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• Existence of litter layer decreased soil CH4

uptake by 8 % in tropical rainforest, SW
China.

• Litter removal effect on soil CH4 uptake
was mainly regulated by LNI 100 %.

• Soil inorganic nitrogen content explained
84 % of litter effect on soil CH4 uptake in
forest ecosystems.
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Litter comprises a major nutrient source when decomposed via soil microbes and functions as subtract that limits gas
exchange between soil and atmosphere, thereby restricting methane (CH4) uptake in soils. However, the impact and
inherent mechanism of litter and its decomposition on CH4 uptake in soils remains unknown in forest. Therefore, to
declare the mechanisms of litter input and decomposition effect on the soil CH4 flux in forest, this study performed
a litter-removal experiment in a tropical rainforest, and investigated the effects of litter input and decomposition on
the CH4 flux among forest ecosystems through a literature review. Cumulative annual CH4 flux was −3.30 kg CH4-
C ha−1 y−1. The litter layer decreased annual accumulated CH4 uptake by 8% which greater in the rainy season
than the dry season in the tropical rainforest. Litter decomposition and the input of carbon and nitrogen in litter
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biomass reduced CH4 uptake significantly and the difference in CH4 flux between treatment with litter and without
litter was negatively associated with N derived from litter input. Based on the literature review about litter effect on
soil CH4 around world forests, the effect of litter dynamics on CH4 uptake was regulated by litter-derived nitrogen
input and the amount soil inorganic nitrogen content. Our results suggest that nitrogen input via litter decomposition,
which increased with temperature, caused a decline in CH4 uptake by forest soils, which could weaken the contribu-
tion of the forest in mitigating global warming.
1. Introduction

Methane (CH4), a major greenhouse gas in the atmosphere, is mainly
produced by the anaerobic decomposition of organic matter in soil
(Lelieveld et al., 1993). Although soil is the largest active CH4 sink in forest
ecosystems, any given soil can be either a source or sink for atmospheric
CH4; this is determined by the relative production of CH4 by methanogens
and the oxidation of CH4 by methanotrophs, processes that occur simulta-
neously in soils where aerobic and anaerobic microsites coexist (Yavitt
et al., 1993; Topp and Pettey, 1997; Dutaur and Verchot, 2007; Wolf
et al., 2012). The global annual CH4 flux is 21(18–26) as emissions and
global soil uptake of CH4 is 37(range: 27–43) and 30 (range:11–49) from
bottom-up and top-down estimations approaches, respectively (in Tg CH4

yr −1) (Canadell et al., 2021). The annual global uptake of CH4 in forest
soils from 1981 to 2010 has been estimated to be 9.16 ± 3.84 Tg CH4

yr−1 (Yu et al., 2017). Therefore, it is believed that forest soils provide a
significant sink for methane and help mitigate climatic warming.

The observed CH4 fluxes in forest ecosystems are mainly net balance
between methanogenesis and methantrophic activities. Hence, various fac-
tors such as temperature, soil water content, soil texture, pH, soil inorganic
nitrogen (N) content, microbial activity and fertility etc.(Schnell and King,
1994; Castro et al., 1995; Tamai et al., 2003; Zhang et al., 2008; Giri et al.,
2014; Leitner et al., 2016; Martins et al., 2017) could affect these two
processes via different mechanisms and further affect on the CH4 flux. Litter
provides numerous exogenous nutrients to soil microbes during its decompo-
sition (Dong et al., 1998;Wang et al., 2013) and leaching (Zhou et al., 2016).
The decomposition of litter, followed by the incorporation of the resulting or-
ganic matter into the soil, provides the energy requirements of methanogens
(Zheng et al., 2017) in forest ecosystem without fertilizer. Therefore, litter
input will greatly influence soil CH4 flux in forest ecosystems. For example,
litter removal significantly increased CH4 uptake rates in soils of temperate
forests in Germany (Dong et al., 1998) and Austria (Leitner et al., 2016)
and in soils of a beech forest and a deciduous forest in Canada, and a pine
forest in Finland (Peichl et al., 2010), and Finland (Saari et al., 1998) in
pine forest, whereas litter input in a subtropical forest in China had no effect
on CH4 flux (Tang et al., 2006). Conversely, litter removal from the forest
floor reduced CH4 uptake in four soils under pure beech and two mixed
forests (30 % spruce, 70 % beech and 70 % spruce, 30 % beech) in
Germany (Borken and Beese, 2006). Thus, the potentially important impact
of litter on CH4 flux in soils varied among forest types. Although the differen-
tial responses of CH4flux in response to litter removalmaybe associatedwith
the variations in the physiochemical properties of the studied forest soils and
litter layers, litter dynamics (litter production and decomposition) and the
effects of environmental factors on litter decomposition (Gritsch et al.,
2016), the mechanisms of litter input effect on CH4 flux remain to be eluci-
dated. Therefore, further research is wanted to study the effects of litter
layer on CH4 uptake in the soils of forested ecosystems.

