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A novel multi-model fusion framework diagnoses the complex variation 
characteristics of ecological indicators and quantitatively reveals their 
driving mechanism 
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A B S T R A C T   

Systematic analysis of the change law and driving mechanism of ecological indicators (GPP, ET, WUE), as well as 
the study of maximum threshold of water resources benefit changing with ecological benefit, are important 
prerequisites for realizing the scientific allocation and efficient utilization of water resources in desert riparian 
forests. However, previous studies have defects in the detailed description of the change characteristics of 
ecological indicators. How to accurately diagnose the characteristics of a site, mutation year, pattern (linear, 
exponential, logarithmic, etc.), duration of change, future change trends of ecological indicators in a desert ri-
parian environment, as well as quantitatively revealing their driving mechanisms, are major scientific problems 
that need to be solved urgently. In this regard, an ensemble function coupling a logistic function and an 
asymmetric Gaussian function was creatively adopted, a novel framework was created to integrate the time- 
series trajectory fitting method and the sensitivity analysis method, and the arid and ecologically fragile 
Tarim River Basin was taken as a typical area. The results showed that with enhanced water resource man-
agement in the Tarim River Basin, GPP, ET, and WUE all showed patterns of increasing change and could be 
expected to continue to rise or to remain at a high-level stable state. The longest continuous period of GPP change 
was 15 years, showing that ecological restoration is a long-term process. The years of GPP mutation were 
consistent with the implementation periods of major measures in the Tarim River Basin (1990, 2001, and 2011), 
indicating the reliability of this framework. More importantly, when GPP increased to 216.44 g C m− 2, the 
maximum WUE threshold of 0.93 g C m− 2 mm− 1 occurred. This threshold can be used as a reference criterion for 
efficient utilization of ecological water in the basin. Among the ecological indicators studied, GPP was the most 
sensitive to environmental change, but GPP, with 80.60% of pixel area, showed a weak memory effect（α < 0.4). 
Besides, GPP was the most sensitive to the leaf area index (LAI) and had the strongest correlation with it (p <
0.001). Therefore, LAI can be used as the main control factor for judging plant growth. This research can provide 
important scientific guidance and reference for the analysis of ecological indicator changes and the sustainable 
utilization of water resources in arid areas.   
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1. Introduction 

The continuous increase in atmospheric carbon dioxide concentra-
tion will adversely affect global climate (Friedlingstein et al., 2020), but 
the vegetation of terrestrial ecosystems can slow down the rise of carbon 
dioxide concentration by providing a carbon sink (Piao et al., 2020). 
Dryland ecosystems cover ~41% of global land surface area (Yao et al., 
2020), and desert riparian forest is their main component for carbon 
sequestration and water use. In addition, water resources are scarce in 
arid areas, and vegetation is sensitive to fluctuations in water supply, 
which controls the key regulatory factors of dryland ecosystems. 
Evapotranspiration (ET) and gross primary productivity (GPP) represent 
the total water vapor flux transported to the atmosphere by the 
ecosystem and the total amount of carbon dioxide fixed by photosyn-
thesis. They are important components of the ecosystem water cycle and 
carbon cycle, respectively, and are also the key carbon and water 
regulation links in the ecosystem (Ryu et al., 2019; Tagesson et al., 2021; 
Jasechko et al., 2013). Water use efficiency (WUE) is the ratio of carbon 
gain (GPP) to water loss (ET), which is used to quantify the benefits of 
ecosystem water use (Keenan et al., 2013). Analyzing and studying the 
dynamic changes of ET, GPP and WUE in ecosystems and the driving 
mechanism of environmental factors behind them is of great significance 
for the protection of ecosystems in arid regions and the rational allo-
cation of water resources. 

