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Mapping clear-sky surface solar ultraviolet radiation in China at 1 km 
spatial resolution using Machine Learning technique and Google 
Earth Engine 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A Machine Learning model to estimate 
clear-sky UV radiation is proposed. 

• This model has been evaluated in 
various climate zones across China. 

• The model was deployed to the Google 
Cloud Platform for online estimation. 

• The spatial and temporal variations of 
UV radiation in China are investigated.  
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A B S T R A C T   

Ultraviolet (UV) radiation is an important fundamental data for solar energy utilization, climate change, human 
health, photochemical reaction studies, etc. However, it is still a problem to get UV radiation estimations with 
high spatial resolution rapidly. This study attempted to develop a Machine Learning (ML) model to estimate 
clear-sky UV radiation with high accuracy and high spatial resolution (1 km) in China. Based on Moderate- 
resolution Imaging Spectro-radiometer (MODIS) data and ERA5 reanalysis data obtained from Google Earth 
Engine (GEE), we established input dataset composed of different variables and developed 29 ML models to 
estimate clear-sky UV radiation using 37 Chinese Ecosystem Research Network (CERN) stations measurements 
for model training and validation. The results showed that compared with other ML models the Deep Neural 
Networks (DNN) model had a high and stable performance with a determination coefficient (R2) of 0.904, a Root 
Mean Square Error (RMSE) of 3.100 Wm-2, a Mean Absolute Error (MAE) of 2.274 Wm-2 for 10-fold cross- 
validation. To realize fast estimation of online clear-sky UV radiation, the DNN model was deployed to Goo-
gle Cloud Platform. The online estimation results showed that northern China had more UV radiation than 
southern China, and eastern China had less radiation than western China. This study would provide a useful 
reference for the study of solar energy resources, human health, and ecological system studies.  
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1. Introduction 

Ultraviolet (UV) radiation refers to the Solar Downward Surface 
Shortwave Radiation (DSSR) with the wavelength range of 100 nm–400 
nm (Gueymard, 2004; Lucas et al., 2019). Although comprising a small 
fraction (approximately 8%) of the total solar radiation, UV radiation 
has significant influences on ecosystems, environments, human health, 
and the Earth’s atmospheric processes (Ferrero et al., 2006; Thomas 
et al., 2012; Liu et al., 2017). UV radiation can inhibit plant photosyn-
thesis by destroying leaves, which subsequently affects the balance of 
ecosystems (Williamson et al., 2014; Wang et al., 2015). UV radiation in 
the troposphere may accelerate photochemical reactions in the 
near-surface layer and produce more secondary pollutants (Liu et al., 
2017). Moreover, UV radiation can cause direct and immediate harm to 
people, such as skin cancer and cataracts (Santos et al., 2011; Barnes 
et al., 2019). Therefore, accurate measurement of UV radiation and its 
spatial and temporal variability is necessary. 

Not until the end of the 20th century, Farman et al. (1985) found that 
the significant loss of Antarctic ozone was associated with the unique 
height distribution of UV radiation in the polar stratosphere, and opened 
the prelude of UV radiation observation. In 1988, National Science 
Foundation and American Antarctic Program established a high-latitude 
UV radiation monitoring and observation network in Antarctica (Booth 
et al., 1994). In the 1990s, China also established the Brewer UV radi-
ation observation system at Zhongshan Scientific Research Station in 
Antarctica and Waliguan Global Atmosphere Station (Bo et al., 2009). 
Subsequently, the Chinese Ecosystem Research Network (CERN), which 
provides long-term meteorological and radiation observations covering 
about 40 stations in China, was founded in 2004 (Qin et al., 2020). 
Topography affects the solar radiation reaching the Earth surface 
through self-shadowing or blocking by neighboring topography (Hao 
et al., 2021). Elevation, slope, slope direction (azimuth or aspect), and 
shadowing can all contribute to strong local gradients in solar radiation 
(Dubayah and Rich, 1995). However, these monitoring stations are too 
sparse and spread over flat terrain to routinely observe UV radiation. 
The most representative satellite sensor in the early years that could 
monitor UV radiation was the Total Ozone Mapping Spectrometer 
(TOMS) (Herman et al., 1999; Guide, 2012; Chubarova et al., 2020). 
Recently, some satellite sensors could estimate UV radiation, such as the 
Global Ozone Monitoring Experiment (GOME) (Krotkov et al., 2001; 
Lamy et al., 2021; Parisi et al., 2021), Ozone Monitoring Instrument 
(OMI) (Tanskanen et al., 2006; Parisi et al., 2021; Sun et al., 2021; Taipe 
et al., 2021), and TROPOspheric Monitoring Instrument (TROPOMI) 
(Lindfors et al., 2018; Lakkala et al., 2020; Kujanpää et al., 2021). Many 
satellites/sensors could also provide land and atmosphere parameter 
information with a finer spatial and temporal resolution for UV radiation 
estimation, such as Advanced Very High Resolution Radiometer 
(AVHRR) (Yang et al., 2018; Wei et al., 2019), Moderate-resolution 
Imaging Spectro-radiometer (MODIS) (Liang et al., 2006; Tang et al., 
2016, 2017; Brown et al., 2020), Landsat 5 and 7 (Wang et al., 2019), 
Multi-functional Transport Satellites (MTSAT) (Tang et al., 2016; Jiang 
et al., 2019, 2020), Communication, Ocean, and Meteorological Satellite 
(COMS) Meteorological Imager (MI) (Yeom et al., 2019), Geostationary 
Operational Environmental Satellite-16 (GOES-16) (Hrisko et al., 2021), 
Himawari-8 (H-8) (Letu et al., 2020a,b; Ma et al., 2020), Fengyun-4 
(FY-4) (Min et al., 2017; Yang et al., 2017), etc. 

Multiple algorithms have been developed to derive UV radiation 
from satellite products. Empirical models are based on the mathematical 
relationship between satellite observation data and ground-based 
observation data to simplify the complex radiation transmission pro-
cess. Laguarda and Abal (2019) used air quality, clearness index, and 
satellite-derived (OMI/TOMS) ozone column as predictors to estimate 
UV radiation. The model was partially adjusted at different stations. Pei 
and He (2019) selected MODIS data to establish two models (with or 
without ozone variable) based on the relationship with the solar zenith 
angle, clearness index, ozone, and altitude to estimate UVB radiation. 