Previous studies have examined litter contribution to soil CH4 flux
(Dong et al., 1998; Saari et al., 1998; Borken and Beese, 2006; Tang et al.,
2006; Peichl et al., 2010; Leitner et al., 2016) and variations in soil temper-
ature, soil water content (Yan et al., 2008; Werner et al., 2006), soil
inorganic N content, and soil microbial activities affect CH4 flux in forest
soils among forests ecosystems. However, only few field experiments
have evaluated the influence of litter dynamics on soil CH4 flux in forest,
particularly the possible effects of nitrogen and carbon derived from litter
decomposition on CH4 flux versus the role that soil fertility or environmen-
tal factors plays (Corteselli et al., 2017). Therefore, further research on the
2

effects of litter decomposition and nutrient input on CH4 uptake in forest
soils is urgently required to better understand the mechanisms underlying
the exchange of CH4 at the soil–atmosphere interface among forest.

Tropical forests are generally considered to be a major net sink for CH4

(Tian et al., 2016; Tian et al., 2019; Tian et al., 2020). The annual CH4

uptake by tropical forests is estimated to be 6.4 Tg yr−1, which accounts
for 45 % of global CH4 uptake by forest soils (Dutaur and Verchot, 2007).
Furthermore, the production and oxidation of CH4 in tropical forests are
more sensitive to the carbon and nitrogen input because of the higher rain-
fall and temperature. The reason is that soil available carbon and CO2 are
themain substrates for CH4. production and nitrogen content also influence
the soil microbial function which introduces more carbon inputs into the
soil during rainy season via throughfall deposition (Yu et al., 2021; Zhou
et al., 2016). Therefore, nitrogen content is correlated to CH4 production
and oxidation; and has a strong relationship with CH4 flux. Tropical
rainforests produce much more litter and decompose it more rapidly than
temperate and boreal forests (Tang et al., 2010). For tropical rainforest
without fertilizer, litter is the main source for soil carbon and nitrogen.
However, few studies regarding the litter input effect on soil CH4 fluxes
have focused on tropical rain forests (Yan et al., 2008; Lang et al. 2017;
Yu et al., 2021; Zhou et al., 2021). In addtion, the accuracy of CH4 flux
modelling in tropical regions is affected, to some extent, by our poor under-
standing of the contributions of litter input and decomposition to the soil
CH4 flux (Tian et al., 2016). Therefore, the mechanisms of litter input and
decomposition effect on the soil CH4 flux in tropical forests need to be bet-
ter understood. In this study, we (1) performed a litter-removal experiment
that measured litter dynamics (litter production and decomposition) and
soil physicochemical properties in a tropical rainforest, southwest China,
and (2) investigated the effects of litter input and decomposition on the
CH4 flux among forest ecosystems through a literature review.

2. Materials and methods

2.1. Study site

The tropical rainforest we studied is belonged to CNERN (Chinese
National Ecosystem Research Network) and CERN (ChinaFLUX) located in
Xishuangbanna, Yunnan Province, southwest China (21°10′N, 101°2′ E, ele-
vation 650 m). Mean annual precipitation for the study period (2003–2016)
was 1415 mm and mean annual air temperature was 21.4 °C (Fei et al.,
2018). The climate of this area is tropicalmonsoon, characterised by a strong
seasonal variation in precipitation, with >80 % of precipitation falling in a
distinct rainy season (May–October). During the study period, the mean air
temperature was 19.9 °C (a bit below normal), and the mean precipitation
was approximately normal (1412mm). The soils of the study area aremainly
comprised of oxisols derived from Cretaceous yellow sandstone. Surface soil
(0–20 cm) bulk density was 1.4 ± 0.1 g cm−3. Soil texture was sandy loam
with 60%of sand, 17%of silt, and 23%of clay. The pHwas 4.6. The total N
and organic contentswere 1.1±0.1 and 9.2±2.2 g kg−1, respectively. The
dominant tree species are Terminalia myriocarpa, Barringtonia pendula,
Pometia tomentosa, Amoora tetrapetala, Gironniera subaequalis andMitrephora
maingayi (Cao et al., 1996).