Against the background of global change, different institutions and 
researchers have conducted extensive research on dynamic changes of 
GPP, ET, WUE in different surface ecosystems (Yao et al., 2020; Cheng 
et al., 2017). These studies clarified the basic information such as 
magnitude and direction of change in the three ecological indicators. 
However, under a series of artificial and natural disturbances such as 
climate fluctuation, afforestation and water resource regulation, actual 
experience with ecological indicators is a slow gradual change process 
(de Jong et al., 2012), which often includes the disturbance changes 
caused by external interference (Fang et al., 2018; Ma et al., 2019), 
whereas the perturbances of ecological indicators in long-term time 
series may not be found or may be completely concealed in the trend 
analysis. Detecting how and when ecological indicators change with 
sudden disturbances, can not only provide more insight into the change 
process of ecological indicators, but can also help people fully under-
stand the response of ecological indicators to environmental change. In 
this regard, the first scientific question is proposed: how to accurately 
diagnose the response law that integrates the site, mutation year, 
pattern, duration, and past and future trends of desert riparian ecolog-
ical indicators? In addition, in arid regions with limited water resources, 
carbon sequestration increases with more water supply (Poulter et al., 
2014). However, a large amount of water input not only produces 
waterlogging stress on plants and inhibits biomass growth (Tagesson 
et al., 2021), but also greatly increases abiotic water consumption (i.e., 
evapotranspiration) (Liu et al., 2020), resulting in relatively low WUE. 
This indicates that there may not be a simple proportional relationship 
between WUE and GPP as water supply conditions change, but that there 
is a maximum threshold. Although some previous studies have investi-
gated the relative contributions of GPP and ET to WUE change (Liu et al., 
2020; Zhao et al., 2021), no research on the threshold relationship be-
tween WUE and GPP has been published up to now. In this regard, a 
scientific hypothesis was formulated: with increasing GPP, WUE reaches 
a maximum threshold. 

The carbon-water cycle process in arid ecosystems is mainly driven 
by water availability (Ahlstrom et al., 2015). Precipitation is the water 
input of an ecosystem, which profoundly affect changes in ecological 
indicators (Fensholt et al., 2012). However, in arid ecosystems, rainfall 
is less than potential evapotranspiration, and surface runoff provides 
limited water supply to vegetation, so that groundwater (GW) resources 
are particularly important (Liu et al., 2017), but few studies have 
quantified the impact of GW on changes in ecological indicators. As for 
temperature, it provides the energy driving of photosynthesis, leaf 

transpiration, and soil evaporation (Yu et al., 2008). Studies have shown 
that temperature rise can advance the greening process of vegetation 
and delay dormancy, which directly affects the photosynthesis of 
vegetation and prolongs its growing season (Liu et al., 2020; Ryu et al., 
2019). In the regulation of temperature on the physiological growth of 
vegetation, the saturated vapor pressure deficit (VPD), which is 
co-variant with temperature (Liu et al., 2020), can affect the magnitude 
of vegetation GPP and ET by regulating the stomatal conductance of 
leaves (Yuan et al., 2019). In addition to the direct impact of tempera-
ture and precipitation on the carbon-water cycle, they also lead to 
changes in vegetation structure (Chen et al., 2019), such as leaf area 
index (LAI), which in turn also change the carbon-water cycle, but the 
feedback of LAI on the carbon-water cycle has not been systematically 
studied. It can be seen that the carbon and water cycle processes of the 
ecosystem are not affected by a single factor, but by a combination of 
various factors. Furthermore, the combined or relative impact of various 
environmental factors has not been fully proved. Based on this, the 
second scientific question is proposed: how to quantitatively reveal the 
driving mechanism of changes in ecological indicators in a desert ri-
parian environment? In addition, the disturbance of ecological in-
dicators to environmental factors often has memory effects (The 
memory effect measures the ability of ecological indicators to return to a 
normal state after disturbance. The greater the memory effect, the 
stronger will be the anti-interference ability; in other words, the 
ecosystem can make timely adjustments to environmental changes) 
(Campos et al., 2013; Piao et al., 2020). Moreover, even when experi-
encing the same external disturbance, each part of an ecosystem com-
munity may respond differently due to differences in sensitivity (the 
degree of system change after disturbance) and elasticity (the ability of 
the ecosystem to restore its original state after disturbance) (Li et al., 
2018). In view of this, it is urgent to deepen our understanding of the 
spatial distribution of areas with high sensitivity or low recovery rate, as 
well as the relevant ecosystem characteristics. An arid ecosystem is 
characterized as frail and highly sensitive. Therefore, the second scien-
tific hypothesis is proposed: desert riparian GPP has weak memory effect 
and high sensitivity to environmental change. 

