

应用与环境生物学报 Chinese Journal of Applied and Environmental Biology ISSN 1006-687X,CN 51-1482/Q

《应用与环境生物学报》网络首发论文

题目:	哀牢山亚热带常绿阔叶林冠层温度变化特征
作者:	孙晨娜,张晶,鲁志云,张一平, Gnanamoorthy Palingamoorthy,金艳强,宋
	清海
DOI:	10.19675/j.cnki.1006-687x.2021.08043
收稿日期:	2021-08-22
网络首发日期:	2022-09-20
引用格式:	孙晨娜,张晶,鲁志云,张一平, Gnanamoorthy Palingamoorthy,金艳强,宋
	清海. 哀牢山亚热带常绿阔叶林冠层温度变化特征[J/OL]. 应用与环境生物学
	报. https://doi.org/10.19675/j.cnki.1006-687x.2021.08043

www.cnki.net

网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,只可基于编辑规范进行少量文字的修改。

出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国 学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷 出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出 版广电总局批准的网络连续型出版物(ISSN 2096-4188, CN 11-6037/Z),所以签约期刊的网络版上网络首 发论文视为正式出版。 《应用与环境生物学报》 Chin J Appl Environ Biol Doi: 10.19675/j.cnki.1006-687x.2021.08043

哀牢山亚热带常绿阔叶林冠层温度变化特征

孙晨娜^{1,4} 张 晶^{1,4} 鲁志云^{1,3} 张一平¹

Gnanamoorthy Palingamoorthy¹ 金艳强 ^{2**} 宋清海 ^{1**}

¹中国科学院西双版纳热带植物园,热带森林生态学重点实验室 勐腊 666303
²中国科学院西双版纳热带植物园,热带植物资源可持续利用重点实验室 勐腊 666303
³中国科学院哀牢山亚热带森林生态系统研究站 景东 676200
⁴中国科学院大学生命科学学院 北京 100049

摘 要 冠层温度是衡量植物体内水分变化的重要指标之一,为探明哀牢山亚热带常绿阔叶林冠层温度变 化特征,利用冠层红外温度探测方法,测定云南省哀牢山亚热带常绿阔叶林冠层红外温度,并定量评价环 境因子净辐射(*R*_n)、风速(*W*_s)和饱和水汽压差(VPD)对冠层温度(*T*_c)与大气温度(*T*_a)差值(即 冠-气温差)的相对贡献。结果表明:(1)哀牢山亚热带常绿阔叶林冠层温度的日变化和年变化特征都呈 现出单峰变化趋势;(2)雨季冠层温度和空气温度变化较干季平缓,昼夜温差(5.51℃)比干季(8.86℃) 低 37.8%,且雨季(0.51℃)的冠-气温差比干季(1.34℃)低 62.3%;(3)受降雨影响,雨季日平均*T*_c 与*T*_a的变异程度小于干季(雨季*T*_c与*T*_a变异系数分别为 1.0%、1.1%;干季*T*_c与*T*_a变异系数分别为 1.8%、 1.8%);(4)净辐射、饱和水汽压差和风速是影响亚热带常绿阔叶林冠层温度变化的重要因子,而且不同 环境因子在不同季节对冠-气温差的贡献程度差异较大。本研究预示冠层小气候的变化可能会对哀牢山亚 热带常绿阔叶林的冠层热量交换产生重要影响;结果可为建立有明确生理生态学机理的森林碳水通量模型 提供基础。

关键词 冠层温度; 冠-气温差; 环境因子; 亚热带常绿阔叶林; 哀牢山

Characteristics of canopy temperature in a subtropical evergreen

broad-leaved forest in Ailao Mountain, China

SUN Chenna^{1, 4}, ZHANG Jing^{1, 4}, LU Zhiyun^{1, 3}, ZHANG Yiping¹, Gnanamoorthy Palingamoorthy¹, JIN Yanqiang^{2**} & SONG Qinghai^{1**}

¹ CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China

² CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China

³ Ailao Mountain Subtropical Forest Ecosystem Research Station, Chinese Academy of Sciences, Jingdong 676200, China

⁴ College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract Canopy temperature (T_c) is one of the most important indexes to measure the changes in water content in plants. In order to reveal the characteristics of T_c change in subtropical evergreen broad-leaved forest in Ailao Mountain (Southwest China). We measured the T_c of the subtropical forest using infrared temperature sensor. We further assessed the relative contributions of key environmental factors (net radiation (R_n), wind speed (WS), and vapor pressure deficit (VPD)) to T_c concerning air temperature (T_a). We found that: (1) The diurnal and annual variations of T_c of subtropical evergreen broad-leaved forest in Ailao Mountain showed a single-peak trend; (2) Canopy temperature changes more smoothly in the rainy season than that in the dry season. The diurnal

收稿日期 Received: 2021-08-22 接受日期 Accepted: 2022-07-08

云南省中青年学术和技术带头人后备人才项目(202005AC160003)、云南省万人计划青年拔尖人才项目和中国科学院战略性先 导科技专项(XDA19020302)资助 Supported by the Young and Middle-aged Academic and Technical Leaders Reserve Talents Program of Yunnan Province (202005AC16003), the Young Top Talents Project of Yunnan Province, and the Strategic Pilot Science and