2.2. Experimental design

We performed a litter-removal experiment to investigate the influence
of litter input on CH4 flux in tropical rainforest soil. The study sites were
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divided into treatment areas where litter was removed (NL) (i.e., not
allowed to accumulate) and control sites (L) where litter accumulated
naturally. A paired-plot design was used where a pair of L and NL
plots was selected within an area of 20 m × 20 m. Locations of six
paired plots (i.e., six replicates) were randomly selected and a distance of
>100 m was kept between the pairs. In the litter-removal treatments, the
litter layer was carefully removed (i.e., no disturbance in the mineral soil
profile) from the soil surface 3 months prior to initiating measurements.
To prevent newly produced litter from accumulating, we installed nylon
nets (2.0 mm mesh, 1 × 2 m in dimension) 1.5 m above each plot. Litter
collected in these nylon nets were removed weekly prior to CH4 flux
measurements.

2.3. Soil CH4 flux measurements

Soil CH4 fluxes were simultaneously measured at weekly intervals
for L and NL treatments using static opaque chambers. One permanent
polyvinyl chloride (PVC) base collar (0.3 × 0.4 m) was placed in the
centre of each field plot (six collars in L plots and six in NL plots) and
inserted into the soil to a depth of 0.1 m (Tang et al., 2006; Brümmer
et al., 2009; Dou et al., 2016). PVC gas chambers, each with an area of
0.12 m2 and 0.2 m height, were manually secured onto the base collars
whenmeasuring gas flux. To measure gas emissions, about 100 ml of gas
was manually collected from each chamber with air-tight syringes at 0,
15, 30, 45 and 60 min after the chamber was tightly secured onto the
base collars. The sampling campaigns were carried out between 09:00
and 11:00 local time. Within 24 h after gases were extracted, the CH4

concentration in the gas samples were measured with an Agilent
4890D gas chromatograph (Agilent Technologies, Palo Alto, California,
USA) equipped with a flame ionisation detector (FID) (refer to Zheng
et al. (2008) for details). The following equation, described by Zhou
et al. (2016) was used to calculate the CH4 flux (negative values indicate
uptake):

F ¼ ρV
A

P
P0

T0

T
dCt

dt
(1)

where F is the CH4 flux (μg m−2 h−1), ρ is the CH4 density under the
ambient air temperature (μg m−3), V is the volume of the chamber
(m3), A is the area of the ground covered by the chamber (m2), T is air
temperature (°C) at the time of sampling, P is atmospheric pressure
(hPa) at the time of sampling, T0 and P0 were the air temperature and
atmospheric pressure under standard conditions (T0 = 25 °C, P0 =
1013 hPa), respectively, and Ct is the CH4 concentration (ppm) in the
chamber at time t.

The annual and monthly accumulated CH4 fluxes (negative values indi-
cate uptake) were calculated as follows (Cai et al., 2013):

AF ¼ ∑n
i¼1 Fi þ Fiþ1ð Þ=2� tiþ1 � tið Þ � 24� 10�5 (2)

where AF is the annual andmonthly accumulated CH4 flux (kg C ha−1), F is
the CH4 flux (μg m−2 h−1), i is the ith measurement, ti+1− t is the number
of days between two consecutivemeasurements and n is the total number of
measurements.

Litter effect (LE) on CH4 uptake was calculated using the following
equation:

LE ¼ FL � FNL (3)

where FL and FNL are the CH4 fluxes from the L and NL treatments,
respectively.

Inhibitory effect (IE) of litter layer on the CH4 uptake was calculated
using the following equation:

IE ¼ FNL � FL

FL
� 100% (4)
3

2.4. Litter dynamics

2.4.1. Litter production and litter stock
Forty circular, nylon litter traps (1.0 mm mesh size, diameter: 0.8 m,

area: 0.25 m2) were placed randomly on the forest floor to measure litter
production in the rainforest. Litter in the traps was collected monthly on
the same day that gas flux was measured.