Singh et al. (2022) selected Multi-angle Imaging Spectro-Radiometer 
(MISR) data to discuss the aerosol optical depth and its impact on the 
flux of UV radiation. Physical models could effectively estimate UV ra-
diation owing to take into account the main radiation dumping and 
attenuation processes on UV radiation between the atmosphere and the 
earth’s surface. For example, Verdebout (2000) proposed a look-up table 
method to estimate UV radiation across Europe with a spatial resolution 
of 0.05◦ selecting GOME and Meteosat data. The estimation results 
showed a good agreement with Ispra’s measurements. Using satellite 
records from Solar Backscatter Ultraviolet Radiation 2 (SBUV2), 
OMI-DOAS and Microwave Limb Sounder (MLS) satellites sensors, Lamy 
et al. (2018) developed a local parameterization for retrieving clear-sky 
UV radiation. Based on the Leckner model, Qin et al. (2020) developed a 
new effective physical broadband parameterization method (hereafter, 
FASTUV) to estimate UV radiation under all-weather conditions. Ma-
chine Learning (ML) models focus on the flexible analysis of training 
data and selection of training methods, and through multi-level learning 
of different input data to obtain the most optimized results (Hänsch 
et al., 2018; Letu et al., 2020a,b). For example, Barbero et al. (2006) 
used two different methodologies, the traditional statistical techniques 
and artificial neural network methods for estimating daily solar UV ra-
diation. Results showed that the neural network based model provides 
the best overall estimates in the site. Zhao and He (2022) proposed a 
deep learning framework combining random forests for retrieving 
all-sky, kilometer-level erythemal UV-B from MODIS data. The model 
evaluated on 2017 SURFRAD data showed an R2 of 0.9376, an MBE of 
1.24 mW/m2, and an RMSE of 17.45 mW/m2. Among these algorithms, 
ML, a subset of artificial intelligence, has the ability to automatically 
learn and deal with nonlinear complicated problems, showing superior 
performance. From the above, ML models have become promising 
methods for estimating UV radiation. In addition, when the remote 
sensing mechanism is not clear to construct an effective physical model, 
only the non-linear statistical method of the ML model can be used to 
approximate the estimation. When there is a clear physical model, but 
the accuracy of it is low due to insufficient remote sensing observation 
information or insufficient accuracy, the use of ML models could help to 
achieve accuracy improvement. 

Google Earth Engine (GEE) is a platform that provides cloud-based 
high-resolution, large-scale spatial processing for inversion and anal-
ysis of geographic environmental components (Yang et al., 2019). 
Therefore, this study attempted to use the ML technique and GEE plat-
form to achieve large-scale UV radiation estimation. Firstly, we used 
GEE to obtain the MODIS data and ERA5 reanalysis data required for 
clear-sky UV radiation retrieval. Then, 29 ML models for estimating UV 
radiation in clear sky conditions were developed and the accuracy was 
evaluated using UV radiation measurements at 37 CERN stations. 
Finally, fast inversion of online clear-sky UV radiation was realized on 
GEE. This method could be applied to estimate clear-sky UV radiation in 
regional and global scales with a high spatial resolution (1 km), fast 
speed, and acceptable accuracy, which would be helpful for the research 
of solar energy resources, human health, and ecosystems. 

2. Material and method 

2.1. Study area and data 

2.1.1. Observation data 
According to the zonal distributions of climate elements such as 

temperature, precipitation, and altitude, there are five climate types in 
China: TCZ (Temperate Continental Zone), TMZ (Temperate Monsoon 
Zone), MPZ (Mountain Plateau Zone), SMZ (Subtropical Monsoon Zone) 
and TPMZ (Tropical Monsoon Zone) (Fan et al., 2019). The hourly UV 
radiation (280 nm–400 nm) measurements at 37 CERN stations in China 
from 2004 to 2015 were used to construct a training dataset and verify 
clear-sky UV radiation estimation results (http://www.cern.ac.cn/). 
Fig. 1 shows the spatial distribution of five climatic zones and the 37 
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selected CERN stations. Table 1 shows the geographic information of 
these CERN stations. It can be seen that these stations cover most areas 
of China and are distributed in different climatic zones. 

2.1.2. Input data 
According to the theory of solar radiation transmission in the at-

mosphere, we take into account factors such as Rayleigh scattering, 
aerosol, water vapor, ozone, cloud, and other factors on UV radiation. 
The inputs used in this study to estimate clear-sky UV radiation include 
aerosol optical depth, water vapor, surface reflectance, land surface 
temperature, and scattering angle. These required inputs are available in 
the atmospheric and land products of the MODIS. The MODIS data used 
in this study include reflectance products (MOD09 and MYD09), land 
temperature products (MOD11 and MYD11), and aerosol products 
(MCD19A2). The MOD and MYD here represent the data collected by the 
Terra platform and Aqua platform, respectively (García-Mora et al., 
2012). The MCD is a combination of products collected from the Terra 
and Aqua platform (King et al., 2003). Table 2 shows the summarized 
information of input variables. The surface pressure and surface solar 
radiation downwards from ERA5 re-analysis data were added as input 
variables to clear-sky UV radiation estimation models. To keep the same 
spatial resolution (1 km) with the MODIS products, the ERA5 data at 10 
km pixel resolution was resampled to a spatial resolution of 1 km. All the 
above processes were realized in GEE, and specific details can be queried 
on the official website (https://developers.google.com/earth-engine 
/guides/scale; https://developers.google.com/earth-engine/guide 
s/projections; https://developers.google.com/earth-engine/guides/r 
esample#resampling). Both MODIS and ERA5 data are acquired from 
GEE (https://developers.google.com/earth-engine/datasets/catalog/). 
The process of data acquisition from GEE is shown in the following 
Fig. 2. Detail information about MODIS and ERA5 data could be found 
on their official websites (https://ladsweb.modaps.eosdis.nasa. 
gov/missions-and-measurements/products/,https://cds.climate.coper-
nicus.eu), respectively. Besides, it is necessary to consider the influence 
of geographical factors such as latitude, longitude, and elevation on 
clear-sky UV radiation estimation. 

2.2. Method 

After collecting the input data, the data are randomly divided into 

7:3: 70% for model training and the remaining 30% for model verifi-
cation. When constructing the models, the Grid Search is used to 
determine the optimal parameters of each model (a parameter adjust-
ment method, in all candidate parameter selection, try every possibility 
through cyclic traversal, and the best parameter is the final result). 

Fig. 1. Distribution of five climatic zones in China and 37 selected CERN stations.  

