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• Quantify vegetation vulnerability under
historical and future drought scenarios.

• Quantification revealed the mechanism of
drought-induced vegetation degradation.

• Migration laws of the vegetation loss
barycenter in Central Asia was revealed.

• Diagnosing the effectiveness of the China's
proactive strategy to cope with global cli-
mate change.
M
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igration trajectory of vegetation loss barycenter in CA. ‘Historical’ refers to the vegetation loss barycenter in
historical periods, ‘SSP126-NFP’ refers to the vegetation loss barycenter in the NFP under the SSP126 scenario;
‘SSP126-FFP’ refers to the vegetation loss barycenter in the FFP under the SSP126 scenario; ‘SSP245-NFP’ refers to
the vegetation loss barycenter in the NFP under the SSP245 scenario; ‘SSP245-FFP’ refers to the vegetation loss
barycenter in the FFP under the SSP245 scenario; ‘SSP585-NFP’ refers to the vegetation loss barycenter in the NFP
under the SSP585 scenario; ‘SSP585-FFP’ refers to the vegetation loss barycenter in the FFP under the SSP585 scenario.
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Revealing the vegetation response law under drought stress has become a hot issue in global climate change research.
Against the background of human beings actively responding to climate change, quantitatively revealing the change
and migration laws of green biomass loss (GBL) caused by drought in historical and future periods is insufficient. In
this regard, we innovatively constructed a joint kNDVI-SPEI (kernel normalized difference vegetation index and stan-
dardized precipitation evapotranspiration index) distribution based on copula theory to accurately capture GBL dy-
namic under various drought scenarios unlike previous studies conducted in a deterministic way. Taking the
drought-sensitive and ecologically vulnerable Central Asia (CA) as a typical region, we verified that an average 94.4 %
of region showed greater vegetation vulnerability in times of water shortage from May to October, which exhibited the
greatest probability of GBL under different drought scenarios, mainly in Kazakhstan and Uzbekistan. Significantly inten-
sified drought due to high emissions will cause an 18.16 percentage-point increase in GBL probability in the far future
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(FFP, 2061–2100) compared to the near future (NFP, 2019–2060), which ismuch higher than in the lower-emission (0.38
%) and moderate-emission scenarios (9.82 %). In the NFP, the GBL barycenter will shift from Kazakhstan to Xinjiang,
China; in the FFP, it will shift back to Kazakhstan due to the measures taken by the Chinese government to conserve en-
ergy and reduce emissions. Results illustrate that against the background ofworsening drought, active climate change cop-
ing strategies can reverse themigration trajectory of theGBL barycenter caused by drought, which provides a new idea for
vegetation protection research in response to global climate change.
1. Introduction

Drought is a severe natural disaster that occurs when water availability
is significantly below normal for a long time (Wilhite et al., 2007). The du-
ration, frequency, and intensity of drought are increasing due to increased
evapotranspiration from global climate change and decreased regional pre-
cipitation (Christian et al., 2021; Sheffield et al., 2012). Frequent and se-
vere droughts often have a far-reaching negative impact on ecosystem
health (Gampe et al., 2021), agricultural production (Abdelmalek and
Nouiri, 2020), water resources (Pedro-Monzonís et al., 2015), and the envi-
ronment, which is more significant in ecologically fragile arid areas (Li
et al., 2020). To slow down the expansion of drought, many countries
have taken a series of measures such as returning farmland to forest, restor-
ing water conservation measures, and optimizing the layout of agricultural
production (Bryan et al., 2018; Pedro-Monzonís et al., 2015). In various
natural and human systems sensitive to water variability, terrestrial ecosys-
tems have distinct and complex interactions with drought (Martínez-Vilalta
and Lloret, 2016). Drought severely limits the main physiological processes
of vegetation (Vicente-Serrano et al., 2013) and carbon dioxide absorption
(Ma et al., 2012), and persistent water shortage adversely affects vegetation
function, leading to slow growth, decreased biomass, and death and being
one of the main drivers of reduced aboveground net primary productivity
(Drew, 1979; Sun et al., 2018). Due to the long duration of drought, the
drought will have a certain impact on the entire terrestrial vegetation eco-
system in the long run (Ding et al., 2020; Ji and Peters, 2003). Worse still,
with terrestrial vegetation as themain carbon pool on earth, the intensity of
terrestrial carbon sinks may be shifting from an increasing trend to a de-
creasing one due to the effects of drought on vegetation growth (Ma
et al., 2012). Therefore, quantitatively understanding the laws of terrestrial
vegetation response to drought and identifying drought-vulnerable areas
are of great significance for ecosystem restoration and protection in arid
areas.

Assessing the impact of drought on terrestrial vegetation is strongly
challenged by difficulties in drought quantification and the integrated re-
sponse of vegetation activity to various climate and anthropogenic factors.
Comparedwith other natural disasters, drought occurs and develops slowly
and in a complex manner (Wilhite et al., 2007); previous quantitative
drought studies have mainly relied on various drought indicators, physical
models, and water balance simulations (Bachmair et al., 2016; Pedro-
Monzonís et al., 2015). Because drought indicators are a convenient way
to quantify the duration, intensity, and impact of droughts, they enable dif-
ferent users to communicate drought information more effectively and are
often used to describe long-term changes in drought events (Zargar et al.,
2011). The standardized precipitation evapotranspiration index (SPEI),
which is based on precipitation and potential evapotranspiration
(PET), can reflect the water deficit in a changing environment and has
multi-scalar characteristics (Beguería et al., 2014), making it conducive to
the unified evaluation of vegetation response to short-, medium-, and
long-term drought. Hence, SPEI was used to characterize drought in this
study. Previous studies have used vegetation indices such as the enhanced
vegetation index (EVI), the near-infrared reflectance (NIRv), and the
normalized difference vegetation index (NDVI) to monitor vegetation dy-
namics (Camps-Valls et al., 2021; Peng et al., 2020), but these indices
have certain limitations. Compared with other vegetation indices, NDVI
can partially eliminate the effects of cloud cover and terrain changes after
post-processing, and is widely used by many researchers (Camps-Valls
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et al., 2021; Xu et al., 2021). However, the relationship between NDVI
and vegetation biomass is nonlinear, often reaching saturation before the
maximum biomass is observed (Pinzon and Tucker, 2014). Therefore, this
study chose the kernel NDVI (kNDVI), which was proposed by a recent
study to monitor vegetation changes (Camps-Valls et al., 2021). The index
is based on the kernelmethod theory inmachine learning, which eliminates
the problem of linear assumptions in the NDVI calculations and maximizes
the use of satellite spectral information (Camps-Valls et al., 2021; Hofmann
et al., 2008). Existing studies have shown that kNDVI performswell inmon-
itoring vegetation dynamics in arid areas, providing the possibility of
assessing vegetation vulnerability in the study area (Wang et al., 2021;
Wang et al., 2022). To quantify vegetation vulnerability, this study defines
GBL as the probability of damage to terrestrial vegetation ecosystems when
drought occurs (Fang et al., 2019a; Fang et al., 2019b). At the same time, in
order to conduct amore comprehensive drought assessment, this study uses
kNDVI at 0.4, 0.3, 0.2, and 0.1 quantiles to characterize the different states
of terrestrial vegetation ecosystems. When kNDVI is less than the smaller
quantile value, we believe that the local terrestrial vegetation ecosystem
has suffered serious damage, that is, serious GBL (Newbold et al., 2015).
The sensitivity of terrestrial vegetation to water changes as well as its re-
sponse time can be quantitatively assessed by correlating kNDVI and SPEI
at different time scales. The maximum Pearson correlation coefficient be-
tween kNDVI and SPEI at different scales was used to measure the sensitiv-
ity of vegetation to drought, and the SPEI time scale corresponding to the
maximum correlation coefficient was taken to be the vegetation response
time (Fang et al., 2019b). In this paper, we define drought resistance as
the maintenance of photosynthetically active tissues ensuring plant growth
during drought events (Verslues et al., 2006). Resilience is the aptitude of a
plant or a community to recover its physiological functions and productiv-
ity after drought to levels comparable to those measured before the stress
(Dalal et al., 2019). The vegetation response time refers to the lag time be-
tween the onset of water deficit and the obvious impact on vegetation (Fang
et al., 2019b). It emphasizes that the effects of drought on vegetation are
not instantaneous, but the cumulative result of water deficits over a period
of time. Therefore, vegetation response time can be used to reflect the
drought resistance of vegetation (Fang and Xiong, 2015), and the longer
the response time, the stronger its ability to resist long-termwater shortage.
In general, vegetation in arid areas has mechanisms that can quickly adapt
to changes in water resources and can respond quickly when drought oc-
curs (Vicente-Serrano et al., 2013). Vegetation in wet areas also responds
to drought for a short period of time, but in this case, vegetation is often de-
graded frompoor adaptability towater shortages. In contrast, although veg-
etation in semi-arid and sub-humid lands is resistant to water scarcity, it
does not respond as quickly to drought as vegetation in arid or humid
lands (Bai et al., 2019) and therefore has a longer response time. Under-
standing vegetation response times in different types of regions can im-
prove our understanding of vegetation vulnerability in the context of
climate change.