Ten square PVC frames (0.584 m2 each) were placed randomly on the
forest floor, in the vicinity (within 20 m) of the experimental plots, to col-
lect litter stock (LS) on the forest floor. The litter that accumulated in the
PVC frames were carefully collected by hands in March, June, September
and December from 2013 to 2014. The locations of these frames were
changed after each litter sampling event (i.e., March, June, and September).

2.4.2. Litter decomposition
We used the least squares method to calculate monthly litter decompo-

sition rates from the data of litter production and litter mass remaining on
the forest floor that was obtained quarterly from LS plots, assuming that the
litter decomposition rates were constant between two sampling occasions.
Litter biomass input (LBI) was calculated with the information from LP
and LS as follows (Gao et al., 2018):

LBIi ¼ LPi þ LSi � 1ð Þ � LSi (5)

where LBI is the interpolated monthly litter-derived biomass input
(decomposed), LP is litter production in the i month, LS is the litter stock
and i is month of the year.

2.5. Carbon and nitrogen input from litter

After oven-drying the collected litter at 40 °C, theywere ground by pass-
ing it through a 0.25 mm sieve. The carbon (C) and nitrogen (N) content of
the ground litter was measured with a Vario MAX CN elemental auto-
analyser (Elementary Analysensysteme, GmbH, Langenselbold, Germany).
The monthly litter-derived C and N inputs to forest soil were calculated as
follows:

LNI ¼ LBIi � CNi (6)

LCI ¼ LBIi � CCi (7)

where LNI and LCI are the C and N input from litter (kg ha−1 month−1),
respectively and CNi and CCi are the N and C contents (g kg−1) of the litter
for month i, respectively.

2.6. Soil sampling and physicochemical analyses

During our sampling of gas emissions, we measured soil (at 0 – 10 cm
depth) and air temperatures using a needle thermometer. Soil water
content (at 0 – 5 cm depth, V/V%) was detected using a TDR100 time-
domain reflectometer (Campbell Scientific, Logan, Utah, USA). Water-
filled pore space (WFPS) was calculated as follows:

WFPS ¼ SWC= 1 � BD=2:65ð Þ (8)

where SWC is soil water content (v/v%) and BD is soil bulk density
(g cm−3).

Precipitation above the canopy was recorded at 30 min intervals using
an automatic recorder fixed on top of an eddy flux tower that was 200 m
from our sampled plots.

Soil samples (0–20 cm depth) were collected monthly from L and
NL treatments throughout the experimental period. Collected soil was
transported to the laboratory in an icebox and stored at 4 °C prior to chem-
ical analyses. After the soil was passed through a 2-mm sieve (where fine
roots, debris and stoneswere removed), we used the KCl-extractionmethod
(soil:water, 1:10) to detect soil NO3

−-N and NH4
+-N content. We measured

microbial carbon (MBC) and dissolved organic carbon (DOC) in the



Fig. 1. Soil CH4 flux in treatments with litter (L) and with litter removal (NL)
treatment (a) and the litter effect on soil CH4 flux (FL-NL) (b). Sign convention,
negative means uptake of CH4 from the atmosphere.

Fig. 2. Monthly accumulated CH4 flux in plots with (FL) and without (FNL) litter
(a) the difference of CH4 flux between L and NL (FL-FNL) and (b) in forests soils.
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sampled soil using the chloroform fumigation and K2SO4 extraction
(0.05 mol L−1K2SO4) method (soil to water ratio: 1:5) (Jenkinson and
Powlson, 1976).More details on themethods for soil physicochemical anal-
yses can be found in Gao et al. (2018).

2.7. Data source for the inhibitory effect comparison

Methane flux data were extracted from published studies that included
experiments with litter/organic layer removal treatments (Table S1). We
limited the data extraction in field measurement using static chamber
method with at least a single year of observations. Ancillary data of NH4

+-
N andNO3

−-Nwere extracted fromfigures and tables in the selected studies.
If the extracted data had a variation range (spatial and temporal), the mean
values of the data were used. The inorganic N content refers to the sum of
NH4

+-N and NO3
−-N. In total, by the literature review, we collected mean

annual temperature, mean annual precipitation, bulk density, pH, NH4
+-

N, NO3
−-N, and the CH4 flux data in litter removal treatment and control

from seven studies in a total of nine forests. Regression analyses were
performed between the inhibitory effect and the soil inorganic N content
(Table S2).