Technology Special Project of Chinese Academy of Sciences (XDA19020302) **通信作者 Corresponding authors (E-mail: jinyanqiang@xtbg.ac.cn; sqh@xtbg.ac.cn) temperature difference (5.51 °C) was 37.8% lower than that in dry season (8.86 °C), and the canopy temperature difference (0.51 °C) in rainy season was 62.3% lower than that in dry season (1.34 °C); (3) In general, under the influence of rainfall, the variation degree of T_c and T_a in rainy season was smaller than that in dry season (the variation coefficient of T_c and T_a in rainy season was 1.0% and 1.1%; T_c and T_a in dry season was 1.8% and 1.8%); (4) R_n , VPD, and WS were important factors affecting T_c in subtropical evergreen broad-leaved forest, and different environmental factors contributed significantly to canopy temperature difference in different seasons. The results indicate that the changes of microclimate in canopy layer may have an important effect on canopy heat exchange of subtropical evergreen broad-leaved forest in Ailao Mountain. This study provides basic for establishing forest carbon and water flux models with clear physiological and ecological mechanisms.

Keywords canopy temperature; canopy temperature diffierence; environmental factors; subtropical evergreen broad-leaved forest; Ailao Mountain

冠层温度(canopy temperature, *T*_c)的变化是植物冠层与周围环境进行能量交换的结果,也是衡量植物体内水分状态的一个重要指标。植物通过蒸腾失水来维持其叶片温度相对的稳定性,一旦遇到外界胁迫(如干旱)的影响,为维持正常生长,植物将叶片关闭气孔以减少蒸腾及与外界的能量交换,冠层温度随之升高。因此,冠层温度的变化常被作为监测植株的受胁迫情况的指标之一^[1]。在缺水条件下,一般气孔行为的改变会直接反映在一些生理指标上,如气孔导度^[2]、蒸腾强度等的改变^[3]。由于水分吸收跟不上水分的蒸腾,气孔为了维持植物体内的水分平衡将会趋于关闭,而蒸腾强度的改变通常决定叶片表面热量损失的程度大小,进而导致冠层温度的变化^[1]。因此,冠层温度的变化,常用冠-气温差(canopy temperature difference, CTD)来计算,可以用来量化植物个体的碳固定能力和水分利用的差异。

红外测温技术以其灵敏度高、可以连续进行大面积观测等特点,目前被广泛应用于农业生态系统和森林生态系统中。在农业生态系统中,冠层温度主要被应用于预报和监测农作物水分和病虫害胁迫情况^[4,8],以适时调整灌溉和管理策略,提高农作物质量和产量。在森林生态系统中,关于冠层温度变化的研究也取得了一定进展,但是研究对象主要为热带季节雨林^[9]和入工林(如橡胶林^[10-11]、栓皮栎^[12]),缺乏对亚热带原始森林的研究。对于冠层温度的影响因子来说,物种水平上,植物自身的生理生态特征是影响冠层温度变化的重要因子,且不同植物冠层温度变化的受控因子并不一致,如不同的小麦品种间叶温与叶片扩散阻力呈显著的正相关^[13];水稻冠层温度与叶水势呈极显著性负相关^[14]。一般来说,冠-气温差与相对生物量呈正相关关系,冠-气温差较高的植物在遭受到水分胁迫时其生物量积累能力会更强^[14-15]。从群落水平上,物种的组成和叶形等会直接影响到冠层的成分和特征,进而对冠层温度造成影响。有研究表明,落叶阔叶树种为主的森林冠-气温差比以针叶树种为主的森林大,说明森林生态系统中树种的多样性直接决定了冠层温度的格局^[16]。此外,Leuzinger等^[17]对城市内绿化植物冠层温度的研究发现,当空气温度高于35℃时,小叶片植物冠-气温差升高的幅度小于大叶片植物,表明小叶片植物的生长比大叶片植物更有优势。然而,亚热带常绿阔叶林物种组成丰富,叶片性状多样,其冠层温度的变化特征如何以及受控因子有哪些,这些问题尚未得到解答。

森林是陆地生态系统的主体,是土壤-植物-大气连续体(soil-plant-atmosphere continuum, SPAC)的 重要界面,森林冠层温度的改变,会影响生态系统的水分平衡和能量转换^[18]。哀牢山地处东亚的热带边缘, 是热带向亚热带发展的过渡地带^[19]。哀牢山亚热带原始森林生态系统对气候变化的响应十分敏感,特别是 在全球气候变化日渐加剧的背景下,研究该地带典型森林植被的冠层温度的变化的特征具有重要的科学价 值^[20-22]。为此,本研究以哀牢山亚热带湿性常绿阔叶林为研究对象,定量评价群落冠层在不同季节冠层温 度的变化以及环境控制因子,为建立有明确生理生态学机理的森林碳水通量模型提供基础数据。