From the perspective of decision-makers, merely analyzing the correla-
tion between kNDVI and SPEI is not enough to understand the GBL situa-
tion sufficiently well to take drought preparedness measures. At the same
time, as climate change and human activity constantly increase, future
droughts may become more intense (Dai, 2013; Sherwood and Fu, 2014),
leading to enhanced vegetation vulnerability and expansion of drought-
vulnerable areas. Therefore, future change trends in drought and the
migration law of the GBL barycenter are the scientific issues of concern in
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this study. In addition, to alleviate deterioration of the ecological environ-
ment caused by global climate change, the international community has
adoptedmeasures such as energy conservation and emissions reduction, de-
velopment of new energy sources, and strengthening of international coop-
eration. Studies have shown that if the commitmentsmade by governments
around theworld to deal with climate change can be achieved, the 2 °C tem-
perature rise target set by the Paris Agreement is highly likely to be
achieved (Meinshausen et al., 2022; Ou et al., 2021a; Ou et al., 2021b).
This shows the effectiveness of the measures taken by governments in en-
ergy conservation, emission reduction and mitigation of global warming
(Borrelli et al., 2020). Therefore, the authors have hypothesized that posi-
tive climate change response strategies may shift the migration trajectory
of the GBL barycenter caused by drought.

To solve these scientific problems and test this hypothesis, the copula
function (Li, 2000), a multidimensional joint distribution function with a
uniform distribution in the domain [0,1], is introduced. Unlike previous
modelling methods, it can construct a multi-dimensional joint distribution
with two parts, the marginal distribution and the correlation structure,
and then simulate the dependency structure of any correlated variable
(Salvadori and De Michele, 2004). Due to the flexible and diverse forms
of the copula function, any two or more variables with correlation can the-
oretically have their dependence structure characterized with the copula
function (Genest et al., 2009; Li, 2000). In recent years, the copula function
has beenwidely used in flood analysis, rainfall forecasting, drought charac-
teristic analysis, and hydrological stochastic simulation (Yang et al., 2018).
Based on historical observational data, this study calculated GBL probabil-
ity under a given drought scenario by constructing a vegetation-drought re-
lationship model combinedwith the concept of conditional probability and
then identifying drought-vulnerable areas under the current situation. For
future periods, drought-vulnerable areas can be identified directly using
Earth climate system models. In terms of predicting future climate change,
the newly released Coupled Model Intercomparison Project Phase 6
(CMIP6) uses a more reasonable shared socioeconomic pathway (SSP)
that considers various future changes in greenhouse gases with other radi-
ative forcing and socioeconomic development (O'Neill et al., 2016). Com-
pared with CMIP5, it is more reliable and stable (Li et al., 2021; Wu et al.,
2019). Studies have shown that CMIP6 has achieved great improvements
inmany drought-related studies and is more in linewith the latest reference
estimates of global energy balances (Li et al., 2021). Therefore, this study
used the output of the CMIP6 model under high-, medium-, and low-
forcing scenarios to study the trend of future drought changes and took fu-
ture drought as a conditional input to the vegetation-drought relationship
model to evaluate changes in vegetation vulnerability in the short term
(2019–2060) and the long term (2061–2100) under different future climate
change contexts.

This study used a bivariate probabilistic framework based on copula
theory, which primarily relies on recognizing the response time of vegeta-
tion dynamics to water variability on a monthly time scale using Pearson
correlation analysis, describing the dependence structure of vegetation sta-
tus and drought conditions using the copula function, and estimating the
probabilities of GBL under multiple drought scenarios. Afterwards, the
impact of drought on terrestrial vegetation was quantified, drought-
vulnerable areas in historical and future periods were identified, and the
migration law of the GBL barycenter was revealed. The research results
are of great significance for revealing the response laws of terrestrial vege-
tation to drought, promoting ecological protection and restoration, and
helping decision-makers to formulate strategies in a timely manner to
deal with GBL caused by global climate change.

2. Materials and methods

2.1. Study area

Central Asia (CA) is one of the most ecologically fragile regions in the
world with the most serious ecological degradation, which seriously re-
stricts the economic and social development of the region and has drawn
3

wide attention from the international community (Bai et al., 2019; Chen
et al., 2019). CA covers an area of about 5.66 × 106 km2, including
Kazakhstan, Tajikistan, Kyrgyzstan, Uzbekistan, Turkmenistan, and the
Xinjiang Uyghur Autonomous Region in northwestern China (Fig. 1a). Lo-
cated in the hinterland of Eurasia, CA has a typical continental climate,
transitioning from semi-arid to arid regions from north to south, with hot
and dry summers and cold and wet winters (Fitzsimmons et al., 2020).
The average annual precipitation in the region is <150 mm, decreasing
gradually from west to east, with more mountains than basins and plains,
and an extremely uneven spatial distribution (Wang et al., 2018). In
terms of topography, the overall topography is high in the southeast and
low in the northwest and is roughly divided into three zones: high moun-
tainous areas in the southeast, plain areas in thewest, and lowmountainous
hilly areas in the north and center (Fitzsimmons et al., 2020). The study
area contains river and lake systems such as the Aral Sea, Lake Balkhash,
Amu Darya, Syr Darya, and Tarim Darya (Huang et al., 2021). These are
mostly inland rivers, and their water mostly disappears into the desert, ex-
cept when diverted for irrigation. Rangeland Desert area occupy about a
quarter of CA (Huang et al., 2021). The principal land use types (Fig. 1b)
are rangeland, sparse vegetation, cropland and so on. It can be seen that
most of the area is covered by rangeland, dominated by perennial herbs
such as various feather grass and Leymus ramosus (Kamp et al., 2016;
Nunez et al., 2020). Studies have shown that the regional mean grassland
(i.e. rangeland in this study) NPP for CA during 1982–2015 was approxi-
mately 152.7 gCm−2 yr−1 and trending upward significantly at a rate of
0.66 gCm−2 yr−1(Chen et al., 2020). In addition, most rangelands in CA
are arid and semi-arid, suitable for large-scale livestock production. In the
context of global climate change, the frequent occurrence of extreme cli-
mate and hydrological events in CA, especially the frequent occurrence of
drought events, has led to serious loss of the region's vegetation and severe
land desertification (Jiang et al., 2019). At the same time, as the largest arid
zone in the Northern Hemisphere, its dryland ecosystems support a consid-
erable proportion of the population and the economy (Guan et al., 2019),
and therefore it is important to analyze the impact of drought on vegetation
in the region for sustainable development and drought risk management in
CA.

2.2. Data source and pre-processing

2.2.1. Standardized precipitation evapotranspiration index (SPEI)
This paper uses drought indicators to quantify droughts. The most

widely used drought indicators are SPEI, SPI, and PDSI. PDSI uses precipi-
tation and temperature to estimate soil moisture supply and demand
through a two-level model and is often used to characterize the regional ex-
tent and severity of various drought events (Tian et al., 2018; Zargar et al.,
2011). However, the fixed time scale makes PDSI unsuitable for character-
izing hydrologic droughts, and it is unresponsive to developing droughts
(Tian et al., 2018). SPI and SPEI, which are based on long-termmeteorolog-
ical observations, overcome this drawback and can be calculated for vari-
ous time scales (Stagge et al., 2015). SPI explains abnormal water deficits
based on precipitation anomalies, emphasizing precipitation as the main
driver of drought. However, the profound influence of temperature in
drought development has been observed in typical drought events occur-
ring in Europe, East Asia, and the western United States (Niinemets and
Valladares, 2006). Studies have shown that drought is not only influenced
by precipitation, but is also closely related to evapotranspiration (Beguería
et al., 2014). The increased evapotranspiration demand caused by increas-
ing temperatures can drive the water balance closer and closer to lower
values, thus exacerbating water stress. Realizing the potential drawbacks
of SPI in the context of global warming, Vicente Serrano et al. developed
SPEI using the difference between precipitation and evapotranspiration
and used a log-logistic probability distribution function with three parame-
ters to describe its variability (Vicente-Serrano et al., 2010a).