For the gradual process of ecological indicators, a series of new al-
gorithms such as the Detecting Breakpoints and Estimating Segments in 
Trend (DBEST) and Breaks For Additive Seasonal and Trend (BFAST) 
algorithms have been developed (Fang et al., 2018; Verbesselt et al., 
2010),. However, this approach requires the user to set the number of 
breakpoints and use many mathematical models to fit the trajectory 
(Verbesselt et al., 2010), which makes the results highly uncertain and 
the calculation steps very complex. The time-series trajectory-fitting 
algorithm overcomes these shortcomings. It can not only detect the 
nonlinear change process of ecological indicators, but also determine the 
time and duration of ecological indicator change and predict future 
change. In addition, there is no need to set parameters manually, 
thereby reducing the deviation caused by subjective human factors. This 
method was first proposed by Zhang et al. (2003) and was used to detect 
vegetation phenology behavior in the northeastern United States. 
Moreover, the logistic model used in the algorithm can more effectively 
detect the gradual change process of vegetation under human distur-
bance, and has clear ecological significance (Song et al., 2016). How-
ever, it can only identify monotonic change processes of ecological 
indicators, but cannot identify non-monotonic change processes in 
which ecological indicators undergo degradation after restoration or the 
reverse. Che et al. (2014) solved this problem by adopting a new 
ensemble function: the non-monotonic change process could be detected 
by the Gaussian function form in the ensemble function. However, this 
function has not yet been used to analyze the detailed change charac-
teristics of ecosystem GPP, ET, and WUE. Furthermore, it is also very 
important to reveal the driving processes that cause this change pattern. 
Based on autoregressive modeling, Seddon et al. (2016) proposed a new 
empirical method to determine the climate driving factors of vegetation 
productivity and regions with memory effects. This study used this 
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method to quantitatively analyze the driving mechanism of ecological 
indicator changes. 

Based on the analysis just described, to solve two scientific problems 
and verify two scientific hypotheses, this study involved the building of 
a new type of multi-model fusion framework. With the aid of multi- 
source remote-sensing data and measured groundwater depth data, 
the complex variation characteristics of ecological indicators at pixel 
and reach scale were analyzed, the sensitivity of ecological indicators to 
a changing environment was studied, the driving mechanism of 
ecological indicator change patterns was revealed, the ecological regu-
lation zone was delineated, and the maximum threshold point of WUE 
changing with GPP was determined. This study provides important 
guidance and scientific reference for promoting ecological restoration 
and efficient utilization of water resources in arid areas. 

2. Materials and methods 

2.1. Overview of the study area 

The Tarim River Basin (34.20◦–43.39◦N, 71.39◦–93.45◦E, Fig. 1) has 
a typical continental arid climate. Annual rainfall is only 17.4–42.0 mm 
in the Tarim River Basin, whereas annual evaporation is as much as 
2500–3000 mm (Ling et al., 2016). This basin is one of the most 
ecologically fragile regions in China and the world. The basin includes 
144 tributaries of nine major rivers, which occupy an area of 1.02 × 106 

km2 (Ling et al., 2019). The Tarim River is the longest endorheic river, 
with a length of 1321 km (upstream from Alar to Yingbaza, midstream 
from Yingbaza to Qiala, and downstream from Qiala to Taitema Lake) 
(Ling et al., 2020). Currently, only the Aksu, Hetian, Yarkand, and 
Kaidu-Kongqi Rivers have surface water connections with the Tarim 
River; the rest of the river system has separated from the mainstream 
due to climate change, human activities, and other factors (Ling et al., 
2016). Specifically, after completion of the Daxihaizi Reservoir in 1972, 
the flow from the upstream and midstream portions of the Tarim River 
was completely blocked, leading to the drying up of the downstream 
portion of the Tarim River and Taitema Lake, the large-scale degener-
ation of natural vegetation, groundwater recession, and serious damage 
to the ecological environment (Ling et al., 2019) (Fig. 1a). To save the 
ecosystem in the downstream area, in 1990, the Tarim River Basin 

Management Bureau was established to implement ecological protection 
and ecological water supply for the Tarim River. In 2001, the Chinese 
government invested 10.7 billion yuan to carry out comprehensive 
management of the Tarim River Basin with the fundamental aim of 
restoring the downstream ecosystem. To further guarantee an ecological 
water supply for the Tarim River, the four source streams were placed 
under uniform administration by the Tarim River Basin Management 
Bureau in 2011, so that water resource management was increasingly 
strengthened. 

From 2000 to 2018, ecological water replenishment was carried out 
nineteen times in the downstream portion of the Tarim River, with a 
total ecological water replenishment of 7.767 billion m3 and an average 
annual water replenishment of 432 million m3. The ecological envi-
ronmental degradation trend in the Tarim River Basin has been effec-
tively curbed: groundwater depth in the basin has risen significantly, the 
flow now reaches Taitema Lake, the impacts of long-term flow cut-off in 
the downstream area are being mitigated, and green vegetation in the 
riparian zone shows positive physiological and ecological responses (Liu 
et al., 2013) (Fig. 1b and c). Therefore, the Tarim River Basin is not only 
the area with the most serious ecological degradation caused by artifi-
cial interference, but also a typical case of the most successful ecological 
restoration promoted by human intervention. 