1 材料与方法

1.1 研究地概况

哀牢山源于云南境内西北部的云岭山系,是滇中高原与横断山系南段或滇西纵谷区的地理分界线,也 是我国冬季东北风和夏季湿热西南季风近直交的地区,具有独特的气候环境。研究区域位于云南哀牢山亚 热带森林生态系统国家野外科学观测研究站(Ailao Mountain Station for Subtropical Forest Ecosystem Studies, ASSFE; 24°32'N, 101°01'E, 海拔 2 450 m) 附近(表1,图1)。该地区属于亚热带山地气候, 气候温凉,水资源丰富,日照偏少。年平均气温11.7℃,最热月(7月)平均气温15.4℃,最冷月(1月) 平均气温 6.1 ℃。一年中干湿季分明,年降雨量 1 881.5 mm,其中雨季(5-10月)为1 607.3 mm(占全年 的 85.4%), 干季(11月—次年4月)为 274.2 mm(仅占全年的 14.6%)。全年平均相对湿度为 80.1%, 干 季平均相对湿度为 70.3%, 雨季平均相对湿度为 89.8%。年日照时数约为 1 239 h。林地土壤为山地黄棕 壤,土壤有机质含量高,含氮量丰富,表面由厚 3~7 cm 厚的凋落物层覆盖。研究样地建立于 2003 年 6 月, 面积为100m×100m。

Table 1 Canopy microclimate of subtropical evergreen broad-leaved forest in Ailao Mountain from 2009 to 2013 平均气温 月份 平均相对湿度 Month Mean relative humidity (RH/%) Mean temperature $(T_a/^{\circ}\mathbb{C})$ 6.01 73.86 2 9.41 52.88 3 10.39 56.61 4 12.82 63.90 5 14.58 78.63 6 15.27 89.98 15.40 93.72 7 8 15.20 91.70 9 92.35 14.31 10 92.22 12.14 87.65 11 8.75 12 5.95 86.78

表1 2009—2013 年哀牢山亚热带常绿阔叶林冠层小气候状况

图1 哀牢山亚热带常绿阔叶林冠层外貌

Fig. 1 Subtropical evergreen broadleaved forest in Ailao Mountain

研究区森林植被类型为林相完整、结构复杂且以云南特有植物种为优势的中山湿性常绿阔叶林,其保 存完好、人为干扰少。群落可明显分出乔木、灌木和草本 3 层,乔木层主要由壳斗科的木果柯 (Lithocarpus xylocarpus)、硬壳柯(Lithocarpus hancei)、变色锥(Castanopsis rufescens),山茶科的南洋 木荷 (Schima noronhae)、折柄茶 (Hartia sinensis)、蒙自连蕊茶 (Camellia forrestii), 樟科的黄心树 (Machilus bombycina)、黄丹木姜子(Litsea elongata),木兰科的红花木莲(Manglietia insignis)、多花含 笑(*Michelia floribunda*)等优势树种组成^[23]。层间植物发达,以箭竹(*Sinarundinaria nitida*)(盖度达75% 左右)及木质大藤本最为常见,附生植物丰富^[24],以苔藓和蕨类植物为主。

1.2 常规气象测定

使用安装在铁塔上的常规气象梯度观测系统(RMMS)观测数据,铁塔总高 34.0 m。7 层 3 杯风速仪(A100R,英国 VECTOR INSTRUMENTS 公司)和温湿计(HMP45C,芬兰 VAISALA 公司)构成风速和温湿度垂直梯度观测系统(安装高度分别为 1.5, 10.0, 18.0, 24.0, 30.0, 34.0 m)。此外,还设置有 5 层 PAR 传感器(安装高度分别位于 1.9、4.3、10.8、19.0、28.6 m,顶层为点状 LI190SB,美国 LI-COR 公司;其余为 1m 长 10 点杆状,LQS70-10SUN,美国 APOGEE 公司),观测光合有效辐射的垂直变化;在观测铁塔顶层(34.0 m)设置有太阳辐射传感器(CM11,荷兰 KIPP&ZONEN 公司)和雨量筒(Model 52203,美国 R.M.Young 公司),在铁塔 27m 处设置有太阳辐射和反射辐射(长、短波)及净辐射观测的传感器(CNR-1,荷兰 KIPP&ZONEN 公司);并观测了地表温度(TCAV,美国 CAMPBELL 公司)。数据采样频率均为 1 Hz,所采集到的数据由数据采集器(CR5000, CR10X, CR23X-TD+AM25T,美国 CAMPBELL 公司)记录并实时传输到专用电脑存储。

1.3 红外冠层温测定及冠-气温差计算

利用安裝在亚热带常绿阔叶林 34 m 高气象观测观测铁塔林冠上方的红外温度探头(IRTS-P, Apogee, USA),对冠层顶部温度进行连续测定(红外温度探头安装高度为 28.6 m)。红外温度探头与数据采集器连接,每 30 min 记录 1 次数据。环境数据以及冠层温度数据采样频率均为 1 Hz,使用数据采集器(CR5000, CR10X, CR23X-TD+AM25T,美国 CAMPBELL 公司)进行收集和存储。将所获得的冠层温度和冠层高度的空气温度作差值,得出冠-气温差值。

冠气温差计算公式

$$\Delta T = T_{\rm c} - T_{\rm a} \tag{1}$$

其中, ΔT 为冠-气温差 (C), T_c 为冠层温度 (C), T_a 为空气温度 (C)。 根据能量平衡方程得到冠-气温差的计算公式

$$T_{\rm c} - T_{\rm a} = \frac{r_{\rm a} - R_{\rm n}}{\rho \cdot c_{\rm p}} \cdot \frac{\gamma(1 + \frac{r_{\rm c}}{r_{\rm a}})}{\Delta + \gamma(1 + \frac{r_{\rm c}}{r_{\rm a}})} - \frac{\rm VPD}{\Delta + \gamma(1 + \frac{r_{\rm c}}{r_{\rm a}})}$$
(2)