Table 1 
Summarized information of the 37 CERN stations.  

Station code Station name Latitude Longitude Climate zone 

SJ Sanjiang 47.58◦N 133.51◦E TMZ 
DH Donghu 30.62◦N 114.35◦E SMZ 
LZ Linze 39.33◦N 100.12◦E TCZ 
HT Huitong 26.85◦N 109.60◦E SMZ 
NMGCY Neimenggucaoyuan 43.63◦N 116.70◦E TCZ 
BJSL Beijingsenlin 39.97◦N 115.43◦E TMZ 
QYZ Qianyanzhou 26.75◦N 115.07◦E SMZ 
ALS Ailaoshan 24.53◦N 101.02◦E TPMZ 
DYW Dayawan 22.53◦N 114.52◦E TPMZ 
TH Taihu 31.42◦N 120.22◦E SMZ 
NM Naiman 42.93◦N 120.70◦E TCZ 
AS Ansai 36.86◦N 109.32◦E TMZ 
FQ Fengqiu 35.00◦N 114.40◦E TMZ 
CS Changshu 31.53◦N 120.68◦E SMZ 
LS Lasa 29.67◦N 91.33◦E MPZ 
LC Luancheng 37.88◦N 114.68◦E TMZ 
TY Taoyuan 28.92◦N 111.43◦E SMZ 
SY Shengyang 41.52◦N 123.40◦E TMZ 
SPT Shapotou 37.47◦N 105.00◦E TCZ 
DTH Dongtinghu 29.50◦N 112.80◦E SMZ 
HL Hailun 47.45◦N 116.92◦E TCZ 
HB Haibei 37.53◦N 101.25◦E MPZ 
HJ Huanjiang 24.82◦N 108.33◦E SMZ 
YT Yanting 31.27◦N 105.45◦E SMZ 
SNJ Shennongjia 31.32◦N 110.48◦E SMZ 
YC Yucheng 36.85◦N 116.57◦E TMZ 
MX Maoxian 31.70◦N 103.90◦E SMZ 
XSBN Xishuangbanna 21.92◦N 101.27◦E TPMZ 
GSSF GonggashanF 29.58◦N 101.99◦E SMZ 
GSSS GonggashanS 29.65◦N 102.11◦E SMZ 
EEDS Eerduosi 39.48◦N 110.18◦E TCZ 
CW Changwu 35.20◦N 107.67◦E TMZ 
CBS Changbaishan 42.40◦N 128.10◦E TMZ 
FK Fukang 47.29◦N 87.93◦E TCZ 
AKS Akesu 40.62◦N 89.82◦E TCZ 
HS Heshan 22.68◦N 112.90◦E TPMZ 
YT Yingtan 28.20◦N 116.92◦E SMZ  
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Table 3 outlines the ML algorithm used and the ML models constructed 
in this study. 

2.2.1. Linear regression (LR) method 
In statistics, LR is a type of regression analysis that uses the least 

square function to establish the relationship between one or more in-
dependent and dependent variables. Its expression form is: 

y=w’x + e (1)  

e is the error that obeys a normal distribution with a mean value of 
0 (Cohen et al., 2013). LR method includes LR, ILR, MLR, SLR, and RLR. 

2.2.2. Tree Method 
Based on Classification and Regression Tree (CART), the algorithm of 

accumulating the results of all trees as the final result (i.e., using addi-

tion model) and reducing the residual error in the training process to 
classify or regress data is Gradient Boosting Decision Tree (GBDT), 
which can be described as: 

Fm(x)=
∑M

m=1
T(x; θm) (2) 

The model trains M rounds in total, and each round produces a weak 
classifier T(x, θ m). ML created and trained four regression trees: FT, MT, 
CT, and OT, which are determined by the size of the smallest leaf (Clark 
and Pregibon, 2017). 

2.2.3. Deep Neural Networks (DNN) 
DNN is a kind of artificial network composed of a large number of 

neurons with strong universality. The extensive connection between 
neurons can simulate the structure and function of the nervous system. 
Here we built a neural network with an input layer, three hidden layers, 
with 128, 128, 128 nodes, an output layer, and one dropout layer. Wjk

l is 
the weight from the kth neuron in the (l-1)th layer to the jth neuron in 
the lth layer. The specific hyper-parameter settings are summarized in 
Table 4. 

To make DNN more robust, the following technologies are used:  

(1) The input variables were preprocessed by the standardization 
method z-score so that the variables followed the normal distri-
bution with a mean of 0 and a variance of 1.  

(2) Select Scaled Exponential Linear Units (SELU) as the activation 
function. It is more flexible than other activation functions and 
allows DNN to be highly robust (Ma et al., 2020).  

(3) Add the dropout layer, it can effectively prevent the occurrence of 
over-fitting, and achieve the regularization effect to a certain 
extent. 

2.2.4. Support vector machine (SVM) 
The SVM algorithm, developed earlier by Vapnik, is a supervised ML 

Table 2 
Summarized information about the input variables used in this study.  

Dataset 
name 

Parameters used in this study Spatial 
resolution 

Temporal 
resolution 

MOD09/ 
MYD09 

Solar Zenith Angle, Solar 
Azimuth Angle, Surface 
Reflectance at 0.47, 0.55, 0.65, 
0.86, 1.24 and 2.21 μm 

1 km Instantaneous 

MOD11/ 
MYD11 

Land Surface Temperature 1 km Instantaneous 

MCD19A2 Aerosol Optical Depth (AOD) at 
0.55 μm, Scattering Angle, Water 
Vapor 

1 km Instantaneous 

ERA5 Surface Pressure, Surface Solar 
Radiation Downwards 

10 km Hourly  

Fig. 2. The process of data acquisition from GEE.  

Table 3 
A list of the ML algorithm and ML models used in this study.  