The SPEI data used in this study were obtained from theWeb repository
of the Spanish National Research Council (Vicente-Serrano et al., 2010b)
(CSIC; available online at http://sac.csic.es/spei/index.html). This dataset

http://sac.csic.es/spei/index.html


Fig. 1. Schematic map of study area. (a) Map of administration units, cities, digital elevation model, rivers, and main lakes in CA. (b) Distribution of land cover type in CA.
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provides long-term reliable information on drought conditions on a global
scale, with a SPEI time scale of 1–48 months, and the latest version of
SPEIbase, v2.6, covers the period from 1901 to 2018. The new dataset im-
proves the spatial resolution of the unique global drought dataset on global
scale. And due to the multi-scale character of SPEI, it is able to identify var-
ious drought types (Beguería et al., 2014; Vicente-Serrano et al., 2010b). In
addition, the dataset has a 0.5-degree spatial resolution and amonthly time
resolution, which meet the needs of this study. Therefore, the SPEI data
were extracted by a program based on the Python language on a monthly
scale of 1–24 months from 1982 to 2018.

2.2.2. Climate model datasets
Climate scenarios are the basis for climate modelling, and climate pro-

jections based on different scenarios are one of the core elements of succes-
sive Intergovernmental Panel on Climate Change (IPCC) scientific
assessments, the results of which show the climate impacts and socio-
economic risks associated with different policy choices and are an impor-
tant scientific basis for government decision-making (Wigley and Raper,
1992). The IPCC proposed five shared socioeconomic pathways (SSPs) in
2010, which consider population change, economic development,
4

technological progress, and resource use, to better describe the relationship
between climate change and socioeconomic development pathways (Riahi
et al., 2017). SSPs are now being used as important inputs to the latest cli-
mate models and have enabled significant progress in assessing future tem-
perature and precipitation in various locations (Li et al., 2021). This study
uses the output data of the medium-resolution climate system model pub-
lished by the Beijing Climate Center (BCC-CSM2-MR), which uses
improved parameterization results and physical parameterization prefer-
ence results (Wu et al., 2019). Compared to other CMIP5 atmospheric
model versions (BCC-AGCM2.1 and BCC-AGCM3-MR), the model has im-
proved atmospheric radiation, deep convective processes, and gravity
wave schemes that can make it more adaptable to the climate distribution
(Lu et al., 2021; Wu et al., 2019). Based on this, climate change scenarios
from the BCC-CSM2-MR climate model with SSP126 (low radiative forc-
ing), SSP245 (medium radiative forcing), and SSP585 (high radiative forc-
ing) were used here with data for the three shared socioeconomic
pathways, including monthly precipitation (pr) and monthly air tempera-
ture (tas) data from 2019 to 2100 with a spatial resolution of 1.125°, secur-
ing the first variant label “r1i1p1f1” (“r1i1p1f1” refers to the experiment
label, where r denotes the realization index (set membership index), i
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denotes the initialization index, p denotes the physics index, and f denotes
the forcing index). Based on the temperature and precipitation data,
monthly SPEI values were calculated on a 12-month scale from 2019 to
2100 under three future climate change scenarios, after which future
drought trends could be detected using the Sen'slope and Mann-Kendall
tests, and the basic principles and detailed calculations could refer to
Gocic et al. (Gocic and Trajkovic, 2013). To match the spatial resolution
of the data, the calculated SPEI was resampled to 0.5° spatial resolution
using the nearest-neighbor interpolation method.

2.2.3. A unified vegetation index for better monitoring vegetation dynamics
Among various remote-sensing products, NDVI is widely used to moni-

tor the status of terrestrial vegetation and assess the impact of climate
change on vegetation status (Camps-Valls et al., 2021; Xu et al., 2021).
NDVI is theoretically in the interval [−1,1], and it is usually considered
to indicate the presence or absence of vegetation when its value is greater
than −0.1 or <0.1(Tucker et al., 2005). Therefore, the raster with NDVI
<0.1 was not considered in this study for subsequent calculations. Com-
pared with other ground-based vegetation indices, NDVI is more attractive
to researchers because of its global area coverage and high spatiotemporal
resolution. However, this index also has some limitations, NDVI uses non-
linear stretching to enhance the contrast of NIR and R reflectance and is
less sensitive to high-vegetation-density areas (Pinzon and Tucker, 2014;
Tucker et al., 2005). Therefore, this study introduced the kNDVI tomonitor
vegetation dynamics. The construction method of this indexmaximizes the
use of spectral information, solves a long-standing problem in Earth bio-
sphere satellite observation, and is an accurate proxy for GPP in closermon-
itoring of vegetation photosynthetic activity (Camps-Valls et al., 2021). In
addition, kNDVI enables more accurate measurements of terrestrial carbon
source/sink dynamics and the potential for stabilizing atmospheric CO2
and mitigating global climate change (Camps-Valls et al., 2021).

kNDVI is based on the kernelmethod theory ofmachine learning, which
has been widely used to derive nonlinear algorithms from linear ones
(Camps-Valls et al., 2021; Hofmann et al., 2008). Kernelmethods can be ap-
plied to any vegetation index. The method is used here to generalize NDVI,
mainly because of the long history and wide utility of this index, most nota-
bly to perform global and long-term studies. To obtain kNDVI, NDVI was
mapped in Hilbert spaces, and kernelization was done using the radial
basis function (RBF). The formula for calculating kNDVI is:

kNDVI ¼ k n, nð Þ � k n, rð Þ
k n, nð Þ þ k n, rð Þ (1)

where n, r refer to the remote-sensing reflectance in the NIR and red channels
respectively and the kernel function k measures the similarity between the
two bands. The kernel function k is calculated using the RBF kernel as follows:

k a; bð Þ ¼ exp −
a−bð Þ2
2σ2

 !
ð2Þ

where a, b are the twobands and the σ parameter determines the notion of dis-
tance between the NIR and red bands. A reasonable choice is to take the aver-
age value σ = 0.5(NIR + red) (for mathematical and ecophysiological
justifications please refer to Camps-Valls et al. (Camps-Valls et al., 2021)),
which leads to a simplified operational index version expressed as follows:

kNDVI ¼ tanh NDVI2
� �

(3)

In this study, Eq. (3)was used tofind kNDVI directly throughNDVI, using
NDVI data from the Global Inventory Monitoring and Mapping System
(GIMMS) group (https://climatedataguide.ucar.edu/climate-data/ndvi-
normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms).
The GIMMS-NDVI dataset with a spatial resolution of 8 km × 8 km and a
temporal resolution of 15 days was produced from imagery provided by
the Advanced Very High-Resolution Radiometer (AVHRR) onboard a group
of National Oceanic and Atmospheric Administration meteorological
5

satellites (Pinzon and Tucker, 2014). Bias correlation was performed to alle-
viate the adverse influence of volcanic eruptions, sensor drift, and atmo-
spheric contamination. Data quality assessment at global scale indicates
that the long-term vegetation trends derived from the GIMMS-NDVI are con-
sidered reliable except in Equatorial and Arctic areas (Fensholt and Proud,
2012). To match the temporal and spatial resolution of SPEI, the maximum
value synthesis (MVC)method (Pinzon and Tucker, 2014)was used to aggre-
gate GIMMS-NDVI images from every two periods to generate a monthly
scale sequence and to upscale the resolution to 0.5° × 0.5° using the
nearest-neighbor interpolation method. Because this study covers the time
range from 1982 to 2018, the Moderate Resolution Imaging
Spectroradiometer (MODIS) NDVI dataset was used to extend the GIMMS-
NDVI data; cross validation showed that the correlation coefficient between
these two datasets exceeded 0.8(Fang et al., 2019a).

2.3. Data analysis

Unlike previous vulnerability assessments that rely primarily on deter-
ministic approaches such as correlation analysis, this study used a binary
probabilistic framework based on copula theory to quantify GBL from a
probabilistic perspective across multiple drought contexts in past and fu-
ture periods and to reveal the migration laws of the GBL barycenter in CA
(Schematic diagram of research ideas is shown in Fig. 2).