其中, *T*_c 为冠层温度 (℃), *T*_a 为空气温度 (℃), *r*_a 为空气动力学阻力 (s/m), *r*_c 为植物冠层阻力 (s/m), ρ 为空气密度 (1.29 kg/m³), *c*_p 为空气热容量 (1012 J kg⁻¹ ℃⁻¹), γ 为湿度计常数 (0.066 kPa/℃), *R*_n 为净 辐射 (MJ m⁻¹ d⁻¹); Δ 为饱和水汽压与温度关系曲线斜率,即在气温为 *T* 时饱和水汽压曲线的斜率; VPD 为饱和水气压差 (kPa)。

1.4 数据处理

数据的观测时间为 2009-2013 年,所有的环境数据和冠层温度数据的输出频率为 30 min /次,每个指标每天共收集 48 个数据。利用加权平均方法求得各项数据每个季节每天的平均值,获得环境因子(净辐射、风速和饱和水汽压差)和冠层温度的日变化和年变化数据。利用多元回归方法,分析不同环境因子(净辐射、风速和饱和水汽压差)在回归模型中对于冠-气温差的贡献(SPSS 22,美国 IBM 公司),并利用 Sigmaplot 12.5 (Systat Software Inc.公司,美国)进行作图。

2 结果与分析

2.1 不同季节冠层温度和空气温度日变化特征

干季(11月至次年4月)和雨季(5月至10月)的冠层温度与空气温度日变化都呈现出单峰变化趋势,且空气温度变化滞后于冠层温度的变化(图2)。日出(8:00)以后,随着辐射强度的增加,冠层温度和大气温度逐渐升温(图2和图3),冠层的升温速率高于大气,在14点左右,太阳辐射提供的能量与林冠散失的能量由赢变亏时,林冠的温度达到最大,且在此时间段,冠层温度高于空气温度;而空气温度在16:00 左右达到最大,此后太阳辐射逐渐减弱,林冠不断向外散失热量,冠层温度下降,在此时间段空气

温度大于冠层温度。雨季,夜间平均冠层温度高于 13 ℃ (图 2a),而干季夜间平均冠层温度均低于 10 ℃,最低甚至到 6 ℃ (图 2b)。总体来说,由于雨季降水较多,冠层温度和空气温度变化较旱季平缓, 昼夜温差为 5.51 ℃,比干季 (8.86 ℃)低 37.8%。而且雨季 (0.51 ℃)的冠-气温差比干季 (1.34 ℃) 低 62.3%。

图 2 干季和雨季森林冠层温度和空气温度日变化.

Fig. 2 Diurnal variations of canopy temperature and air temperature in dry and rainy season.

图 3 干季和雨季森林向下短波(SR)和向上长波辐射(LR)日变化.

Fig. 3 Diurnal variations of downward shortwave radiation (SR) and upward longwave radiation (LR) in dry and rainy season.

2.2 冠层温度和空气温度年变化特征

冠层温度(*T*_c)和空气温度(*T*_a)的年变化趋势基本一致,都呈现单峰形式(图 4)。日平均 *T*_{cmax} (16.3 ℃)大于 *T*_a max</sub>(14.6 ℃),日平均 *T*_{cmin}和 *T*_{amin}分别为: 7.8 ℃、8.9 ℃。总的来说,日平均冠层 温度(12.1 ℃)大于空气温度(11.8 ℃)。*T*_{cmax}和 *T*_{amax}的峰值都出现在雨季,分别出现在第 200 天 (24.8 ℃)和第 199天(22.8 ℃); *T*_c min和 *T*_{amin}的峰值也出现在雨季,分别出现在第 216天(15.1 ℃) 和第 216天(15.7 ℃)。受太阳辐射影响,雨季 *T*_c和 *T*_a的最大值、最小值都大于干季(图 4)。受降雨的 影响,雨季日平均 *T*_c与 *T*_a的变异程度小于干季(雨季 *T*_c与 *T*_a变异系数分别为 1.0%、1.1%;干季 *T*_c与 *T*_a 变异系数分别为 1.8%、1.8%)。由于降雪或冰冻天气的影响,冠层温度和空气温度的日最低值在某些天数 达到0 ℃以下(图 4a 和图 4b)。

图 4 森林冠层温度(T_c)和空气温度(T_a)日最高温和日最低温年变化. 阴影部分为雨季, 非阴影部分为干季. Fig. 4 Annual variations of daily maximum and minimum of canopy temperature (T_c) and air temperature (T_a). The shaded part is the rainy season, and the non-shaded part is the dry season.