Method Model Abbreviation Method Model Abbreviation 

Linear Regression 
Method 

Linear Regression LR Tree 
Method 

Classification and Regression 
Tree 

CART 

Multiple Linear Regression MLR Gradient Boosting Decision Tree GBDT 
Fine Tree FT Interaction Linear Regression ILR 
Medium Tree MT Robust Linear Regression RLR 
Coarse Tree CT Stepwise Linear Regression SLR 
Optimized Trees OT 

Support 
Vector 
Machine 

Support Vector Regression SVR Ensemble 
Algorithm 

eXtreme Gradient Boosting XGB 
Coarse Gaussian Support Vector Machine CGSVM Random Forest RF 
Quadratic Support Vector Machine QSVM Bagging Bagging 
Fine Gaussian Support Vector Machine FGSVM Extremely Randomized Trees Extra Tree 
Cubic Support Vector Machine CSVM Adaptive Boosting Adaboosting 
Linear Support Vector Machine LSVM Boosted Trees Boosted Trees 
Medium Gaussian Support Vector Machine MGSVM Bagged Trees Bagged Trees 

Gaussian Process 
Regression 

Squared Exponential Gaussian Process 
Regression 

SEGPR Optimized Ensemble OE 

Mastern 5/2 Gaussian Process Regression MGPR Deep Neural 
Networks 

Deep Neural Networks DNN  

Table 4 
The hyper-parameter settings of Deep Neural Networks used in this study.  

Term numbers Term names Term properties 

1 Hidden layer (Third) 128 Neuron 
2 Dropout layer 30% (or 0.3) 
3 Optimization function Adam 
4 Activation function SELU 
5 Learning rate 2e-4 
6 Batch size 32 
7 Epoch 2500  
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model for data analysis and image recognition (Vapnik, 2013). The SVM 
estimates regression based on a series of kernel functions, which can 
transform the low-dimensional input data into high-dimensional feature 
space, to maximize the distance between points and surface (Fan et al., 
2019). SVM algorithm includes SVR, CGSVM, QSVM, FGSVM, CSVM, 
LSVM and MGSVM. 

2.2.5. Gaussian Process regression (GPR) 
GPR is a nonparametric model, it gives more uncertainty to the 

model through Gaussian Process (GP), which is also its advantage. 
Although GP is complex, it is simple to calculate when used in the 
regression. The nonparametric model allows it to model arbitrary 
functions, and the kernel function also allows this model to use the in-
ternal structure of data. 

For the selection of kernel function, one is Radial Basis Function 
(RBF), and the general form is: 

k(Xi,Xj)= exp
(

−
1

2θ2‖Xi − Xj‖2
)

(3) 

The other is Mastern kernel, the general form is: 

k(Xi,Xj)=
1

2ς − 1Γ(ς)

(
2

̅̅̅ς√
‖Xi − Xj‖

)ς
Hς

(
2

̅̅̅ς√
‖Xi − Xj‖

)
(4) 

ζ Called smoothing coefficient, г and H are Gamma function and 
Bassel function. GPR is divided into SEGPR and MGPR. 

2.2.6. Ensemble algorithm 
Ensemble Algorithm combines several weak learners to get a better 

and more comprehensive model, to achieve the effect of reducing vari-
ance (Bagging), Boosting or improving forecasting. The bagging algo-
rithm is a sampling method with a return. Boosting algorithm is a lifting 
algorithm, which pays more attention to the error samples in the pre-
vious model. Ensemble Algorithm includes XGB, RF, Bagging, Extra 
Tree, Adaboosting, Boosted Trees, Bagged Trees, and OE. 

2.3. Google Earth Engine 

GEE is a cloud platform developed by Google for geographic data 
monitoring and analysis. GEE provides users with free access to (1) 
petabytes of publicly available remote sensing images and other ready- 
to-use products; (2) high-speed computing facilities and ML algorithms 
provided by Google; and (3) Application Programming Interfaces (APIs) 
libraries for JavaScript and Python (Agapiou, 2017; Tamiminia et al., 
2020). GCP was launched in November 2011, which provides calcu-
lating, storing, network, database, security services, and so on (Bisong, 
2019). 

2.4. Modeling performance criteria 

The 10-fold cross-validation technique is commonly used to objec-
tively evaluate the generalization ability of the model. The principle of 
cross-validation is depicted in Fig. 3. It means that the whole dataset is 
randomly divided into K equal subsets, one of which is rotationally used 
for testing, while the other K-1 subsets are used for training. 

The determination Coefficient (R2), Mean Absolute Error (MAE), and 
Root Mean Square Error (RMSE) are commonly used to evaluate the 
performance of the model. Equations for these indicators are as follows: 

R2 =

[∑N
i=1(Qi − Q)(Ti − T)]2

∑N
i=1(Qi − E)2∑N

i=1(Ti − T)2 (5)  

MAE =

∑N
i=1|Qi − Ti|

N
(6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Qi − Ti)2

N

√

(7) 

Qi means the estimated value, Ti means the measured value,‾Q and‾T 
are the average of the estimated and the measured, and N represents the 
total number of samples. The ideal values of MAE and RMSE are zero, 
and R2 is 1. Therefore, as the values of MAE and RMSE approach zero 
and R2 approaches 1, the performance of the model becomes higher. 

3. Result and analysis 

The experimental flow of clear-sky UV radiation estimation is shown 
in Fig. 4, including data preprocessing, model building, model com-
parison, and accuracy evaluation. 

3.1. Comparison of overall estimation performance 

One of the important goals of training ML models is to evaluate the 
model’s generalization performance on a new dataset. The methods used 
for model accuracy verification can be roughly divided into the hold-out 
method and K-fold cross-validation. 

In this study, the total capacity of the dataset is 22,872. In the hold- 
out method, 70% of the data is used for training (16,010), and the 
remaining 30% is used for verification (6862). The comparison between 
the estimated and the measured clear-sky UV radiation is shown in 
Fig. 5. In general, the overall accuracy of the ML models is ideal, that is, 
the R2 values of all the models are in the range of 0.702–0.912. Among 
the six types of ML algorithms, DNN performs best, followed by 
ensemble algorithm and GPR. The accuracy of LR and Tree methods on 
the test set is low. Among the 29 ML models, XGB has the highest ac-
curacy (R2 = 0.912, RMSE = 2.978 Wm-2, MAE = 2.167 Wm-2), fol-
lowed by DNN (R2 = 0.903, RMSE = 3.125 Wm-2, MAE = 2.292 Wm-2). 
As shown in Fig. 5, the scatter graph points of FGSVM are too scattered, 
and the model has the worst accuracy in the test set, which is related to 
the Gaussian kernel function in SVM. When the Kernel = ’rbf’ is used, 
which indicates that the deformation of the sample data is very 
complicated. 