2.8. Statistical analyses

We tested the normality of all data with the Kolmogorov–Smirnov test,
followed by linear mixed effects models to assess the treatment effect on
monthly CH4 flux and soil physicochemical properties (soil temperature,
WFPS, NO3

−-N, NH4
+-N, DOC and MBC). The plot number and month

were included as random effects to account for the experimental design
and the repeated measures, respectively. Relationships between monthly
CH4 flux and measured soil physicochemical properties were explored fur-
ther with Pearson correlations. We applied a multiple linear regression
analysis to explain the relationship between monthly CH4 flux (dependent
variable) and measured soil properties (independent variables). We
calculated the R2 contributions to the covariates using total R2 and the
R2 of each independent variable. The data are presented as the mean ± 1
SE (standard error). All analyses were performed with SAS® 9.1 for
Windows® (SAS Institute Inc., Cary, NC, USA).

3. Results

3.1. Litter effect on soil CH4 flux in tropical rainforest

CH4 flux from the L and NL treatments showed similar temporal varia-
tions, with a higher mean rate of CH4 uptake occurring in the dry season
(FL = −47.66 ± 3.11 μg CH4-C m−2 h−1, FNL = −49.11 ± 2.80 μg
CH4-C m−2 h−1) than during the rainy season (FL = −24.87 ± 2.28 μg
CH4-C m−2 h−1, FNL = −29.61 ± 2.16 μg CH4-C m−2 h−1) (Fig. 1a).
The difference in CH4 flux between L and NL treatments (FL-NL) in soil
was significant in the rainy season (F = 20.353, p < 0.001), and was insig-
nificant in the dry season (F = 0.922, P = 0.339, Fig. 1b). Cumulative
annual CH4 flux was−3.30 kg CH4-C ha−1 y−1 in plots with litter and −
3.56 kgCH4-C ha−1 y−1 in plotswithout litter. Thus,without litter accumu-
lation, soils increased their CH4 uptake by around 8 % annually. According
to the monthly total CH4 flux, the cumulative uptake in the dry season
accounted for 64 % and 61 % of the annual CH4 uptake in plots with litter
(L) and those without litter (NL), respectively (Fig. 2a). The effect of an
absence of litter on soil CH4 uptake was greater in the rainy season than
in the dry season (Fig. 2b).

3.2. Factors influencing of soil CH4 flux in tropical rainforest

Soil CH4 flux was significantly and positively correlated with soil
temperature, WFPS, rainfall and soil NO3

−-N content in both treatments
(with and without litter) (Table 1). Litter biomass, carbon and nitrogen
input were positively associated with the CH4 flux (Table 1), suggesting
that litter decomposition and the input of carbon and nitrogen in litter
4

biomass reduced CH4 uptake in plots where litter accumulated. Multiple
linear regressions showed that soil CH4 fluxes in both L and NL treatments
were negatively associated with a combination of soil temperature, soil
moisture, soil N fraction, soil C fraction and C and N inputs from litter
biomass. However, FL-NL was negatively associated with N derived from
litter input (LNI) (Table 2).

3.3. The inhibitory effect of litter on soil CH4 uptake

The inhibitory effect of litter layer on soil CH4 uptake ranged from
−3 % to 49 % in forest ecosystems worldwide. According to the Pearson
correlation, the inhibitory effect of litter layer on soil CH4 uptakewas signif-
icantly and negatively associated with mean annual temperature (r =
− 0.805, p = 0.009), soil NH4

+-N (r=−0.686, p = 0.041) and soil inor-
ganic nitrogen (r=−0.700, p=0.036) based on data from studies around
the world (Table S1). The soil inorganic N content explained the inhibitory
effect of litter on soil CH4 uptake (84 %) with an exponential regression



Table 1
Pearson correlation coefficients between environmental variables andmonthly CH4

flux in a tropical rainforest in southwest China.

FL FNL

Tsoil 0.76⁎⁎ 0.71⁎⁎
WFPS 0.81⁎⁎ 0.84⁎⁎
Rainfall 0.76⁎⁎ 0.75⁎⁎
NH4

+-N
NO3

−-N 0.55⁎⁎ 0.56⁎⁎
DOC
MBC
LBI 0.57⁎⁎
LCI 0.57⁎⁎
LNI 0.59⁎⁎

Abbreviations: FL and FNL are the CH4 fluxes from the L (with litter) and NL treat-
ments (without litter), respectively. Tsoil is soil temperature; WFPS is Water-filled
pore space (%); DOC is soil dissolved carbon content; MBC is soil microbial carbon
content, LBI is litter-derived biomass input, LCI is litter-derived carbon input, and
LNI is litter-derived nitrogen input.
⁎⁎ Correlations that are significant at P < 0.01 level of significance.