2.3 环境因子和冠-气温差年变化

哀牢山亚热带常绿阔叶林全年净辐射的日平均值达 448.4 W/m², 干季净辐射日平均值为 501.6 W/m², 雨季净辐射日平均值为 396.1 W/m²; 干季后期 (3—4 月份),净辐射基本处在全年最高水平,最高值接近 1 000 W/m²; 进入雨季后,如 6—7 月份,净辐射强度变小(图 5a)。全年平均风速为 1.3 m/s,干季日平均风速达到 1.6 m/s,雨季日平均风速为 1.1 m/s;风速在 1 月份为最大,平均可达 3 m/s;而在雨季时变小(图 5b)。干季,饱和水汽压差日平均值达到 4.9 hPa,而雨季为 3.6 hPa。雨季饱和水汽压差在干季末期 (4 月份)达到最大,可达 13 hPa (图 5c);随着雨季的到来,饱和水汽压差逐渐变小。

Fig. 5 Annual variations of net radiation (R_n) , wind speed (W_s) and vapor pressure deficit (VPD) in subtropical evergreen broadleaved forest ecosystem in Ailao Mountain. The shaded part is the rainy season , and the non-shaded part is the dry season.

哀牢山亚热带常绿阔叶林冠-气温差具有显著的年变化动态,且波动较大;年平均冠-气温差值为 1.8 ±1.1 ℃,最大值可达7 ℃,而最小值值接近-2 ℃(图6)。

图 6 冠-气温差(canopy temperature difference, CTD)年变化特征. 阴影部分为雨季,非阴影部分为干季.

Fig. 6 Annual variations of canopy temperature difference (CTD). The shaded part is the rainy season, and the non-shaded part is the dry season.

为进一步探讨不同环境因子在不同季节对于冠-气温差的相对贡献率,本文利用多元回归方法,得到 了干季和雨季净辐射、风速和饱和水汽压差对于冠-气温差的相对贡献(表 2)。结果显示,净辐射、风速 和饱和水汽压差三个主要环境因子在干季和雨季均显著影响了冠-气温差,但不同环境因子在不同季节对 于冠-气温差的相对贡献率有所差异。干季,净辐射对于冠-气温差的相对贡献率为 62.4%,其次为饱和水 汽压差 (31.4%),风速贡献率为 6.2%;在雨季,净辐射对冠-气温差的相对贡献率显著提高到 83.9%,其 次为饱和水汽压差 (13.9%),风速贡献率仅有 2.2%。净辐射在干季和雨季对冠-气温差的相对贡献率都达 到 60%以上,表明净辐射是影响哀牢山亚热带常绿阔叶林冠-气温差的最重要的环境因子。

环境因子		干季 Dry season		雨季 Rainy Season		
Environmental parameter	B 值 B Value	相对贡献率 Relative contribution rate (<i>R</i> /%)	B 值 B Value	相对贡献率 Relative contribution rate (<i>R</i> /%)		
常量 Constant	0.159	-	-0.149			
净辐射 Net radiation (<i>R</i> _n /W m ⁻²)	0.007	62.4**	0.005	83.9**		
风速 Wind speed (v/m s ⁻¹)	-0.378	6.2**	-0.083	2.2**		
饱和水汽压差 por pressure deficit (VPD/hPa)	-0.242	31.4**	-0.094	13.9**		

	表 2	干季和雨季环境因子	(净辐射、	风速、	饱和水汽压差)	对于冠	气温差的相对贡配
--	-----	-----------	-------	-----	---------	-----	----------

**表示在 0.01 水平上显著.

** indicates the significance at the 0.01 level.

3 讨论

3.1 冠层温度和空气温度变化特征

冠层温度是影响森林生态系统结构和功能的重要因子,它强烈的影响着森林与大气中的水分、能量和 二氧化碳交换^[25]。一般来说,受太阳辐射影响,常绿阔叶林门季和雨季冠层温度和空气温度的日变化特征都呈单峰 变化趋势^[26]。本研究结果显示,哀牢山亚热带常绿阔叶林干季和雨季冠层温度和空气温度的日变化也呈现 出明显的单峰变化趋势,且与太阳辐射的变化趋势基本保持一致,但空气温度变化滞后于冠层温度的变化。 这是由于林冠比热小于大气,所以林冠的升温速率大于空气。林冠并不是纯粹的物理结构,而是具有负反 馈调节机制的自组织结构^[27],哀牢山亚热带常绿阔叶林在雨季温湿度组合条件较好,且叶面积指数最大, 森林生长状况最好,生理活动旺盛,所以,雨季冠层温度的日变化较干季平缓,且雨季冠-气温差值小于 干季。哀牢山干季和雨季的环境条件存在显著的差异性,干季夜间平均冠层温度最低甚至到 6 ℃,低于 某些落叶树种的最低生长温度,因此,干季中期(如 12 月—笠年 1 月份)落叶树种不能正常生长而出现 换叶现象^[28]。哀牢山亚热带常绿阔叶林全年的冠-气温差值基本维持在 0-4 ℃之间,但是受降雪等低温天 气的影响^[29],冠-气温差值也有出现低于 0 ℃的现象。已有研究表明,低温胁迫对亚热带地区植物叶片的 凋落时间和顺序有重要的影响^[30]。因此,在全球变暖的背景下,由冬季温度升高导致的冠-气温差变化对 亚热带常绿阔叶林森林生态系统物候期及群落动态的影响较大。