Fig. 6 shows the results of 10-fold cross-validation for each selected 
model. In general, ML models perform well in cross-validation, with R2 

values ranging from 0.700 to 0.918, RMSE values ranging from 2.890 to 
5.510 Wm-2, and MAE values ranging from 2.087 to 4.066 Wm-2. Of six 
ML algorithms, the generalization ability of DNN, GPR, and ensemble 
algorithm is relatively stable with mean R2 values of 0.904, 0.905, and 
0.868, mean RMSE values of 3.100 Wm-2, 3.110 Wm-2, and 3.600 Wm- 
2, respectively, mean MAE values of 2.274 Wm-2, 2.266 Wm-2 and 
2.655 Wm-2. In terms of algorithms performance, DNN has the deep and 
complex neural network structure that could operate on larger datasets 
and attain optimal performance. In addition, this study applied stan-
dardization method, activation function, and dropout layer to make the 
DNN model more robust. Ensemble algorithm is a combination of 
numerous weak learners to produce a better and more complete strong 
learner, which helps to reduce variation, bias, and enhance prediction. 
Both GPR and SVM use covariance functions as their cores to solve 

Fig. 3. Schematic diagram of K-fold cross-validation.  
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complex regression problems with high dimensionality, small samples, 
and nonlinearity. However, the performance of SVM (mean R2 = 0.839, 
mean RMSE = 3.950 Wm-2, mean MAE = 2.850 Wm-2) is lower than 
GPR because when SVM attempts to map sample data into a high- 
dimensional space using kernel functions with strong localization, 
which is prone to deformation of the sample data after infinite multi-
dimensional transformations. The lower overall performance of LR 
method is due to the absence of a nonlinear relationship between the 
variables and the dependent variable. Among the 29 ML models, the 
XGB model has the highest the estimation accuracy with R2 value of 
0.918, RMSE value of 2.890 Wm-2, and MAE value of 2.087 Wm-2. The 
accuracy of MGPR is slightly lower than that of XGB, with R2 value of 
0.910, RMSE value of 3.060 Wm-2, and MAE value of 2.228 Wm-2. The 
DNN model ranked third with R2 value of 0.904, RMSE value of 3.100 
Wm-2, and MAE value of 2.274 Wm-2. FGSVM has the lowest accuracy 
with R2 value of 0.700, RMSE value of 5.510 Wm-2, and MAE value of 
4.066 Wm-2. The site-based cross-validation results is similar to the 
cross-validation results, as shown in the Appendix. From the above, we 
used two methods to verify the overall accuracy of the 29 ML models. To 
facilitate the subsequent analysis, the results of the two validation 
methods were integrated. The models with the best performance among 
all kinds of ML algorithms were selected, including ILR (LR Method)、 
GBDT (Tree Method)、MGSVM (SVM)、MGPR (GPR)、XGB (Ensemble 
Algorithm), and DNN. 

3.2. Estimation accuracy analysis of the models in different seasons 

Fig. 7 illustrates the validation results of the seasonal clear-sky UV 
radiation estimations of the six models (ILR, GBDT, MGSVM, MGPR, 
XGB, and DNN) with the best overall accuracy among the six types of ML 

algorithms obtained in 3.1. In general, the prediction results of the six 
models all have the same characteristics, that is, poor in spring and 
summer, while better in autumn and winter. According to the RMSE, R2, 
and MAE values in Fig. 7, the performance and accuracy of the six 
models are ranked from best to worst, followed by DNN, MGSVM, 
MGPR, XGB, GBDT, and ILR. The prediction results of the DNN model in 
four seasons are the best among these six models with relatively lower 
RMSE, higher R, and lower MAE value. In general, the DNN model shows 
the most stable performance, with an R2 value greater than 0.750 in all 
four seasons. As we all know, UV radiation in summer is the highest in all 
four seasons, but it can be seen from Fig. 7 that the prediction accuracy 
of the six models in summer is slightly lower, relatively. Meanwhile, the 
prediction results of the DNN model are also relatively good in summer. 
In summer, the subtropical monsoon climate causes the rain heat over 
the same period. The special topography of the basin leads to the 
accumulation of water vapor, which affects the transmission process of 
solar radiation. At the same time, it also provides the environmental 
conditions for cloud formation Thus, the prediction accuracy of the six 
models is affected relatively. 

3.3. Validation of clear-sky UV radiation estimation in different climate 
zones and stations in China 

Fig. 8 is the boxplot of the differences between the estimated and 
measured clear-sky UV radiation in different climate zones using six ML 
models including DNN, GBDT, ILR, MGPR, XGB, and MGSVM. For each 
box, the lower and upper solid lines in the box represent the 25th and 
75th percentiles of the clear-sky UV radiation bias; the lower and upper 
whiskers are the minimum and maximum errors. The middle red line in 
each box represents the median value of the clear-sky UV radiation 

Fig. 4. The flowchart of solar clear-sky UV radiation estimation in this study.  
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biases, and the middle green triangle in each box shows the average 
value of the clear-sky UV radiation biases (the average values are rep-
resented on the graph). Overall, by comparing the estimation accuracy 
of clear-sky UV radiation of six ML models, we found that no matter in 
which climate zones, the estimated clear-sky UV radiation of the DNN 
model can maintain a good agreement with the observed clear-sky UV 
radiation values. Comparing the accuracy of the DNN model in five 
climate zones, it is found that the accuracy of the DNN model in SMZ is 
lower, which is related to the reason that SMZ is often overcast and 
rainy. The ILR model shows a large max-min error in the five climate 

zones, and its maximum error occurred in TPMZ. 
Fig. 9 indicates the spatial distribution of these statistical indicators 

representing the model accuracy for each model. It can be seen that the 
larger RMSE and MAE value appears in SMZ and TCZ, which is similar to 
the results of model accuracy verification in different climate zones. The 
typical station with poor estimation accuracy in the TCZ area is the AKS 
station. There is a difference in accuracy which is caused by terrain 
change. The cloud distribution in the SMZ area is relatively complex and 
thick, which has a certain influence on clear-sky UV radiation estima-
tion. For most stations, the estimated results of clear-sky UV radiation 

Fig. 5. Validation of the density scatterplots of clear-sky UV radiation estimation results by the hold-out method.  

Fig. 6. The changes in the estimated indicators of each model during the 10-fold cross-validation.  

J. Wu et al.                                                                                                                                                                                                                                      



Atmospheric Environment 286 (2022) 119219

8

from the DNN model are in good agreement with the measured clear-sky 
UV radiation. In terms of the RMSE value, in DNN, GBDT, ILR, MGPR, 
MGSVM and XGB models, the proportion of RMSE greater than 3.5 Wm- 
2 is 11.11%, 38.89%, 36.11%, 13.89%, 13.89% and 36.11%, respec-
tively. From the perspective of R2 value, in DNN, GBDT, ILR, MGPR, 
MGSVM and XGB models, the proportion of R2 greater than 0.900 is 
63.89%, 19.44%, 25%, 55.56%, 58.33% and 25%, respectively. For 
MAE, in DNN, GBDT, ILR, MGPR, MGSVM and XGB models, the pro-
portion of MAE greater than 3.0 Wm-2 is 5.56%, 19.44%, 25%, 8.33%, 
8.33% and 25%, respectively. 

