3D 
morphology contributes to the diffusion of air pollutants (Abhijith et al., 
2017; Yuan et al., 2014). This conclusion is specified in our results, as 
single high-rise buildings or low-rise building blocks have the least effect 
on the transport and diffusion of UPM. 

4.3. Strength and limitations 

Compared with previous studies, the wearable monitoring equip-
ment used in this study has higher flexibility than vehicle and fixed 

monitoring, and more realistically reflects the exposure of urban resi-
dents to UPM. The collected Sniffer4D data have high spatial-temporal 
resolution and are thus more helpful in addressing research issues at 
fine scales and in complex conditions in urban areas. The long-term 
pollutant monitoring data we obtained, which had high spatial- 
temporal resolution, will further be used for comparative analysis at 
finer spatial-temporal scales (e.g., weekdays and weekends, residential 
and commercial areas) in our subsequent studies. Our study selected 
multiple influencing factors to consider the effects of nature, human 
activities, and urban patterns on UPM. This combination of factors 
makes it easier to identify the impacts of complex effects. Multisource 
big data applications can provide greater detail on urban air pollution. 
This study distinguishes between the heating and non-heating seasons, 
finding that factors have different effects in these two seasons, which is a 
more useful analysis of UPM influencing factors in centrally heated areas 
than in previous studies. Owing to the difficulty of quantitatively 
analyzing urban environmental studies, our study makes a preliminary 
attempt to use the marginal effects of the RF model. The results showed 
that marginal effects analysis can quantitatively identify the relationship 
between urban patterns and air pollution diffusion processes. 

The Sniffer4D low-cost monitoring device used in this study is based 
on the light-scattering principle for collection of UPM concentrations. 
Compared to traditional gravimetric analysis for particulate matter 
monitoring, this method has difficulty distinguishing water droplets 
from particulate matter, and therefore cannot achieve the same high 
accuracy (Lee et al., 2020). Improving the accuracy is one of the main 
goals of the development of low-cost transmission monitoring equip-
ment. Although this study developed a detailed wearable device moni-
toring process based on different seasons, the spatial distribution of air 
pollutants showed significant day and night differences (Ma et al., 
2020a). However, nighttime changes in UPM were not monitored in our 
study, so it was not possible to compare with the daytime results. Adding 
nighttime monitoring in a subsequent study will facilitate the investi-
gation of the effects of different resident activity patterns on UPM. RF 
models act like black boxes with no control over the inner workings, and 
may overfit the data modeled by certain factors (Breiman, 2001). In 
addition, the accuracy of our RF model was lower in the non-heating 
season, so the factors affecting this need to be further investigated. In 
our study, road density was selected to assess traffic flow; however, 
these estimates may have caused some inaccuracies. To match long-term 
pollution monitoring data, big data platforms should be used to incor-
porate more detailed traffic data (Fedorov et al., 2019). At the same 
time, the impact of seasonal changes on water bodies or woodland 
meadows should be considered to further refine the processing of impact 
factors (Hoppa et al., 2022; Setala et al., 2013). Our study did not 
investigate factors such as wind speed and corridors because of the 
limitations of the monitoring equipment. These are also important nat-
ural factors that must be explored. In the future, more integrated 
equipment is required to collect and analyze these important natural 
factors. In addition, although we mentioned that temperature and hu-
midity are the primary and most important factors influencing the 
change in UPM concentration, urban temperature is also influenced by 
the heat island phenomenon (Xu et al., 2018). Therefore, combining the 
effects of human activities on the heat island phenomenon and UPM 
transport and diffusion requires further investigation. 

5. Conclusions 

In this study, near-surface UPM pollutant (PM1, PM2.5 and PM10) 
concentrations were collected for one year during two time periods (HS 
and NHS) in the Shenyang urban areas using wearable monitoring 
equipment. This monitoring method provides a more realistic indication 
of residents’ exposure to UPM. The monitoring results showed that 
heavy weather conditions were more frequent in HS. Furthermore, the 
importance of the 37 selected influencing factors on the UPM concen-
tration was assessed using the IncNodePurity of the RF model. Among 

Fig. 5. Stacked Nightingale Rose diagram of the importance ranking of factors 
under the six models. TEM: temperature; HUM: relative humidity; BDD: boiler 
distribution density; BSV: boiler steam volume; BANK: bank; COMP: company; 
REST: restaurant; FAC: public facility; GOV: government; HOS: hospital; 
HOTEL: hotel; LES: leisure facility; LVS: living service; SCH: school; SHO: 
shopping mall; TOU: tourist; TRA: traffic facility; PLF: percentage of forest area; 
PLG: percentage of grassland area; PLD: percentage of developing land area; 
PLB: percentage of building area; PLS: percentage of structures area; PLR: 
percentage of road area; PLW: percentage of water area; ROAD: road area; 
SHDI: Shannon’s diversity index; CONTAG: contagion index; ASP: aspect; FAR: 
floor area ratio; H/a: street valley height to width; HLI: highest landscape 
indices; LHCV: landscape height coefficient of variance; LHD: landscape height 
density; LHR: landscape height range; LHSD: landscape height standard devi-
ation; LO: landscape otherness; LVD: landscape volume density. 
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them, temperature and humidity play a decisive role, but the central 
heating boiler is the main factor that causes UPM concentration to 
exhibit variations in the two seasons. This study, which distinguishes HS 
and NHS within the city, can provide a more realistic response to the 
causal factors of transmission diffusion generated by UPM. The marginal 
effects of the important influencing factors were analyzed after 10-fold 
cross-validation and IncNodePurity analysis. The results showed that 
large individual boilers were more beneficial for UPM prevention and 
control than small dispersed boilers. Increasing land type diversity while 
retaining a large area of water and forests is beneficial for reducing UPM 
concentrations. Simpler 3D patterns, such as low-building groups or tall 
single buildings, are more beneficial for UPM dispersion than tall 
building groups. This quantitative study will be helpful towards un-
derstanding and improving urban ecology. By integrating and analyzing 
multiple sources of big data, this study offers scientific recommenda-
tions for optimal land use configuration to address urban air pollution 
within the urban planning field. 
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