2.3.1. Determination of vegetation response time to water variability
The SPEI hasmulti-scale characteristics and can be calculated for different

time scales. The SPEI on a monthly basis denotes the standardized precipita-
tion accumulation over the preceding several months (Wang et al., 2011). In
this study, month-by-month SPEI series at scales of 1–24 months from 1982
to 2018 were selected and correlated with the kNDVI series of the corre-
sponding period to filter the response time of vegetation to water variability.
For the i-th month in a year, Pearson's correlation analysis was performed
between the monthly kNDVI and the SPEI series at different time scales:

Ri
j ¼ corr kNDVIiSPEIij

� �
i ¼ 1, 2, . . . , 12; 1 ≤ j ≤ 24 (4)

where Rj
i denotes the correlation coefficient between the kNDVI series of the

i-th month and the SPEI series of the j-th month, after which the vegetation
response time (VRT) was calculated using the following equation

VRTi ¼ arg max
1≤ j≤ ≤24

Ri
j

n o
ð5Þ

The vegetation response time is defined as the time scale thatmaximizes
the kNDVI-SPEI association, where VRTi denotes the vegetation response
time to water variability for the i-th month. Examination of multiple SPEI
time scales provides increased knowledge about how vegetation health
varies in response to precipitation anomalies and clarifies the time lag be-
tween two important variables.

2.3.2. A copula-based method for quantifying GBL probability under multiple
drought scenarios

The copula function is an effective way to construct a multidimensional
joint distribution model. Unlike other multivariate analysis calculation
methods, it can decompose the joint distribution into two parts, the mar-
ginal distribution and the correlation structure, and then handle them sep-
arately (Salvadori and De Michele, 2004). On the one hand, the joint
distribution can be constructed by the copula function for any marginal
distribution; on the other hand, the computational results of the original
univariate analysis can be used, thus simplifying the complex work of
studying the joint distribution into studying the correlation structure
between variables. Currently, this method is widely applied in drought
assessment and ecological studies (Borgomeo et al., 2015). This study
uses a binary probabilistic framework based on copula theory to describe
the complex dependence structure between drought and vegetation by cal-
culating the probability of GBL under different drought scenarios. Given the

https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms


Fig. 2. Schematic diagram of research ideas.

F. Han et al. Science of the Total Environment 847 (2022) 157656
vegetation response time recognized at the x-month scale of the SPEI, the
corresponding joint distribution can be expressed as follows

FSPEIx ,kNDVI spei, kndvið Þ ¼ P SPEIx < spei, kNDVI < kndvið Þ
¼ C F1 speið Þ,F2 kndvið Þð Þ (6)
6

where C() denotes the copula function and F1(spei) and F2(kndvi) are the
edge distributions of the SPEIx and kNDVI sequences respectively. Unlike
past methods of constructing joint distributions, which generally directly
join the original random variables of interest, the copula function uses its
cumulative distribution functions (CDFs) as independent variables. There-
fore, the edge distribution functions of the SPEIx and kNDVI sequences
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must befitted separately. In this study, the normal, logistic-normal, logistic,
Weibull, GEV, Gumbel, and exponential distributions were fitted to the
monthly kNDVI series, among which the optimal marginal was derived ac-
cording to the Kolmogorov-Smirnov (KS) test. According to the SPEI calcu-
lation principle, SPEI is a normalized variable, and the normal distribution
was used as its marginal distribution. Next, six commonly used copula func-
tions in the Archimedean and elliptical families were selected to model the
dependencies between kNDVI and SPEI, which consisted of the Gaussian,
Student’s t, Frank, Clayton, Gumbel, and Joe types (for the specific function
form and introduction, please refer to Li et al. (Li, 2000)). The maximum
likelihood estimation (MLE) method was used to calculate the copula pa-
rameters. Finally, a goodness-of-fit test based on Rosenblatt’s transform
was used to select the copula function with the best performance. This
test produced two evaluation metrics with the smallest Cramér-von Mises
statistic and the largest p-value, which were considered to be optimal inside
the candidate copula function. Note that the Joe, Gumbel, and Clayton cop-
ulas are limited to interpreting positive correlations, and when negative
correlations between kNDVI and SPEI occurred, only the best copula func-
tions were filtered from the Gaussian, Student’s t, and Frank copula func-
tions, which are effective for handling both negative and positive SPEI-
NDVI correlations. More details about the theoretical justifications and
the goodness-of-fit test are available in Salvadori and De Michele
(Salvadori and De Michele, 2004) and Genest et al. (Genest et al., 2009).

Beyond understanding the impact of drought on vegetation, ecologists,
decision-makers, and crop producers are concerned with the probability of
GBL in the event of future droughts, which can be expressed as a condi-
tional probability from a statistical perspective. Therefore, according to
the SPEI drought classification table, three drought scenarios were defined:
moderate (−1.5 < SPI ≤ −1), severe (−2 < SPI ≤ −1.5), and extreme
(SPI ≤ −2). Given multiple drought scenarios, conditional probabilities
of kNDVI being lower than specific percentiles (the 40th, 30th, 20th, and
10th percentiles) were derived using the copula-based joint distribution
and the conditional distribution formulas. By denoting the observed values
of kNDVI at different percentiles as ‘kndvi’, the expressions in the three
drought scenarios become P(kNDVI < kndvi | -1.5 < SPEI≤-1), P(kNDVI <
kndvi | -2 < SPEI≤-1.5), and P(kNDVI < kndvi | SPEI≤-2). Each of these,
in fact, represents the vegetation response to a class of droughts (denoted
by the SPEI varying over a continuous range). And the calculation formula
is as follows.

P kNDVI < kndvij−1:5 < SPEI≤−1ð Þ
¼ P −1:5 < SPEI≤−1，kNDVI < kndvið Þ

P −1:5 < SPEI≤−1ð Þ ð7Þ

P kNDVI < kndvij−2 < SPEI≤−1:5ð Þ
¼ P −2 < SPEI≤−1:5，kNDVI < kndvið Þ

P −2 < SPEI≤−1:5ð Þ ð8Þ

P kNDVI < kndvi j SPEI≤−2ð Þ ¼ P SPEI≤−2，kNDVI < kndvið Þ
P SPEI≤−2ð Þ ð9Þ

For an upcoming drought, the SPEI can be calculated using the future
climate change data output from the climate model, which will be denoted
as ‘spei0’. The probability of GBL when ‘spei0’ occurs can be expressed as P
(kNDVI < kndvi | SPEI= spei0), and its probability density function (PDF)
can be inferred from the Bayesian network and calculated as follows:

f kNDVI∣SPEIx kndvið j spei0Þ ¼ c f SPEIX spei0ð Þ, f kNDVI kndvið Þ� �
� f kNDVI kndvið Þ (10)

where c(u,v) denotes the probability density function of the copula function
and fSPEIX (spei) (spei) and fkNDVI(kndvi) (kndvi) denote the probability den-
sity functions of SPEI and kNDVI respectively. Once the conditional PDF
fkNDVI∣SPEIx(kndvi |spei0) for a given drought condition has been computed
using Eq. (7), the cumulative probability of GBL to a particular threshold
can be calculated by the area under the fkNDVI∣SPEIx(kndvi |spei0) curve for
7

kNDVI < kndvi. Calculating the probabilities of GBL under specific drought
conditions can help in further quantitative assessments of the impact of
drought on vegetation and the identification of drought-vulnerable areas
from a probabilistic perspective.

2.3.3. Identifying the GBL barycenter
The GBL barycenter refers to the fulcrum of the distribution of GBL in a

certain area on the space plane at a certain time node to make the moment
reach equilibrium (Ahmad, 2017; Hu et al., 2019). Linking all the GBL
barycenter at different time nodes can reveal the migration law of the
GBL barycenter in this area. The barycenter migration model is an effective
method to reflect the spatial evolution of objects and can describe the dy-
namic migration of the center of gravity of GBL in different periods (Jiang
et al., 2020a). It is widely used inmany studies of spatial processes and pat-
terns, such as regional population flow, economic changes, soil erosion, and
landscape pattern evolution (Hu et al., 2019; Jiang et al., 2020a). In this
study, hot spots analysis was first used to identify GBL hot-spots in space,
and then the coordinates of the barycenter of the hot-spot areas were calcu-
lated. Hot spots analysis can be used to check for statistically significant
high and low values in local areas and to display hot- and cold-spot areas
using visualization (Reddy et al., 2016). Hot spots analysis often uses the
local Getis-Ord G* index, which is calculated as follows:

G�
i dð Þ ¼

Pn
j Wij dð ÞX jP

X j
ð11Þ

Normalization of Gi
∗(d) yields

Z G∗
i

� � ¼ G∗
i � E G∗

i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var G∗

i

� �q (12)

where Xj denotes the GBL probability value of the j-th raster, E(Gi
∗) and Var

(Gi
∗) are the mathematical expectation and variance of Gi

∗ respectively, and
Wij is the spatial weight. If Z(Gi

∗) is positive, a higher value indicates that the
higher value around the i-th raster belongs to the spatial aggregation area,
i.e., a hot-spot area. Next, the coordinates of the barycenter of the hot-spot
area can be calculated by the following formula:

Xt ¼ ∑
n

i¼1
CtiXti= ∑

n

i¼1
Cti

Yt ¼ ∑
n

i¼1
CtiY ti= ∑

n

i¼1
Cti

8><
>: (13)

where Xt, Yt are the longitude and latitude of the GBL barycenter in the t-th
period respectively, n is the total number of pixels in the GBL hot-spot area
in the t-th period, Xti, Yti are the coordinates of the geometric center of the
i-th pixel in the t-th period respectively, and Cti is the GBL probability of the
i-th pixel in the t-th period.