Fig. 3. Relationship between soil inorganic N content and the inhibitory effect of
litter on soil CH4 uptake in various forest ecosystems.
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(Fig. 3). The relationship was better than those between the inhibitory
effect and annual temperature (IE = 54.42 × exp(−0.13×MAT), R2 =
0.57) as well as between the inhibitory effect and NH4

+-N (IE = 41.35 ×
exp. (−0.406×NH4+), R2 = 0.73) .

4. Discussion

4.1. Soil CH4 uptake in southwest China tropical rainforest soils

Over the 2-year study period, measurements of CH4 flux from soils with
and without litter revealed the rainforest soils are a net sink of atmospheric
CH4. This result is in line with studies conducted in a variety of tropical for-
ests worldwide (Table S2). Prior studies have confirmed that CH4 flux from
soil is mainly regulated by a combined effect of soil water content and soil
texture, both of which also influence O2 concentrations and CH4 diffusivity
between soil and atmosphere (Wolf et al., 2012; Wang et al., 2013), soil in-
organic N content (because inorganic N inhibits CH4 uptake in soils (King
and Schnell, 1994; Wang and Ineson, 2003)) and pH (influences microbial
activities of methanogens and methanotrophs (Dalal and Allen, 2008). In
our study, mean annual precipitation, which is closely related with soil
water content (Gao et al., 2018) (Table S3), was the lowest (1412 mm) of
all reported values for tropical forests (ranges from 1412 to 5300 mm
with a mean of 2669 mm, Table S2). However, soil pH (4.6) and soil inor-
ganic N content (9.13 mg N kg−1) were similar to the means determined
for these parameters in tropical forest soils (pH ranges from 3.6 to 6.9
with a mean of 4.7 and inorganic N concentration ranges from 0.85 to
35.1mgN kg−1 with amean of 14.85mgN kg−1)). The annual CH4 uptake
from the tropical forest soils in our study (−3.3 kg CH4-C ha−1 y−1) was
Table 2
Results of multiple linear regression analysis between monthly soil–atmosphere
CH4 flux and soil variables in tropical rainforest, southwest China.

Model R2 F P Covariate Parameter
estimation

R2 contribution
(%)

FL 0.87 38.46 <0.001 Soil T 1.63 63
WFPS 0.38 31
NO3

−-N 1.39 6
FNL 0.85 34.14 <0.001 Soil T 1.25 55

WFPS 0.38 39
NO3

−-N 1.02 6
FL-NL 0.44 15.89 <0.001 LNI 1.74 100

Abbreviations: FL and FNL are the CH4 fluxes from the L (with litter) and NL treat-
ments (without litter), respectively. FL-NL is the litter effect on CH4 fluxes; Soil T is
soil temperature; WFPS is Water-filled pore space (%); LNI is litter-derived nitrogen
input.
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similar to the CH4 uptake found in a global survey by Dutaur and Verchot
(2007) (−3.3 kg CH4-C ha−1 y−1). Our estimate is also within the range
of CH4 flux (−0.5–5.9 kg CH4-C ha−1 y−1) from tropical forests around
the world from 1994 to 2016 (Table S2). For forest ecosystems around
the world, the differences in CH4 fluxes between the litter removed treat-
ment and control plots around the world forest ecosystems are due to the
combined effects of MAP, inorganic N content and pH, but the most impor-
tant factor is MAP according to the multiple linear regression (t= −2.48,
p = 0.089) among sites (Table S2). This also suggests that higher annual
precipitation may reduce CH4 uptake in tropical forest soils. Therefore, as
a possible effect of global climate change, the increases in precipitation
and nitrogen deposition in tropical regions are likely inhibit to CH4 uptake
in tropical forest soils.

Our finding showed that tropical forest soils have higher CH4 uptake in
the dry season than in the rainy season, which is consistent with many
other studies in tropical forests (Keller and Reiners, 1994; Steudler et al.,
1996; Verchot et al., 2000; Butterbach-Bahl et al., 2004; Keller et al., 2005;
Davidson et al., 2008; Kiese et al., 2008; Sousa Neto et al., 2011; Veldkamp
et al., 2013; Vanitchung et al., 2014; Jones et al., 2016). Our results suggest
that this seasonal pattern is potentially regulated by seasonal variations in
water-filled pore space, soil temperature and soil NO3

−-N content (Table S3).
Soil water content is an important factor regulating CH4 uptake in soil.