3.2 环境因子对冠-气温差相对贡献

冠-气温差是表征叶片温度变化重要指标,除了受植物本身生理特征的调节,在不同季节还会受到不 同环境因子的控制[31]。根据叶片能量平衡模型,冠-气温差的变化主要受净辐射、风速和饱和水汽压差等 环境因子影响[32]。本研究发现,哀牢山亚热带常绿阔叶林冠层温度以及冠-气温差特征与净辐射、饱和水 汽压差和风速之间存在着紧密的关系。按照相对贡献率的大小排序,净辐射对冠一气温差的相对贡献率最 大,其次为饱和水汽压差,风速对冠-气温差的贡献最小。但在干季和雨季,不同因子对冠-气温差的相对 贡献有所差异。干季(62.4%)净辐射对冠-气温差的相对贡献小于雨季(83.9%),这是因为干季水热条 件不足,冠层与大气之间的能量交换相对较弱,而雨季水热充足,导致冠层与大气之间对流条件旺盛,能 量交换相对较干季强^[33]。而干季饱和水汽压差(31.4%)和风速对冠-气温差的相对贡献率均大于雨季 (13.9%),这是由于干季饱和水汽压差和风速相对大于雨季造成的。饱和水汽压差与大气中温湿度有紧密 联系,说明干季温湿度的微小变化都会对冠-气温差造成影响[34]。而风速会消弱冠层边界阻力,促进冠层 蒸腾作用的进行[35],蒸腾作用的加强有利于降低冠层温度,也使得干季的冠-气温差大于雨季。特别地, 哀牢山亚热带常绿阔叶林中风速与植物冠层温度之间存在着显著的负相关关系,与之不同的是,邓聪等人 对海南橡胶林的研究中却发现橡胶树的冠层温度与风速大小基本没有相关性,只有在干季中期(1-2月) 两者呈现出显著的负相关。造成这种差异的原因主要是风速对冠层温度的影响与植物分布的地理位置和植 物种类有关[36],另外,本研究关注了整个亚热带常绿阔叶森林生态系统冠面的温度变化特征,但没有考虑 具体某一树种或同一植物种群固有的生理生态特性差异和它们所处的环境生态位差异,特别是常绿树种和 落叶树种的冠层温度也是不同的[37],这也是造成差异的原因之一。因此,今后在运用植物生理生态模型预 测气候变化对于植物生理特性影响时^[38],需要考虑不同时段不同环境因子的相对贡献,将不同植物物种光 合及水分利用等生理参数引进机理模型中[39-41],这有利于准确地揭示亚热带常绿阔叶林森林生态系统对于 气候变化响应的机制。

4 结论

总体上,哀牢山亚热带常绿阔叶林冠层温度的日变化和年变化特征都呈现出单峰变化趋势;净辐射、 饱和水汽压差和风速对哀牢山亚热带常绿阔叶林的冠层温度变化有显著的贡献,而且不同环境因子在不同 季节对冠-气温差的贡献程度存在差异;净辐射是影响冠-气温差的重要因子。因此,冠层小气候的变化可 能对哀牢山亚热带常绿阔叶林的冠层热量交换有重要影响。研究结果可为进一步开展冠层热力学和解析亚 热带常绿阔叶林森林物候变化提供参考,同时为预估亚热带常绿阔叶林森林生态系统对气候变化的响应等 提供了基本的理论支撑。另外,除净辐射、饱和水汽压差和风速外,空气温度、土壤温度和土壤含水量等 因素对冠层温度也会产生影响,将在以后的研究中涉及,以便进一步探究冠层温度的变化机制。

致 谢 感谢中国科学院哀牢山亚热带森林生态系统研究站和中国科学院西双版纳热带植物园公共技术中心 支持以及中国科学院西双版纳热带植物园全球变化研究组项目聘用杨东海和哀牢山站罗奇收集数据等。

参考文献 [References]