3. Results

3.1. Sensitivity and response time of vegetation dynamics to water variability in
CA

Vegetation has a hysteresis effect on moisture changes, usually
responding to cumulative moisture changes over a period of time rather
than instantaneously (Martínez-Vilalta and Lloret, 2016; Vicente-Serrano
et al., 2013). The sensitivity and response time of vegetation dynamics to
water variability were investigated by separately constructing the correla-
tion between kNDVI and SPEI on different time scales from 1 to 24months.
The authors believe that the greater the correlation, the more sensitive the
vegetation is to drought, and the characteristic time scale that achieves
maximum kNDVI-SPEI correlation is defined as the vegetation response
time to drought.



Fig. 3. Spatial distribution of the maximum Pearson correlation coefficients between monthly kNDVI and SPEI at time scales from 1 to 24 months for 1982–2018 for each
month. Pixels with significant SPEI-kNDVI correlations (p-value≤0.05) are masked using black dots.
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Fig. 3 shows that the CA region as a whole is dominated by a positive
correlation between kNDVI and SPEI and that the number of pixels with
positive kNDVI-SPEI correlation from January to December was 76.30 %
of the total number of pixels. Among them, the largest number of pixels
with a positive kNDVI-SPEI relationship occurred in September, accounting
for 86.15 % of CA, and the smallest number of positive kNDVI-SPEI pixels
occurred in February, accounting for 53.45 % of CA. In terms of time,
kNDVI-SPEI correlations were significantly different, with the percentages
of pixels with significant positive correlation (p < 0.05) all exceeding 50 %
of CA and showing an upward trend with a peak in September (69.79 %).
In terms of regions with significant correlation, the remaining months
accounted for <25 % of the Central Asian region, with an average maximum
Pearson correlation coefficient of 0.403, which was down 26.3 % compared
to May–October (average maximum Pearson correlation coefficient of
0.509). In addition, a high kNDVI-SPEI correlation also indicated that SPEI
could be used as a key indicator of changes in vegetation status, which proved
the reliability and rationality of this study. In terms of spatial characteristics,
southeastern Xinjiang is composed mainly of bare areas, with sparse vegeta-
tion only from May to October and kNDVI-SPEI showing a positive
correlation. In particular, the overall kNDVI-SPEI correlation in Xinjiang, in-
volving mainly tree and rangeland distributions, showed a higher positive
value than other regions in Xinjiang. However, negative kNDVI-SPEI correla-
tions appeared in March, April, May, and November. Throughout February,
March, April, and May, the Central Asian region had a northeast-southwest
tilted trend of regional shift in high correlation, and after the beginning of
June, most regions showed their peak kNDVI-SPEI correlation during the
year. Overall, the kNDVI-SPEI correlations exhibited less spatial heterogene-
ity and showed higher positive values from May to October, indicating that
vegetation dynamics in the Central Asian region are more sensitive to water
variability during this period. This correlation analysis shows that monthly-
scale temporal variations must be considered when studying the sensitivity
of vegetation to moisture changes. Special attention should be paid to the
months fromMay to October, when precipitation shortages and high temper-
atures can contribute to an increasing shortage of soil moisture, which often
triggers a correspondingly dramatic response in vegetation dynamics and
leads to GBL.

In addition, different months have different response times of vegeta-
tion towater variability. Fig. 4 shows the vegetation response time statistics
for each month. It can be seen that the response time follows a decreasing
trend from February to May, then stays at a low level from May to October
8

with an average response time of 10months, andfinally starts to rebound in
November. From the spatial distribution perspective (Fig. S1), the regions
withmore abundant vegetation types, found in Xinjiang and at the junction
between Kazakhstan and Kyrgyzstan in CA, had a longer response time to
water variability from May to October, whereas the northern region,
which is dominated by a single vegetation type, showed a short response
time. Comparedwith the vegetation response time inMay–August, the veg-
etation response time in the remaining months was longer (the average re-
sponse time was 13 months). From the perspective of spatial distribution,
the pixels with longer vegetation response time are mainly distributed in
the central region. According to the definition in this paper, vegetation re-
sponse time can reflect the drought resistance of vegetation. Therefore, the
longer the vegetation response time, the stronger the drought resistance,
and vice versa.

3.2. Various degrees of GBL probability under multiple drought scenarios

To continue the systematic assessment of GBL probability under
drought stress and quantify the impact of drought on vegetation health,
three drought scenarios were defined in this study: moderate drought,
with−1.5 < SPEI≤−1; severe drought, with−2 < SPI≤−1.5; and ex-
treme drought, with SPEI≤−2. To identify drought-vulnerable areas, the
probabilities of various degrees of GBL caused by a particular drought must
be comprehensively assessed. The degrees of loss were characterized by
kNDVI at 0.4, 0.3, 0.2, and 0.1 percentiles in this study. Pixel-by-pixel
kNDVI values at the 0.4, 0.3, 0.2, and 0.1 quantiles for Jan to Dec are
shown in the Figs. S2 to S13. A low-percentile kNDVI represents a signifi-
cant reduction in vegetation health and severe damage to terrestrial ecosys-
tems.

The calculated probabilities of different levels of GBL in September
under different drought scenarios are shown in Fig. 5, and the results for
the remaining months are shown in the Figs. S14 to S24. The Pave value
displayed in the upper left corner of each subplot indicates the average
GBL probability in the study area. The first column of the subplot of
Fig. 5 shows that the mean probabilities of kNDVI below the 0.4 quantile
in September were 64.4 %, 71.99 %, and 78.53 % under moderate, severe,
and extreme drought conditions respectively. The probability of GBL in-
creased with more severe drought, as was the case when other levels of
GBL occurred. In terms of probability differences, the probability of
kNDVI decreasing to the 0.4 quantile under the moderate drought scenario



Fig. 4. Box plot showing vegetation response time to water variability in eachmonth. A colored box indicates the interquartile range, with the enclosed horizontal line being
the median. Upper and lower whiskers indicate the 90th and 10th percentiles, and mean values are represented by crosses.
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(64.4 %) differed from the probability of kNDVI decreasing to the 0.4
quantile under the extreme drought scenario (78.53 %) by 14.13 %. The
percentage-point difference in probability increased to 18.09 % under the
moderate and extreme drought scenarios and to 21.24 % and 21.09 %
when kNDVI was at the 0.3, 0.2, and 0.1 quantiles. Similar variation pat-
terns were observed in othermonths, as shown in the accompanying figure.
The above quantitative probability analysis indicates a positive response of
GBL probability to the severity of water scarcity, and that vegetation vul-
nerability increases with more severe drought in the Central Asian region.
As for time scale, under moderate, severe, and extreme drought, the mean
probabilities of kNDVI being below the 0.4 quantile were 62.67 %, 70.04
%, and 76.24% inMay–October respectively, andwere significantly higher
than their values in the remaining months (49.60%, 50.73 %, and 54.58 %
Fig. 5. Conditional probabilities of deteriorating vegetation status (i.e., 40th, 30th, 20th
drought, and (c) extreme drought in September.
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respectively), with the highest probability of kNDVI below the 0.4 quantile
occurring in August (65.91 %, 73.89 %, and 80.45 % respectively). The av-
erage probability of loss in May–October was also significantly higher than
in the remainingmonths when kNDVIwas at the 0.3, 0.2, and 0.1 quantiles,
and the GBL probability in August remained the highest, indicating that the
CA showed the highest probability of GBL in August and exhibited the
strongest vulnerability (Fig. S21).