When soilmoisture is high, gas diffusion rates between soil and atmosphere
are reduced, and thereby restricts substrate availability (CH4 from the
atmosphere), which then supplies energy for methanotrophs. However,
anaerobic microsites in soils with limited O2 provide ideal conditions for
methanogens, which in turn leads to a reduction in the uptake of CH4 in
wet soils during the rainy season under relatively more anaerobic environ-
ment (Wolf et al., 2012; Wang et al., 2013). Our finding that CH4 uptake in
soils was negatively associated with soil temperature in plots bothwith and
without litter is consistent with the findings of another study of a tropical
montane rainforest in Peru (Jones et al., 2016).

There are two primary reasons why soil temperature is important to
CH4 production rates. First, methanogens are more sensitive to low temper-
atures than methanotrophs (Segers, 1998) because methanogens are more
active at higher temperatures and thus more CH4 is produced than is
consumed at higher soil temperatures. Second, higher soil temperature
stimulate respiration by soil microbes, which results in the depletion
of soil oxygen concentrations. The depletion of soil O2 results in an
increase in soil anaerobiosis (Butterbach-Bahl et al., 2013), which favours
methanogens (and CH4 production) and inhibits CH4 consumption, possi-
bly explaining the positive relationship found between CH4 and CO2 fluxes
in our treatment plots (with and without litter) (Fig. S1).
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Our finding that CH4 uptake is significantly (and negatively) associated
with soil NO3

−-N content is consistent with other studies conducted in
tropical rainforests such as in Panama (Veldkamp et al., 2013) and Peru
(Jones et al., 2016). Two possibilities exist for this negative association:
(1) nitrifying bacteria and methanotrophs compete for O2 (an electron ac-
ceptor), thereby leading to an increase in soil NO3

−-N content and a further
depletion of soil oxygen, which in turn leads to higher CH4 production and
lower CH4 consumption (Wang and Ineson, 2003) and (2) methanotrophs
are inhibited by the toxic effects of NH2OH (produced by the oxidation of
NH4

+-N) and NO2
− (produced by the reduction of NO3

−-N) in tropical forests
(King and Schnell, 1994) with higher precipitation.

4.2. Effect of litter on CH4 uptake in tropical soils

Plots without litter layers had higher annual CH4 uptake than plots with
litter and the result was similar to those from amixed pine/hardwood forest
and a broadleaf forest in southern China (Tang et al., 2006). However,
difference in CH4 uptake rate between L and NL treatments in this study
is greater than the differences found in subtropical pine forests in China
(Liu et al., 2008; Wang et al., 2013), but less than that found in temperate
and boreal forests (Dong et al., 1998; Peichl et al., 2010; Leitner et al.,
2016). The difference is also much lower than that found in a temperate
beech forest in New Zealand (Price et al., 2004) and a temperate pine forest
in Finland (Saari et al., 1998) (Table S1). However, the inhibitory effect of
the litter layer on CH4 uptake in the Boreal forests of Finland (Saari et al.,
1998) (49 %) was higher than those found in the temperate forests of
Canada (Peichl et al., 2010) (16%), although soils in those forestswere sim-
ilar in terms of pH, bulk density and litter mass. While the litter mass may
not reasonably explain differences in CH4 uptake among forest ecosystems;
this was also suggested byWolf et al. (2012) after examining CH4 uptake in
three types of tropical rainforests in southern Ecuador. This insight suggests
that other environmental factors are responsible for how a litter layer
impacts CH4 uptake in forest soils. As discussed above, the mean annual
temperature, mean annual precipitation, NH4

+-N, NO3
−\\N, pH and inor-

ganic nitrogen (NH4
+ and NO3

−) may regulate influence on CH4 uptake.
But according to the literature review and analysis (Table S2, Fig. 3), soil
inorganic N content explained a higher proportion (84%) of variances asso-
ciated with the effects of litter on CH4 uptake in various forest ecosystems
(Fig. 3) than mean annual temperature and soil NH4