- Sofi PA, Ara A, Gull M, Rehman K. Canopy temperature depression as an effective physiological trait for drought screening [M]. Croatia: University of Zagreb, 2019: 598
- 2 Wehr R, Commane R, William JM, Barry JM, David DN, Mark SZ, Scott RS, Steven CW. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake [J]. *Biogeosciences*, 2017, 14 (2): 389-401
- 3 Gonzalez DV, Lopez LM, Espadafor M, Orgaz F, Testi L, Zarco TP, Lorite IJ, Fereres E. Transpiration from canopy temperature: Implications for the assessment of crop yield in almond orchards [J]. Eur J Agron, 2019, 105:78-85
- 4 Amani I, Fischer RA, Reynolds MP. Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate [J]. *J Agron Crop Sci*, 2010, **176** (2): 119-129
- Jackson RD, Idso SB, Reginato RJ, Pinter. Canopy temperature as a crop water stress indicator [J]. *Water Resour Res*, 1981, 17 (4): 1133-1138
- 6 Kumar AM, Govindasamy DV, Rane J, Singh AK, Choudhary RL, Raina SK, George P, Aher LK, Singh NP. Canopy temperature depression (CTD) and canopy greenness associated with variation in seed yield of soybean genotypes grown in semiarid environment [J]. S Afr J Bot, 2017, 113: 230-238
- 7 Thapa S, Jessup KE, Pradhan GP, Rudd JC, Liu S, Mahan JR, Devkota RN, Baker JA, Xue Q. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. Southern High Plains [J]. *Field Crop Res*, 2018, 217: 11-19
- 8 Wang D, Gartung J. Infrared canopy temperature of early-ripening peach treesunder postharvest deficit irrigation [J]. Agr Water Manage, 2010, 97 (11): 1787-1794
- 9 杨振,张一平,于贵瑞,赵双菊,宋清海,高举明.西双版纳热带季节雨林林冠温度与大气温度特征[J]. 生态学杂志, 2009, 28
 (5): 845-849 [Yang Z, Zhang YP, Yu GR, Zhao SJ, Song QH, Gao JM. Characteristics of canopy and air temperature in tropical seasonal rainforests in Xishuangbanna [J]. *Chin J Ecol*, 2009, 28 (5): 845-849]
- 10 Song QH, Sun CN, Deng Y, Bai H, Zhang YP, Yu H, Zhang J, Sha LQ, Zhou WJ, Liu YT. Tree surface temperature in a primary tropical rain forest [J]. *Atmosphere*, 2020, **11** (8): 798.
- 11 Myo ST, Zhang YP, Song QH, Deng Y, Fei XH, Zhou RW, Lin YX, Zhou LG, Zhang P. Analysis of canopy temperature depression between tropical rainforest and rubber plantation in Southwest China [J]. *Iforest*, 2019, **12**: 518-526.
- 12 魏丹丹, 张劲松, 孟平, 郑宁, 李春友, 任迎丰. 栓皮栎人工林冠层温度变化特征及其与微气象因子的关系[J]. 应用生态学报, 2012, **23** (7): 1767-1773 [Wei DD, Zhang JS, Meng P, Zheng N, Li CY, Ren YF. Variations of canopy temperature in Quercus variabilis plantation and their relations with micrometeorological factors [J]. *Chin J Appl Ecol*, 2012, **23** (7): 1767-1773]
- 13 Blum A, Mayer J, Gozlan G. Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat [J]. Field Crop Res, 1982, 5: 137-146
- 14 Babu RC, Chandra, Nguyen, Bay D, Chamarerk, Varapong, Shanmugasundaram P. Genetic analysis of drought resistance in rice by molecular markers: association between secondary traits and field performance [J]. Crop Sci, 2003, 43 (4): 1457-1457
- 15 He C, Wang S, Xu J, Zhou C. Using remote sensing to estimate the change of carbon storage: a case study in the estuary of Yellow River delta [J]. Int J Remote Sens, 2002, 23 (8): 1565-1580
- 16 Leuzinger S, Körner C. Tree species diversity affects canopy leaf temperatures in a mature temperature forest [J]. Agr Forest Meteorol, 2007, 146 (1-2): 29-37
- Leuzinger S, Vogt R, Körner C. Tree surface temperature in an urban Environment [J]. Agr Forest Meteorol, 2010, 150 (1): 56-62
- 18 Ozanne C, Anhuf D, Boulter SL, Keller M, Kitching RL, Korner C, Meinzer FC, Mitchell AW, Nakashizuka T, Dias PLS, Stork NE, Wright SJ, Yoshimura M. Biodiversity meets the atmosphere: a global view of forest canopies [J]. *Sci*, 2003, **301**: 183-186
- 19 吴征镒.云南哀牢山森林生态系统研究 [M]. 昆明: 云南科技出版社, 1983: 35 [Wu ZY. Forest Ecosystem of Ailao Mountain, Yunnan [M]. Kunming: Yunnan Science and Technology Press, 1983: 35]
- 20 张一平,马友鑫,刘玉洪,尹利伟. 哀牢山北部常绿阔叶林林窗小气候空间分布特征[J]. 北京林业大学学报, 2001, 23 (4):

80-83 [Zhang YP, Ma YX, Liu YH, Yin LW. Spatial distribution of microclimate in gap of evergreen broad-leaved forest in northern Ailao Mountains [J]. *J Beijing for Univ*, 2001, **23** (4): 80-83]