2.2. Datasets and pre-processing 

GLASS, which is characterized by long time series, high spatial res-
olution and provide reliable data to study global environmental change. 
It is widely used in climate, hydrology, and disaster studies at global and 
regional scales (Jiang et al., 2017; Liu et al., 2018). The GLASS dataset is 
inverted by integration of many algorithms such as the Bayesian method 
and machine learning (Yao et al., 2015) based on multi-source remote 
sensing products and measured site data. The dataset contains 16 
products with a maximum temporal and spatial resolution of 8 days and 
500 m, respectively, covering the period 1981–2018. GLASS is published 
by the Center for Global Change Processing and Analysis of Beijing 
Normal University and is available for free download at http://www.ge 
odata.cn/. It is widely used in research on global and regional change 
and has high reliability compared to similar remote-sensing products. 
Chu et al. (2011) found that GLASS LAI was superior to MODIS LAI (C4) 

Fig. 1. Overview of the Tarim River Basin, including its land cover type, location in China, distribution of water system, location of groundwater monitoring wells, 
etc. (a), (b), and (c) represent the landscape changes of the terminal Taitema Lake during river cut-off, under and after ecological water delivery, respectively. 
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in simulating climate impact on large-scale vegetation restoration in 
Queensland, Australia. Quantitative comparisons of these time profiles 
indicate that GLASS has a smoother time profile, whereas the MODIS 
data curves show significant volatility, especially during the growing 
season (Xiao et al., 2016). In addition, the accuracy of GLASS is signif-
icantly higher than that of MODIS. Xiao et al. (2011) used MODIS sur-
face reflectance data and measured LAI data from eight BELMANIP sites 
for validation. The results showed that, compared with MODIS LAI 
products, GLASS LAI products are relatively smooth, and their accuracy 
is significantly better. Based on these reasons, GLASS remote-sensing 
data products were selected in this study to analyze the long-term 
change rules of ecological indicators. 

The GLASS datasets used in this paper are shown in Table S1. GPP 
and ET were used to analyze the spatial gradual change pattern of 
ecological indicators, and the 1 km × 1 km 8-day ET values were further 
upscaled to 500 m × 500 m using the nearest-neighbor resampling al-
gorithm to match the spatial resolution of the gridded GPP dataset. In 
this study, water use efficiency (WUE) is defined as the amount of car-
bon sequestration per unit of water loss in an ecosystem (Keenan et al., 
2013) and can be calculated by the ratio of GPP and ET. LAI data were 
used to analyze the driving mechanism of ecological factor change in 
desert riparian forest. To compare the change patterns of ecological 
indicators before and after ecological water diversion, GLASS GPP 
AVHRR (0.05◦, 1982–2018) and GLASS ET AVHRR (0.05◦, 1982–2018) 
data were also used. To ensure consistency, these data were pre-
processed before analysis as follows: the Interactive Data Language 
(IDL) was used to read, splice, cut, and synthesize the growing season 
data (from April to October) from GLASS data and to perform format 
conversion, reprojection, and projection conversion. 

Other datasets used in this article are shown in Table S1, including 
gravity satellite data, land surface models, and monitoring data. All 
remote-sensing and monitoring data were unified to growing-season 
scale and a spatial resolution of 500 m/0.25 ◦. Specifically, the VPD 
data were inverted from the LST data (Appendix, Methods S1). The 
groundwater depth data were inverted from the GRACE and GLDAS 
satellite datasets, and the measured groundwater depth data were used 
to adjust the inverted groundwater depth data (Appendix, Methods S2). 
The data were then used as model inputs to construct a multi-model 
fusion framework that combines (1) pattern recognition and (2) 
driving mechanism detection. The calculation program for the frame-
work was written in R, and ArcGIS 10.6 and Python 3.7.8 were used to 
draw the results graph (the overall research process is shown in Fig. 2). 

2.3. A novel multi-model fusion framework 

The novel multi-model fusion framework constructed in this study 
includes two modules: (1) an integrated function, coupled with the lo-
gistic function and the asymmetric Gaussian function, was used to 
identify the change patterns, the location of breakpoints, and future 
change trends. (2) The ARI multiple regression analysis model helps to 
examine the relative importance of the driving factors, identify the 
memory effect and quantify the sensitivity of the ecological indicators 
by calculating the sensitivity index. Combined with the structural 
equation model (SEM), the driving mechanism of ecological indicator 
change can be revealed. 

2.3.1. An integrated function to identify patterns of ecological indicator 
change 

Using time series of remote-sensing data, several methods have been 
developed to obtain the law of gradual change of ecological indicators. 
However, these algorithms focused only on the monotonic change pro-
cess of ecological indicators during the study period and did not address 
more complex change processes. Based on this, an integrated function 
coupled with a four-parameter logistic function and an asymmetric 
Gaussian function was used in this study to automatically identify the 
patterns of ecological indicator change, and then the direction, intensity, 
and time of ecological indicator change were determined to predict 
future change trends. 