3.4. Verification of model prediction results under different solar angles 

In this study, we consider the influence of solar angles such as Solar 
Zenith Angle (SZA), Solar Azimuth Angle (SAA), and Scattering Angle 
(SA) on clear-sky UV radiation estimation. Fig. 10 illustrates the pre-
diction accuracy of each model in different SZA ranges. The range of SZA 

in MODIS data is 0◦~180◦. We selected the appropriate interval range 
(7◦) and divided the original sample data into eight intervals with 
different sample numbers. In terms of the RMSE value in Fig. 10, the 
maximum RMSE value of the DNN model in eight SZA intervals is 
3.1927 Wm-2. The maximum RMSE values of the other five models are 
3.821 Wm-2 (GBDT), 3.9122 Wm-2 (XGB), 3.9855 Wm-2 (ILR), 3.2399 
Wm-2 (MGPR), 3.2943 Wm-2 (MGSVM). For R value, the R2 value of the 
DNN model in eight SZA intervals is 0.738–0.813. The scope of R2 value 
for the other five models is 0.637–0.746 (GBDT), 0.606–0.772 (XGB), 
0.495–0.679 (ILR), 0.745–0.800 (MGPR), 0.733–0.794 (MGSVM). The 
maximum MAE of the DNN model is 2.2619 Wm-2 in eight SZA in-
tervals. The MAE values for the other five models are 2.9104 Wm-2 
(GBDT), 2.9183 Wm-2 (XGB), 3.0034 Wm-2 (ILR), 2.3873 Wm-2 
(MGPR), 2.2599 Wm-2 (MGSVM). In conclusion, the DNN model has the 
smallest error in different SZA intervals, which shows good prediction 
results. The estimation results of the DNN model are relatively stable. At 
the same time, there are seasonal changes in SZA in China. The esti-
mated results of the DNN model verified by SZA are consistent with the 
results obtained from the evaluation on the seasonal scale in 3.2 above, 
that is, the DNN models have shown both good prediction results. 

The range of SAA in MODIS data is − 180◦~180◦. The original 
sample data is divided into five intervals: (I) − 180◦~-150◦; (II) − 150◦~- 
115◦; (III) − 115◦~130◦; (Ⅳ) 130◦~165◦; (Ⅴ) 165◦~180◦. Table 5 shows 
the prediction results of each model in different SAA intervals. Ac-
cording to Table 5, the prediction results of the DNN model are the best 
among the six models in the five SAA intervals, that is, the R2 values of 
the five intervals were all greater than 0.880, and the average R2 value 
was 0.912. In GBDT, ILR, MGPR, MGSVM and XGB models, the pro-
portion of R2 greater than 0.880 is 40%, 40%, 60%, 60% and 40%, 
respectively. Due to the small number of samples in the first interval, the 
accuracy of the DNN model is affected in this case. However, MGPR and 
MGSVM are mostly suitable for a small number of samples, so the ac-
curacy of the DNN model is slightly lower than that of MGPR and 
MGSVM in the first interval. The prediction results of the ILR model are 
still the worst among the six models, at the same time the MGSVM model 
shows similar potential to the DNN model. 

Fig. 11 outlines the line chart of prediction accuracy of each model in 
different SA ranges. According to the maximum (178.69◦) and the 
minimum (79.75◦) of SA value in the sample data, we selected the 
appropriate range of SA as 10◦. The fluctuation of the line chart is 
obvious. The prediction results of the DNN model in the five SA intervals 
are still the best among the six ML models, with relatively lower RMSE 
value, higher R2 value, and lower MAE value. The fluctuation trend of 

Fig. 7. Clear-sky UV radiation prediction results of different season models.  

Fig. 8. Box plots analysis of the estimated and observed clear-sky UV radiation 
of six ML models in different climate zones. 
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Fig. 9. Spatial distribution of six ML models estimation indicator values at different stations in China.  

Fig. 10. Prediction accuracy of each model in different SZA ranges. (1) 0◦~21◦; (2) 21◦~28◦; (3) 28◦~35◦; (4) 35◦~42◦; (5) 42◦~49◦; (6) 49◦~56◦; (7) 56◦~63◦; 
(8) 63◦~77◦. 
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each indicator for the DNN model in the line chart is relatively flat, 
which indicates the DNN model is relatively stable. The RMSE and MAE 
values of the ILR model are significantly higher than other models, 
which indicates that the ILR model has the worst estimation perfor-
mance at this stage. The GBDT model also has poor prediction perfor-
mance, that is, within the same input and interval, the predicted results 
of ILR and GBDT models are greatly different from the measured values. 
Different from the analysis in SZA, the prediction results of MGSVM are 
also considerable, ranking the second among the six selected ML models. 

The above analysis provides a comprehensive review and validation 
of six different ML algorithms for estimating clear-sky UV radiation 
values. By comparing the overall accuracy of 29 ML models, the esti-
mation accuracy of clear-sky UV radiation under different scenarios 
(including season, climate zones, space location, and solar angle) was 
comprehensively considered. It is strongly recommended that the DNN 
model be used to estimate clear-sky UV radiation based on astronomical, 
meteorological, geographical, and other factors. 

3.5. Case study 

Here, we deploy the DNN model, which is the optimal model that is 
obtained from offline training to GCP based on Tensorflow. Then we can 
implement online prediction through GEE calls, as shown in Fig. 12. 
Starting with authentication and authorization, that is, set up the soft-
ware library as needed and log in to the Google account. Then we need 
to prepare data and define common variables, before this, we need to 
build engineering projects and storage buckets for storing training and 
test data on GCP in advance. The following is defining a model with the 
same structure on Google Colab as the offline DNN model and process 
the model for uploading to GCP. Finally, the online estimation of clear- 
sky UV radiation based on the GEE and DNN model can be realized. 