- 21 Tan ZH, Zhang YP, Schaefer DA, Yu GR, Liang NS, Song QH. An old-growth Asian subtropical evergreen forest as a large carbon sink [J]. Atmos Environ, 2011, 45 (8): 1548-1554
- 22 Tan ZH, Zhang YP, Liang NS, Hsia TJ, Zhang YJ, Zhou GY, Li YL, Juang JY, Chu HS, Yan JH. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests [J]. *Environ Res Lett*, 2012, **7** (4): 044017
- 23 温韩东,林露湘,杨洁,胡跃华,曹敏,刘玉洪,鲁志云,谢有能. 云南哀牢山中山湿性常绿阔叶林 20 hm² 动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42 (4): 419-429 [Wen HD, Lin LX, Yang J, Hu YH, Cao M, Liu YH, Lu ZY, Xie YN. Species composition and community structure of a 20 hm² dynamic plot in a moist evergreen broad-leaved forest in Ailao Mountain, Yunnan province [J]. *Chin J Plant Ecol*, 2018, 42 (4): 419-429]
- 24 邱学忠, 谢寿昌. 哀牢山森林生态系统研究[M]. 昆明: 云南科技出版社, 1998: 63-73 [Qiu XZ, Xie SC. Study on Forest Ecosystem of Ailao Mountain [M]. Kunming: Yunnan Science and Technology Press, 1998: 63-73]
- 25 Christopher JS, Bharat R, Gerald FM, Dan MG, Adam S, Mark S, Linnia H, Stephanie P, Matteo D, Brent RH. Imaging canopy temperature: shedding (thermal) light on ecosystem processes [J]. *New Phytol*, 2021, 230 (5): 1746-1753
- 26 魏丹丹,张劲松,孟平,郑宁,李春友,任迎丰. 栓皮栎人工林冠层温度变化特征及其与微气象因子的关系[J]. 应用生态学报, 2012, 23: 1767-1773 [Wei DD, Zhang JS, Meng P, Zheng N, Li CY, Ren YF. Variation characteristics of canopy temperature and its relationship with micrometeorological factors in *Quercus Variabilis* plantation [J]. *J Appl Ecol*, 2012, 23: 1767-1773]
- 27 Lin H, Cao M, Zhang YP. Self-organization of tropical seasonal rain forest in southwest China [J]. Ecol Model, 2011, 222 (15): 2812-2816
- 28 谢寿昌,盛才余,李寿昌. 哀牢山中山湿性常绿阔叶林主要树种的物候研究[J]. 生态学报, 1997, 17 (1): 51-60 [Xie SC, Sheng CY, Li SC. A phenological study on main tree species of montane humid evergreen broad-leaved forest in Ailao Mountains [J]. Acta Ecol Sin, 1997, 17 (1): 51-60]
- 29 Song QH, Fei XH, Zhang YP, Sha LQ, Wu CS, Lu ZY, Luo K, Zhou WJ, Liu YT, Gao JB. Snow damage strongly reduces the strength of the carbon sink in a primary subtropical evergreen broadleaved forest [J]. *Environ Res Lett*, 2017, **12** (10): 104014
- 30 Song ZS, Song XQ, Pan YQ, Dai K, Du Y. Effects of winter chilling and photoperiod on leaf-out and flowering in a subtropical evergreen broadleaved forest in China [J]. *Forest Ecol Manag*, 2020, **458**:117766
- 31 Song QH, Zhang YP, Sha LQ, Deng XB, Deng Y, Wu CS, Lu ZY, Chen AG, Zhang SB, Li PG, Zhou WJ, Liu YT. Canopy temperature variability in a tropical rainforest, subtropical evergreen forest, and savanna forest in Southwest China [J]. *Iforest*, 2017, **10** (3): 611-617
- 32 Minyong K, Seounghee K, Youngjin K, Yonghun C, Myungchul S. Infrared estimation of canopy temperature as crop water stress indicator [J]. Korean J Soil Sci Fert, 2015, 48 (5):499-504
- 33 Baradas MW, Blad BL, Rosenberg NJ. Reflectant induced modification of soybean canopy radiation balance IV. leaf and canopy temperature [J]. Agronomy J, 1976, 68 (6): 843-848
- 34 Ahi Y, Orta H, Gündüz A, Gültas HT. The canopy temperature response to vapor pressure deficit of grapevine cv. semillon and razaki [J]. Agri Sci Proc, 2015, 4: 399-407
- 35 Luan X, Vico G. Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation - a modeling analysis [J]. *Hydrol Earth Syst Sc*, 2021, 25 (3): 1411-1423
- 36 邓聪, 吴志祥, 谭正洪, 廖立国, 崔乙斌, 程娟, 赵林林. 海南岛西部橡胶人工林冠层温度变化及其与微气象要素的关系[J]. 热带作物学报, 2020, 41 (7): 1490-1497 [Deng C, Wu ZX, Tan ZH, Liao LG, Cui YB, Cheng J, Zhao LL. Variations of canopy temperature in a rubber plantation in western Hainan island and their relations with micrometeorological factors [J]. *Chin J Trop Crops*, 2020, 41 (7): 1490-1497]
- 37 Pao S, Detto M, Kim Y, Still CJ. Tropical forest temperature thresholds for gross primary Productivity. *Ecosphere*, 2018, 9 (7): e02311
- 38 于贵瑞,孙晓敏. 陆地生态系统通量观测的原理与方法[M]. 北京: 高等教育出版社, 2006, 501-508 [Yu GR, Sun XM.

Principles and methods of terrestrial ecosystem flux observation [M]. Beijing: Higher Education Press, 2006, 501-508]

- 39 Webber H, White JW, Kimball BA,Ewert F, Asseng S, Rezaei EE, Pinter PJ, Hatfield JL, Reynolds MP, Ababaei B, Bindi M, Doltra J, Ferrise R, Kage H, Kassie BT, Kersebaum KC, Luig A, Olesen JE, Semenov MA, Stratonovitch P, Ratjen AM, Lamorte RL, Leavitt SW, Hunsaker DJ, Wall GW, Martre P. Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions [J]. *Field Crop Res*, 2018, **216**: 75-88
- 40 Shao QX, Bange M, Mahan J, Jin HD, Jamali H, Zheng BY, Chapman SC. A new probabilistic forecasting model for canopy temperature with consideration of periodicity and parameter variation [J]. *Agr Forest Meteorol*, 2019, **265** (15): 88-98
- 41 Maes WH, Steppe K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review [J]. *J Exp Bot*, 2012, **63** (13): 4671-4712