Analyzing the spatial heterogeneity of GBL probabilities and identifying
drought-vulnerable ecosystems can help in accurate drought preparedness
and risk management. Fig. 5 clearly shows that the spatial variation of
GBL probabilities of the same degree becomes more and more obvious as
drought intensifies. As shown in Fig. 5(a), the spatial variability of the prob-
abilities when kNDVI is at different quantiles under the moderate drought
, and 10th percentiles of the kNDVI records) given (a) moderate drought, (b) severe
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scenario is not obvious, with similar likelihood of suffering the same degree
of vegetation damage. This scenario does not make it easy to identify
drought-vulnerable areas. However, spatial variability becomes increas-
ingly evident as drought progresses to severe and extreme levels, especially
in the scenario near the lower right corner in Fig. 5. Because a greater prob-
ability of GBL was found in August, Fig. S21 was used to identify drought-
vulnerable areas. The results showed that drought-vulnerable zones in the
study area are mainly distributed over parts of the northern edge of Central
Asia, mainly in Kazakhstan and along the northwestern edge of Xinjiang. In
general, ecosystems in arid regions have higher vulnerability when sub-
jected to drought stress, and drought-vulnerable areas tend to expand
when the amount of water required for vegetation growth increases. It is
noteworthy that the drought-vulnerable areas that were screened based
on conditional probabilities are in good agreement with those maintaining
high kNDVI-SPEI correlation, thus demonstrating the potential of the
kNDVI-SPEI correlation coefficient as an effective indicator of vegetation
vulnerability assessment. This study provides a theoretical basis for spatial
mapping of drought-vulnerable ecosystems in CA, which is important for
good and effective drought preparedness and risk management.

3.3. Probabilities of GBL under future trend changes of drought

A link has been constructed between kNDVI and SPEI based on copula
theory, and arid and vulnerable areas in CA have been identified based
on historical monitoring data. However, under the general trend of global
climate change, drought may have devastating effects on regional vegeta-
tion, water resources, and the ecological environment. Therefore, in the
context of rapid warming, it is particularly important to accurately predict
the trend of future drought changes and their impact on vegetation. In this
section, based on the climate change scenario data (SSP126, SSP245,
SSP585) of the three CMIP6 shared socioeconomic pathways, SPEI values
on a 12-month time scale were selected to predict future drought trends
in Central Asia and to further identify drought-vulnerable areas under fu-
ture climate change scenarios.

As shown in Fig. 6(a), the SPEI distribution during 1982–2018 and the
SPEI distribution under the SSP245 scenario are more concentrated and
single-peaked, whereas the SPEI distributions under the SSP126 and
SSP585 scenarios are more dispersed and double-peaked. From the SPEI dis-
tribution, compared with the historical scenarios, the SPEI values under the
SSP126 and SSP245 scenarios are large, and the SPEI values under the
SSP585 scenario are small. Combined with the Fig. 6(b-d) linear variation
plot, the SPEI showed a significant decreasing trend under the high-forcing
Fig. 6. Drought trends under SSPs. (a) Violin and swarm diagrams showing the distrib
(2019–2100) under SSP126, SSP245, and SSP585. (b)-(d) Temporal evolution of SP
2019–2100 under the SSPs; the shadow represents the range of SPEI-12 in each year. T
local quadratic regression is marked with a dashed crimson line.
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(SSP585) scenario, and the drought intensified with time. The drought inten-
sity increased slightly under the low-forcing (SSP126) andmoderate radiative
forcing (SSP245) scenarios, and the drought intensification trend was more
stable. In addition, it can also be seen from Fig. 6 that the change trend of
drought in the two periods before and after 2060 has a certain difference.
After 2060, the SPEI values under the three SSP scenarios fluctuated greatly,
and the aridificationwas further aggravated. Therefore, in the subsequent re-
search process, we use 2060 as the cut-off year to divide the future period into
two periods for analysis, namely the near future period (NFP, 2019–2060)
and the far future period (FFP, 2061–2100).

In addition, based on Sen's slope of drought trends and the Mann-Kendall
significance test with a 0.05 significance level, the spatial distribution charac-
teristics of past and future drought change trends in CA were also analyzed
(Fig. S25). From these spatial distributions, the percentage of the area with
enhanced drought changes in the CA region during 1982–2018 was 78.2 %,
and most of Xinjiang and the western part of CA showed a significantly en-
hanced drought change trend. Under future climate change trends, the spatial
distribution patterns of future drought change trends under the three shared
socioeconomic pathways were basically consistent, and the spatial distribu-
tions of dry and wet change trends were also relatively concentrated and
clear. Under the low-forcing scenario, the magnitude of future drought
changewas smaller andmore unstable, with only 44.5%of the regions show-
ing a significantly enhanced drought change trend. In terms of trend values,
the regional values of Sen for SSP126, SSP245, and SSP585 were 6.3 ×
10−5/year, 18.4 × 10−5/year, and 31.3 × 10−5/year respectively. The in-
creases were roughly exponential, which further demonstrates that the arid
regions of Central Asia will remain at risk of future droughts and that control-
ling global warming by reducing greenhouse gas emissions is critical. Note
that under the three climate change scenarios with different emission intensi-
ties, drought changes in most areas of Xinjiang showed a significantly en-
hanced trend, and most of the intensified drought areas were bare land.
This indicates that in the climate change context, the decrease of precipitation
and the increase of potential evapotranspiration in global drylands in the fu-
ture may lead to further intensification of drought conditions and expansion
of arid zones in drylands, as well as threatening rangelands andwoodlands in
the surrounding areas and enhancing ecosystem vulnerability.

To quantify changes in the vulnerability of Central Asian regional ecosys-
tems under future climate change scenarios, the GBL probabilities at the 0.4,
0.3, 0.2, and 0.1 quantiles of kNDVI were calculated for the two future
periods under the three future climate change scenarios based on the copula
relationship between kNDVI and SPEI established in the previous section.
Fig. S28 shows the calculated results for the high-emission scenario
ution of SPEI-12 for a recent historical period (1982–2018) and three future paths
EI-12 for the three future paths; the colored lines represent the mean SPEI-12 in
he solid black line indicates the linear trend line, and the smoothed line based on
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(SSP585). In terms of time, for different degrees of GBL, the probability of
GBL in the FFP was greater than in the NFP, and the percentage-point differ-
ences in probability between the two periods were 18.41 %, 15.13 %,
11.61 %, and 6.74 % respectively. This represents a decrease in probability
difference with increasing degree of GBL. For the same future periods, the
GBL probability was greatest when kNDVI was at the 0.4 quantile (39.41 %
and 57.82 % respectively) and tended to decrease with increasing degree of
GBL. The same phenomenon was found under the SSP126 and SSP245 sce-
narios (as shown in the Figs. S26 to S27), with significant differences in the
likelihood of GBL in the FFP versus the NFP. Future vegetation vulnerability
was further enhanced under all three SSP scenarios, and the drought-
vulnerable area further expanded spatially, yet the spatial distribution of
GBL probabilities did not exhibit significant spatial heterogeneity under all
three SSP scenarios, either in the far future or in the near future. Therefore,
the conditional probabilities when kNDVI was below average under the
three SSP scenarios (as shown in Fig. 7) were also calculated. There was no
significant difference in the GBL probability between 2019 and 2060 and
2061–2100 under the low-emission scenario (Fig. 7a), and the percentage-
point difference in probability between the two periods was 0.38 %. In con-
trast, the GBL probability in the FFP was significantly larger than in the
NFP under the medium- and high-emission scenarios (Fig. 7b-c). Combined
with the drought change trends shown in Fig. S25, these results indicate
that the GBL probability will further increase as future droughts become
more intense. The spatial distribution ofGBLprobabilities under different sce-
narios varied significantly, and most regions in Xinjiang and Kazakhstan
remained drought-vulnerable areas that will need attention in the future. It
is noteworthy that relatively low GBL probabilities were found near the
Aral Sea.