+-N content. This is
also supported by an in situ N addition experiment experiment at the
same site (Zhou et al., 2021), which showed N addition significantly
decreased soil CH4 uptake (N addition: −0.0407 ± 0.01543 μg C m−2

h−1; Control: −0.0500 ± 0.02083 μg C m−2 h−1; F = 11.327, p <
0.001) when soil nitrogen fractions increased significantly (Zhou et al.,
unpublished, Fig. S2). Considering that the soil CH4 flux was significantly
correlated to soil mineral N content (F CH4 = −109.246+ 11.578 ×
Mineral N (F = 4.390, p = 0.043)), we concluded that variations in CH4

uptake among different forest ecosystems are largely due to soil inorganic
N content rather than the differences in mean annual temperature and
NH4

+\\N. However, among the sites included in our analysis, only one of
them is a tropical forest (this study). Therefore, more work should be
done to test the inherent mechanism between CH4 uptake and inorganic
N dynamics caused by litter input in unfertilized forest soils, especially in
soils of tropical forests.

4.3. Factors influencing the effect of litter on CH4 uptake

We found that the effect of litter input on CH4 uptake in forest soils were
greater in the rainy season than in the dry season (Fig. 2b). This may be
attributed to that 1) soil CH4 uptake generally occurs in the mineral soil
rather than in the overlying litter layer (Saari et al., 1998; Brumme and
Borken, 1999; Wang et al., 2013), and 2) the temporal differences of envi-
ronmental factors (Gao et al., 2018) that control CH4 uptake between L and
NL should respond to seasonal variations of litter effect on soil CH4 uptake
(Table 1). The reasons are as following. Firstly, litter removal only sup-
presses net CH4 flux in soils and does not change the mechanism governing
6

the flux (Figure1, Table 1) as litter removal from experimental plots did not
change any relationship between soil properties and the CH4flux. Secondly,
water-filled pore space, soil temperature, MBC and N fractions varied
slightly over time in plots both with and without litter (Gao et al., 2018).
In this way, temporal fluctuations in the effect of litter on CH4 uptake is
controlled by the amount of litter input at any given time and the process
of decomposition (Tables 1, 2). Furthermore, multiple regression analysis
revealed that N input from litter was the dominant environmental factor
influencing the effect of litter on CH4 uptake (Table 2), indicating that the
temporal variation in litter-derived nitrogen input to soils is responsible
for the temporal variation in the CH4 flux. Although 51 % of the annual
total litterfall was produced in the dry season at our study site, higher
precipitation and temperatures in the rainy season were responsible for
68 % of litter decomposition that occurred (Gao et al., 2018). Dissolved
inorganic nitrogen and dissolved organic nitrogen flux (Fig. S3) were also
higher during the rainy season. Prior research conducted in the same forest
reported significantly positive correlations between dissolved nitrogen
content and the rate of litter decomposition (Zhou et al., 2015), indicating
that more labile nitrogen (derived from litter decomposition) is input to the
soil during the rainy season than in the dry season. Since the annual
throughfall of dissolved inorganic nitrogen (from September 2013 to
August 2014) was 6.78 kg ha−1 yr−1 (Yu et al., 2021) which was far less
than litter decomposition input (139.80 kg ha−1 year−1) at the site (Gao
et al., 2018), we suggest that the inorganic N from litter decomposition
was the major inhibitor of soil CH4 uptake. The results also suggest that if
increases in temperature and rainfall occur as a result of climate change,
the subsequent increase in decomposition rates could have a negative
impact on CH4 uptake in forests soils andweaken the contribution of forests
in mitigating global warming.

5. Conclusions

In this study, we evaluated the effect of litter layers and litter decompo-
sition dynamics on CH4 uptake on tropical rainforest soils. Our results
showed that temporal variations in CH4 uptake were mainly regulated by
soil temperature, soil moisture and soil nitrate content. Litter removal did
not change the mechanisms responsible for CH4 flux, but it did increase
CH4 uptake by eliminating exogenous nitrogen inputs to soil that were de-
rived from litter decomposition. Litter had a more significant effect on CH4

uptake during the wet season that during the dry season, possibly because
the higher nitrogen input from litter decomposition occurred during the
rainy season. Our study suggests that the variation in CH4 uptake in re-
sponse to litter removal in forest ecosystems is likely more regulated by
soil inorganic nitrogen content than the properties of litter layers them-
selves. Altogether, we can deduce that future climate warming is likely to
stimulate litter-derived nitrogen input to soil, eventually leading to a reduc-
tion in CH4 uptake by forests.
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