After the deployment of the DNN model, we can obtain the clear-sky 
UV radiation of a certain day across China in less than 1 min, only in 10 
min can obtain the full-year estimated data. Fig. 13 shows the spatial 
characteristics of clear-sky UV radiation in January 2018 throughout 
China. The spatial distribution of UV radiation was complex and 
extremely uneven across the country. Generally, northern China had 
more radiation than southern China, and eastern China had less radia-
tion than western China. The highest UV radiation on the Qinghai-Tibet 
Plateau is mainly affected by altitude. The plateau areas with higher 
altitudes have lower air quality and relatively less scattering and ab-
sorption of UV radiation, so the intensity of UV radiation is greater than 
that in plain areas. The lower UV radiation in the south is mainly 
affected by the weather. When the southern rainy season comes, there is 
more cloudy and foggy weather, which greatly weakens the UV 
radiation. 

4. Conclusion 

In this study, the accuracy and applicability of 29 ML models based 
on six types of ML algorithms in clear-sky UV radiation estimation in 
China were investigated. A large-scale (national scale) ML model with a 
high spatial resolution (1 km) was constructed to estimate clear-sky UV 
radiation using MODIS and ERA5 data obtained from GEE and UV ra-
diation measurement. The observation data from 37 CERN stations were 
used to verify the models. 

Compared with other ML models, the DNN model was the model 
with the highest accuracy. The validation results showed that the R2, 

Table 5 
The prediction results of each model in different SAA intervals.  

Statistics 
indicator 

Model Range of Solar Azimuth Angle Mean 

(I) (II) (III) (Ⅳ) (Ⅴ) 

RMSE DNN 2.679 2.962 2.992 2.920 2.913 2.893 
GBDT 3.476 3.709 3.942 3.625 3.397 3.630 
XGB 3.647 3.646 3.737 3.669 3.549 3.650 
ILR 3.307 3.645 3.532 3.869 3.999 3.670 
MGPR 2.657 2.915 3.190 3.164 2.962 2.978 
MGSVM 2.673 2.969 3.188 3.214 3.030 3.015 

R2 DNN 0.927 0.925 0.889 0.893 0.924 0.912 
GBDT 0.878 0.883 0.807 0.835 0.897 0.860 
XGB 0.865 0.887 0.827 0.831 0.888 0.859 
ILR 0.889 0.887 0.845 0.812 0.857 0.858 
MGPR 0.929 0.928 0.874 0.874 0.922 0.905 
MGSVM 0.928 0.925 0.874 0.870 0.918 0.903 

MAE DNN 1.955 2.155 2.250 2.177 2.200 2.147 
GBDT 2.586 2.804 2.923 2.825 2.583 2.744 
XGB 2.689 2.740 2.814 2.860 2.682 2.757 
ILR 2.490 2.750 2.615 2.963 2.896 2.743 
MGPR 1.946 2.164 2.341 2.373 2.199 2.205 
MGSVM 1.902 2.125 2.259 2.302 2.192 2.156 

Ps: The range of SAA is − 180◦~180◦, select the appropriate interval range and 
divide the original sample data into five intervals. (I) − 180◦~-150◦; (II) 
− 150◦~-115◦; (III) − 115◦~130◦; (Ⅳ) 130◦~165◦; (Ⅴ) 165◦~180◦. 

Fig. 11. Line chart of prediction accuracy of each model in different SA ranges. (1) 79.75◦~99◦; (2) 99◦~109◦; (3) 109◦~119◦; (4) 119◦~129◦; (5) 129◦~139◦; (6) 
139◦~149◦; (7)149◦~159◦; (8) 159◦~179◦. 
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RMSE, and MAE values of the DNN model in the hold-out method were 
0.903, 3.125 Wm-2, and 2.292 Wm-2, respectively. And the R2, RMSE, 
and MAE values of the DNN model in the cross-validation method were 
0.904, 3.100 Wm-2, and 2.274 Wm-2, respectively. At the same time, the 
DNN model had stronger robustness and higher universality than that of 
other ML models under different scenarios (including season, climate 
zones, space location, and solar angle). The DNN model could operate on 
larger datasets and attain optimal performance because of its deep and 
complex neural network structure. In addition, this study applied stan-
dardization method, activation function, and dropout layer to make the 
DNN model more robust. Although the overall accuracy of XGB and 
GBDT models was relatively high in the sample data, their accuracy for 
estimating clear-sky UV radiation is unstable in different climate zones, 
seasons, and observation angles. Therefore, the DNN model was used to 
realize the fast estimation of online clear-sky UV radiation using the GEE 
platform. Overall, the online estimation results showed that northern 
China had more radiation than southern China, and eastern China had 
less radiation than western China. The highest UV radiation on the 
Qinghai-Tibet Plateau is mainly affected by altitude. The lower UV ra-
diation in the south is mainly affected by the weather. 

Compared with previous studies, this study provides an effective case 
of online clear-sky UV radiation estimation with high spatial resolution 
(1 km) and high accuracy using ML techniques and GEE platform across 

China. And we can obtain the clear-sky UV radiation of a certain day in 
less than 1 min, only in 10 min can obtain the full-year estimated data. 
The method can also be applied to other similar areas around the world 
for further study. In addition, this study didn’t compare the consis-
tencies with other existing UV radiation products and lacked validation 
in other regions of the world. The uncertainty caused by angular and 
topographic effects were not adequately considered. These works will be 
further carried out in the future. 
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Sneep, M., Krotkov, N.A., Arola, A., Tamminen, J., 2018. The TROPOMI surface UV 
algorithm. Atmos. Meas. Tech. 11, 997–1008. 

Liu, H., Hu, B., Zhang, L., Zhao, X.J., Shang, K.Z., Wang, Y.S., Wang, J., 2017. Ultraviolet 
radiation over China: spatial distribution and trends. Renew. Sustain. Energy Rev. 
76, 1371–1383. 

Lucas, R.M., Yazar, S., Young, A.R., Norval, M., De Gruijl, F.R., Takizawa, Y., Rhodes, L. 
E., Sinclair, C.A., Neale, R.E., 2019. Human health in relation to exposure to solar 
ultraviolet radiation under changing stratospheric ozone and climate. PHOTOCH 
PHOTOBIO SCI 18, 641–680. 

Ma, R., Letu, H., Yang, K., Wang, T., Shi, C., Xu, J., Shi, J., Shi, C., Chen, L., 2020. 
Estimation of surface shortwave radiation from Himawari-8 satellite data based on a 
combination of radiative transfer and deep neural network. IEEE T GEOSCI REMOTE 
58, 5304–5316. 