4. Discussion

4.1. GBL caused by drought in CA: from a probabilistic perspective

Central Asia, with scarce average multi-year precipitation and high
evapotranspiration, is a region with severe water shortages, and the
Fig. 7. Conditional probabilities of below-average kNDVI given drought conditions fo
SSP126 (d), (g), SSP245 (e), (h), and SSP585 (f), (i) scenarios.
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aggravation of drought caused by unreasonable water management systems
poses a great threat to the ecological environment (Bai et al., 2019; Wilhite,
2000). Previous studies found that precipitation is the dominant factor con-
trolling vegetation dynamics in CA (Jiang et al., 2017), and therefore this
study assessed vegetation vulnerability using the degree of drought as a priori
condition. The sensitivity and response time of vegetation to water changes
were examined by establishing the relationship between kNDVI and SPEI at
different time scales. The results showed that a dependence of vegetation
dynamics on fluctuations in water availability was observed in most areas
(the percentage of pixels with a positive kNDVI-SPEI relationship was 76.3
%, Fig. 3). Vegetation dynamics in CA are dominated by changes inmoisture,
mainly due to thewater constraint on vegetation phenological and physiolog-
ical processes such as seed germination, photosynthesis, and carbon and
nitrogen use (Rotenberg andYakir, 2010; Vicente-Serrano et al., 2013). In ad-
dition, vegetation growth from May to October was found to be more sensi-
tive to water variability (average correlation coefficient between kNDVI
and SPEI was 0.509, Fig. 3). Compared with other months, vegetation was
in its fastest growth period and needed a large water supply to maintain it.
However, rainfall shortage and concurrent high temperature stress caused se-
vere water shortage in atmospheric evaporation demand, which more
strongly inhibited the photosynthesis and respiration rate necessary for leaf
growth and maintaining green vegetation (Martínez-Vilalta and Lloret,
2016). At the same time, due to the increasingwater demand of plant growth,
leaf enlargement, reproduction, and cooling during this period, the sensitivity
of vegetation to water shortage increased in a short period of time (Jiao et al.,
2021), and therefore a shorter response timewas found fromMay to October
(10 months on average, Fig. 4). Notably, in areas with more abundant vege-
tation types in central CA, the vegetation dynamics were found to respond
over a longer time to water changes from May to October. In general, the
richer the vegetation types, the strongerwill be their resistance tofluctuations
in water variability (Martínez-Vilalta and Lloret, 2016; Vicente-Serrano et al.,
2013), and long-termwater shortages will not havemuch impact on the local
vegetation in a short time. CA is an arid and semi-arid region with perennial
drought and low rainfall, where vegetation has been affected by water scar-
city for a long time and has evolved physiological mechanisms to cope with
r two future cycles (2019–2060 (d), (e), (f) and 2061–2100 (g), (h), (i)) under the
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water scarcity (including more efficient water storage systems and deeper
root systems) to adapt to the adverse conditions (Bai et al., 2019; Jiang
et al., 2019). These physiological mechanisms help to mitigate the negative
effects of short-term water shortages on vegetation dynamics, resulting in a
vegetation response over a longer time scale. In summary, when studying
the sensitivity of vegetation to water variability, monthly-scale temporal var-
iation must be considered. Relevant agency personnel should pay particular
attention to the May–October period, when precipitation shortages and
high temperatures can drive soil moisture toward an increasing shortage
condition, which often triggers a correspondingly dramatic vegetation
response dynamic, leading to GBL (Yang et al., 2019).

Notably, the vegetation response time in this study was derived from a
Pearson correlation analysis that comprehensively quantified the associa-
tion between vegetation dynamics and water deficit or surplus. However,
the kNDVI-SPEI correlation results shown in Fig. 3 could not explain
whether water deficit or water surplus caused the vegetation dynamic
changes. At the current stage, there is still a lack of quantitative understand-
ing of whether water deficit or water surplus plays a more critical role in
weakening vegetation health in CA (Fang et al., 2019b; Mankin et al.,
2019).

This study used a binary probabilistic framework based on copula the-
ory to address this issue by comparing the probability of GBL (measured
by kNDVI being below the monthly average) under drought and wet condi-
tions to improve the importance of our study of vegetation vulnerability
under drought stress. The monthly conditional probabilities that kNDVI
was lower than average under dry conditions (SPEI≤-0.05) and under
wet conditions (SPEI≥0.5) were calculated, and as well as the difference
between them (P(kNDVI<kNDVIave | SPEI) ≤ −0.05) – P(kNDVI <
kNDVIave | SPEI ≥ −0.05)). The results are shown in Fig. 8, where posi-
tive values indicate that GBL is mainly caused by water deficit, that is, veg-
etation is more vulnerable when water is scarce, and vice versa. In terms of
averages, 94.4 % of the regions had a positive percentage-point probability
difference of 44.6 % on average fromMay to October, and 74.2 % of the re-
gions had a positive percentage-point probability difference of 15.3 % in
the remaining months. This indicates that the positive probability differ-
ence is dominant in the CA region, that vegetation is more vulnerable
under dry conditions than under wet conditions, and that water deficit
rather than excess water plays a more important role in inhibiting vegeta-
tion dynamics. However, it should also be noted that from January to
April and in November and December, GBL in northern CA may be attrib-
uted to a water surplus. This occurs when vegetation health is low, water
Fig. 8. Difference in probabilities of below-average G
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demand is low, and either solid or liquid precipitation causes a decrease
in soil temperature, which inhibits the recovery of sparse vegetation (Su
et al., 2011). The same phenomenon was found in the Altay region of
Xinjiang and in the Tarim River Basin during May–October. Studies have
shown that precipitation is the leading factor affecting vegetation growth
in the Altay mountainous area (Jiang et al., 2017). Although the average
annual precipitation in Altay has been increasing in recent years, the tem-
poral distribution of rainfall has changed from a uniform distribution to
concentrated events, and the frequent occurrences of extreme rainfall
events are likely to flood plants (Martínez-Vilalta and Lloret, 2016). Exces-
sive soil moisture during flooding can lead to anaerobic respiration of plant
roots, which affects plant nutrient and water uptake efficiency, causing
stunted growth and even death (Martínez-Vilalta and Lloret, 2016). This
is also the main cause of GBL due to water surplus in the Tarim River
Basin. To repair and rebuild the ecological environment of the Tarim
River downstream, the Tarim River Basin Comprehensive Management
Project was started in 2000, with ecological water transfer to the lower
reaches by ecological sluice control and near-natural overflow (Ling et al.,
2019). By the end of December 2020, twenty-one ecological water transfers
had been made to the Tarim River downstream, mostly from April to No-
vember each year, with a total of 84.45 × 108 m3 of water transferred
(Huang and Pang, 2010). However, the variation of water delivery from
year to year has been large, with the maximum delivery being 12.15 ×
108 m3 in 2017, and a large amount of water is delivered to the vegetation
through diffuse overflow, leading toflooding (Ling et al., 2019). Thesefind-
ings indicate that both water surplus and water deficit lead to increased
vegetation vulnerability, and that therefore, in water-scarce arid zones, an
integrated consideration of efficient water utilization plays an important
role in maintaining the functional stability of ecosystems.

4.2. Migration trajectory of GBL barycenter and coping strategies in CA

In the context of global warming, the severity and impact of future
droughts will tend to increase (Gampe et al., 2021; Trenberth et al.,
2014) in the context of global warming. Frequent droughts will cause
more negative impacts on ecosystems, and quantitative understanding of
vegetation vulnerability under drought stress and mapping the spatial dis-
tribution of drought-vulnerable areas are essential for drought prepared-
ness and mitigation (Jiao et al., 2021). Based on historical observations
and BCC-CSM2-MR climate model data, using a binary-probability frame-
work based on copula theory, this study has quantified the GBL
BL under dry and wet conditions for each month.
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probabilities for both historical and future periods. For the historical pe-
riod, the conditional probabilities when four levels of GBL occurred in dif-
ferent months under three drought scenarios were calculated. As shown in
Fig. 5, the average percentage GBL under extreme drought scenarios was as
high as 44.66 % when severe ecosystem damage occurred. The probability
of GBL in CA under different drought-GBL combinations reaches its peak in
August; the drought-vulnerable areas are mainly located in parts of the
northern edge of CA, including Kazakhstan and the northwestern edge of
Xinjiang, China. The future period was divided into a near-future period
(NFP, 2019–2060) and a far-future period (FFP, 2061–2100) based on the
difference in future drought change trends. In the context of the SSP126,
SSP245, and SSP585 scenarios, the maximum percentage-point differences
in the probability of GBL between the NFP and the FFP when kNDVI was
below average were 0.38 %, 9.82 %, and 18.16 % respectively, which indi-
cates that vegetation vulnerability will further increase in the future. From
the spatial distributions, most regions in Xinjiang and some regions in
Kazakhstan are still drought-vulnerable areas that need attention in the fu-
ture. The results show that the possibility of GBL responds positively to the
severity of water scarcity. In addition to the impact of water resources, this
study also explores the impact of local soil water storage and temperature
on vegetation growth. The soil water storage data is derived from the
GLDAS_NOAH 2.0 dataset (Zhang et al., 2021), the temperature data
comes from the CRU_TS 4.06 dataset (Harris et al., 2020). From Fig. S29,
it can be seen that 84.66 % of the regional soil water storage in CA shows
an upward trend, of which 68.23 % show a significant upward trend,
mostly concentrated in the northwest of CA. The soil water storage in
some areas at the junction of Kazakhstan and Xinjiang, China showed a
slight downward trend. On the whole, the soil water storage in CA also
showed an upward trend from 1982 to 2018 (Fig. S31). The soil water stor-
age directly affects the growth and development of vegetation, so the in-
crease of soil water storage has a promoting effect on the growth of
vegetation (Querejeta, 2017). Fig. S30 shows that the temperature of
98.33%of the CA region shows a significant upward trend, and the temper-
ature increase in the western CA and Xinjiang region of China is larger.
Fig. S32 shows that vegetation has an obvious feedback effect on the
change of temperature.Higher or lower temperaturewill inhibit the growth
of vegetation, and kNDVI increases with the increase of temperature within
a certain temperature range (He et al., 2022; Kang et al., 2021). In addition,
it can be seen that the increase in temperature is one of the direct causes of
drought, and Fig. S25(a) also shows that the trend of drought strengthening
in western CA and Xinjiang, China is more obvious than other regions. The
above analysis deepens the response mechanism of vegetation to drought
understanding.Withmore intense drought, the probability of GBL is also in-
creasing, and the drought-vulnerable areawill further expand. Themain ef-
fect of drought on vegetation growth is water stress, and when the duration
and intensity of drought reach a certain level, it can cause serious damage
to the growth and physiological functions of vegetation and even lead to
the death of a large number of individual plants (Jiao et al., 2021; Li
et al., 2019).

Based on three typical CMIP6 SSPs, this study used SPEI to predict fu-
ture drought conditions in CA. The results show that with increasing SSPs
and warming, the magnitude and intensity of droughts increase signifi-
cantly, with 44.5 %, 95.7 %, and 100 % of the regional drought changes
showing a significantly enhanced trend under the SSP126, SSP245, and
SSP585 scenarios respectively (Fig. S25). CA still faces a more severe
drought threat in the future. However, a smaller probability of GBL was
found in the Aral Sea region (Fig. 7). The Aral Sea basin is located in the
arid zone of the Asian continent, where population growth and irrational
use of soil and water resources have led to serious problems of land desert-
ification, soil erosion, and environmental pollution (Jiang et al., 2020b;Wu
et al., 2020). The Aral Sea crisis has been called ‘the greatest environmental
disaster of the 20th Century’. Since the 1990s, the establishment of the In-
ternational Aral Sea Rescue Organization has made great contributions to
solving the problems of land loss and inefficient water resources utilization
in the Aral Sea Basin, and has achieved certain results (Wu et al., 2020). In
addition, the Chinese government proposed in 2016 to integrate the
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construction of the “Silk Road Economic Belt” with the ecological protec-
tion of Central Asia and came up with its own plan to solve the Aral Sea cri-
sis. The findings of this study based on the future SSP climate change
scenarios in the Aral Sea region give us reason to believe that in the future,
the Aral Sea crisis will be significantly mitigated under the intervention of
human policy. From the above research results, it can be concluded that
to copewith the challenges brought by climate change in the future, it is ur-
gent to build a community with a shared future for mankind and to carry
out international cooperation in disaster management from the perspective
of the sustainable development of global human society.

The barycenter migration model is an effective method to respond to
the evolution of objects in space and is widely used in many studies of spa-
tial processes and patterns (Jiang et al., 2020a). This study used a
barycenter migration model to map the shift paths of the center of gravity
of GBL in the historical and future periods under three climate change sce-
narios, which helps to further quantify the spatial distribution characteris-
tics of drought-vulnerable areas. This information is of great significance
for governments and relevant staff at all levels to grasp drought information
in a timely manner, formulate measures for drought prevention andmitiga-
tion, and realize the transformation from emergency management to risk
management of drought disasters (Hu et al., 2019; Jiang et al., 2020a).
The spatial pattern of barycenter shift (Fig. 9) shows that the GBL
barycenter shifts significantly over the three periods, mainly in
Kazakhstan and Xinjiang. Under the three SSP scenarios, the shifting trends
of GBL barycenter from historical period to NFP and from NFP to FFP were
basically the same. From the perspective of the migration trajectory of the
barycenter, in all three scenarios, it moves from the central part of
Kazakhstan to the southeast, and then moves to the northwest. From the
historical period to the NFP, the barycenter shows a northwest-southeast
trajectory, but from the NFP to the FFP, it shows a southeast-northwest tra-
jectory. The barycenter migration distance is the longest in the high-
emission scenario. It is worth noting that the GBL barycenter in the NFP
under the low-emission and high-emission scenarios is in Xinjiang, and in
the three scenarios, the GBL barycenter from the historical period to the
NFP stage develops toward Xinjiang. However, in the FFP, the barycenter
moves in the opposite direction. The SSP future climate change scenarios
used in this study are based on descriptions that can characterize future
socio-economic development trends, incorporate factors such as popula-
tion, economic growth, education, urbanization, and technological devel-
opment rates, and consider the climate policies that countries have
already adopted (Riahi et al., 2017; Wigley and Raper, 1992). As a country
with a large economy and population, China has beenworking hard to deal
with global climate change, energy conservation and emission reduction
(Niu et al., 2011). As early as 2006, China put forward the strategic goal
of energy conservation and emission reduction, and then at the 75th United
Nations General Assembly China proposed Aim for carbon neutrality by
2060 (Ma et al., 2020; Zhao et al., 2022). This paper divides 2060 into
time nodes in the near-future and far-future periods according to the differ-
ence in future drought trends. The results show that in the FFP, the GBL
barycenter in CA tends to shift from Xinjiang, China to the northwest,
which indicates that the GBL barycenter in CA has shifted due to some rea-
sons in the far future. However, we should also realize that in the near fu-
ture, the GBL barycenter in CA is located in Xinjiang, China, and relevant
staff still need to focus on the Xinjiang region and take precautionary mea-
sures to deal with future droughts.

5. Conclusion

To test the scientific hypothesis that aggressive climate change coping
strategies can shift the migration trajectory of the GBL barycenter due to
drought, a binary probabilistic framework was constructed based on copula
theory. Calculations showed that 62.6 % of the regional maximum kNDVI-
SPEI correlations in CA reached a significant level (p < 0.05) in May–
October on average, indicating a high sensitivity of vegetation to drought.
Using this framework, the study found that an average of 94.4% of regional
GBL in May–October was caused by water deficit. From the perspective of



Fig. 9.Migration trajectory of GBL barycenter in CA. ‘Historical’ refers to the GBL barycenter in historical periods, ‘SSP126-NFP’ refers to the GBL barycenter in theNFP under
the SSP126 scenario; ‘SSP126-FFP’ refers to theGBL barycenter in the FFP under the SSP126 scenario; ‘SSP245-NFP’ refers to the GBL barycenter in theNFP under the SSP245
scenario; ‘SSP245-FFP’ refers to the GBL barycenter in the FFP under the SSP245 scenario; ‘SSP585-NFP’ refers to the GBL barycenter in the NFP under the SSP585 scenario;
‘SSP585-FFP’ refers to the GBL barycenter in the FFP under the SSP585 scenario.
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probability, the GBL probability when kNDVI was at 0.4, 0.3, 0.2, and 0.1
quantiles peaked in August (80.45%, 73.03%, 62.15%, and 44.66% in ex-
treme drought scenarios), with the most severe vegetation vulnerability
during this period. Studies show that withmore intense drought, the spatial
differences in the probability of GBL to the same degree in different months
became more and more obvious, and therefore the factors of the variation
of GBL probability at monthly scale should be considered when conducting
vegetation vulnerability assessment in the future. Thereafter, based on
projected future drought trends, the regional values of Sen for the
SSP126, SSP245, and SSP585 scenarios were 6.3 × 10−5/year, 18.4 ×
10−5/year, and 31.3 × 10−5/year respectively. The percentages of pixels
with a significantly increasing drought trend were 44.5 %, 95.6 %, and
100 % respectively. The percentage-point differences in the probability of
drought with a significantly enhanced trend in the NFP and the FFP when
kNDVI was below average were 0.38 %, 9.82 %, and 18.16 % respectively,
indicating that more intense drought under strong emissions stress will in-
crease the probability of GBL. Therefore, measures such as active energy
conservation and emissions reduction should be taken to mitigate drought
in the future. This effect was also reflected in the trajectory of the GBL
barycenter shift. For example, in the high-emission scenario, the GBL
barycenter in theNFPwas in Xinjiang. However, due to the Chinese govern-
ment’s activemeasures to respond to global climate change (such as propos-
ing “carbon neutrality” in 2060), the barycenter shifted away fromXinjiang
in the FFP. These results not only deepen our knowledge about the feedback
mechanism of terrestrial vegetation to drought hazards, but also provide a
new idea for the study of GBL laws under global climate change, and can
also reference the policies such as energy conservation and emissions re-
duction issued by the Chinese government to cope with future ecological
crises caused by water shortage in arid areas.
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