Min, M., Wu, C., Li, C., Liu, H., Xu, N., Wu, X., Chen, L., Wang, F., Sun, F., Qin, D., 2017. 
Developing the science product algorithm testbed for Chinese next-generation 
geostationary meteorological satellites: Fengyun-4 series. J METEOROL RES-PRC 31, 
708–719. 

Parisi, A.V., Igoe, D., Downs, N.J., Turner, J., Amar, A., Jebar, M.A., 2021. Satellite 
monitoring of environmental solar ultraviolet A (UVA) exposure and irradiance: a 
review of OMI and GOME-2. REMOTE SENS-BASEL 13, 752. 

Pei, C., He, T., 2019. UV radiation estimation in the United States using MODIS data. In: 
IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. 
IEEE, pp. 1880–1883. 

Qin, W., Wang, L., Wei, J., Hu, B., Liang, X., 2020. A novel efficient broadband model to 
derive daily surface solar Ultraviolet radiation (0.280–0.400 μm). Sci. Total Environ. 
735, 139513. 

Santos, J.B., Villán, D.M., Castrillo, A.D.M., 2011. Analysis and cloudiness influence on 
UV total irradiation. Int. J. Climatol. 31, 451–460. 

Singh, S., Mishra, A.K., Jose, S., Lodhi, N.K., 2022. Atmospheric pollution and solar 
ultraviolet radiation in Asia. Asian Atmospheric Pollution. Elsevier 129–146. 

Sun, J., Veefkind, P., Van Velthoven, P., Levelt, P., 2021. Aerosol absorption over land 
derived from the Ultra-Violet aerosol index by deep learning. IEEE J-STARS. 

Taipe, C.W., Mendoza, E.G., Flores, H.H., 2021. Validation of ultraviolet index data from 
the Ozone Monitoring Instrument (OMI) based on measurements from 
meteorological stations in the city of Puno. In: Journal of Physics: Conference Series. 
IOP Publishing, 12005. 

Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B., 2020. 
Google Earth Engine for geo-big data applications: a meta-analysis and systematic 
review. ISPRS J PHOTOGRAMM 164, 152–170. 

Tang, W., Qin, J., Yang, K., Liu, S., Lu, N., Niu, X., 2016. Retrieving high-resolution 
surface solar radiation with cloud parameters derived by combining MODIS and 
MTSAT data. Atmos. Chem. Phys. 16, 2543–2557. 

Tang, W., Qin, J., Yang, K., Niu, X., Min, M., Liang, S., 2017. An efficient algorithm for 
calculating photosynthetically active radiation with MODIS products. Remote Sens. 
Environ. 194, 146–154. 

Tanskanen, A., Krotkov, N.A., Herman, J.R., Arola, A., 2006. Surface ultraviolet 
irradiance from OMI. IEEE T GEOSCI REMOTE 44, 1267–1271. 

Thomas, P., Swaminathan, A., Lucas, R.M., 2012. Climate change and health with an 
emphasis on interactions with ultraviolet radiation: a review. Global Change Biol. 
18, 2392–2405. 

Vapnik, V., 2013. The Nature of Statistical Learning Theory. Springer science & business 
media. 

Verdebout, J., 2000. A method to generate surface UV radiation maps over Europe using 
GOME, Meteosat, and ancillary geophysical data. J. Geophys. Res. Atmos. 105, 
5049–5058. 

Wang, L., Gong, W., Feng, L., Hu, B., 2015. UV variability in an arid region of Northwest 
China from measurements and reconstructions. Int. J. Climatol. 35, 1938–1947. 

J. Wu et al.                                                                                                                                                                                                                                      

https://aeronet.gsfc.nasa
https://doi.org/10.1016/j.atmosenv.2022.119219
https://doi.org/10.1016/j.atmosenv.2022.119219
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref1
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref1
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref2
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref2
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref2
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref3
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref3
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref3
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref3
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref4
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref4
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref5
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref5
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref6
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref6
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref6
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref6
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref7
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref7
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref7
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref8
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref8
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref8
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref8
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref9
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref9
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref10
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref10
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref11
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref11
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref12
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref12
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref12
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref12
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref13
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref13
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref14
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref14
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref14
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref15
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref15
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref16
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref16
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref17
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref17
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref18
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref18
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref18
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref19
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref19
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref19
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref19
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref20
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref20
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref20
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref21
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref21
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref21
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref22
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref22
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref22
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref23
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref23
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref23
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref24
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref24
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref24
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref24
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref25
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref25
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref25
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref26
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref26
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref26
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref27
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref27
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref27
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref28
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref28
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref28
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref28
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref29
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref29
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref29
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref29
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref30
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref30
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref30
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref30
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref31
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref31
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref31
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref32
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref32
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref32
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref32
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref33
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref33
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref33
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref34
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref34
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref34
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref35
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref35
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref35
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref36
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref36
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref36
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref36
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref37
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref37
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref37
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref37
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref38
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref38
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref38
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref38
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref39
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref39
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref39
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref40
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref40
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref40
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref41
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref41
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref41
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref42
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref42
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref43
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref43
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref44
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref44
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref45
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref45
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref45
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref45
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref46
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref46
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref46
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref47
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref47
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref47
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref48
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref48
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref48
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref49
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref49
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref50
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref50
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref50
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref51
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref51
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref52
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref52
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref52
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref53
http://refhub.elsevier.com/S1352-2310(22)00284-9/sref53


Atmospheric Environment 286 (2022) 119219

13

Wang, Y., Jiang, B., Liang, S., Wang, D., He, T., Wang, Q., Zhao, X., Xu, J., 2019. Surface 
Shortwave net radiation estimation from Landsat TM/ETM+ data using four 
machine learning algorithms. REMOTE SENS-BASEL 11, 2847. 

Wei, Y., Zhang, X., Hou, N., Zhang, W., Jia, K., Yao, Y., 2019. Estimation of surface 
downward shortwave radiation over China from AVHRR data based on four machine 
learning methods. Sol. Energy 177, 32–46. 

Williamson, C.E., Zepp, R.G., Lucas, R.M., Madronich, S., Austin, A.T., Ballaré, C.L., 
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