To eliminate the influence of periodic and irregular fluctuations in 
the time series, the original time series (series x) was first smoothed 
using the moving average method (setting the window length to 3) to 
obtain a more stable time series (series y). When ecological indicators 
are disturbed, they enter a state of rapid improvement or deterioration. 
It was assumed that the time point (P) with the maximum slope of the 
time-series profile of ecological indicators was the mutation year. In this 
study, the first-order derivative of the smoothed time series (series y) 
was calculated and P corresponded to the maximum value of the de-
rivative represents the moment when the ecological indicators change 
fastest. 

To better identify nonlinear change patterns, this study took P as the 
center point to extend the smoothed processed series y. The extended 
series k was filled with the first or last term in the time series y and could 
be obtained through Eq. (5): 

Fig. 2. The overall framework of the study. (EI is the abbreviation of ecological indicator, and ENVI is the abbreviation of ecological environmental factor).  
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L=

⎧
⎨

⎩

n P = n/2
2 × (n − P) P < n/2
2 × (P − 1) P > n/2

(5) 

Next, the integration function is used to fit the time series k: 

f (t)=
m

1 + eφt + n (6)  

where parameter m is the difference between the maximum value of the 
time series and the background value, representing the change intensity 
of ecological indicators in a certain time duration (Cao et al., 2015). 
When φ(t) = p(t − q), Eq. (6) is equivalent to the logistic function (Zhang 
et al., 2003). In another case, when φ(t) = p(t − q)2, Eq. (6) is equiv-
alent to the asymmetric Gaussian function (Jonsson and Eklundh, 2002). 
Note that parameter p indicates the direction of ecological indicator 
change, and parameter q indicates the time when the change occurs. The 
goodness of fit is determined by the F statistical test. “Mutation year” 
refers to the year when an ecological indicator abruptly starts or finishes 
changing. The start of a change is generally caused by a disturbance 
event, and the end of a change indicates that the change in an ecological 
indicator has reached a stable state. In this study, the change rate of 
curvature method was used to identify the mutation points. The change 
rate K of the integration function can be expressed by Eq. (7). 

K =
− m × eφ(t) × φ′

(t)
[1 + eφ(t)]

2 (7) 

The first-order derivative of K is then calculated and the position of 
the mutation point is the corresponding point of the maximum and 
minimum values. Through the number of mutation points and the four 
parameters of the integration function, eight nonlinear change patterns 
of ecological indicators can be identified (as shown in Table S2). 

As for the pixels that did not pass the F-test and those without 
transition years, we could use Eq. (8) to fit the series y. 

f (i) = s + slope × i i = 1, 2,⋯, n (8)  

where i is the i-th year in the series y of ecological indicators; s and slope 
are linear regression parameters; and slope represents the change trend 
of ecological indicators. The F-test was also used to determine the 
goodness of fit. The ecological indicators of the grid points that passed 
the F-test showed a linear change trend, whereas the other grid points 
that did not belong to the above patterns were defined as having no 
obvious change trend and were not analyzed in detail in this study. In 
addition, to verify whether a linear change pattern also had a mutation 
point, the Mann-Kendall mutation test was used. First, the Mann-Kendall 
test order column was constructed: 

Sk =
∑k

i=1

∑i

j=1
αij (k= 1, 2, 3, ..., n) αij =

{
1 xi > xj
0 xi ≤ xj

(9) 

Under the assumption of random independence of time series, Sk was 
normalized to UFk. For a given significance level α, if |UFk| > Uα, this 
suggests that the series has an obvious change trend. Take the opposite 
of the series of UFk and get its inverse series UBk. If the curves UFk and 
UBk intersect and the intersection is between the critical lines, the time 
corresponding to the intersection is the year when the changeover 
began. 

This module can automatically identify the five ecological indicator 
change patterns of linear, exponential, logarithmic, logistic, and 
Gaussian. The positive and negative trends of these five patterns were 
classified into ten cases, as shown in Table S2. Finally, the parameters in 
the function were used to evaluate the characteristics of ecological in-
dicator change, including the time (when), place (where), and pattern 
(how) of change. Fig. S2 details the technical flowchart of the module 
(1). Note that no Gaussian change patterns were detected during pixel 
and reach scale analysis, and therefore only eight change patterns will 
be discussed in the following analysis. 

2.3.2. Identifying the sensitivity of ecological indicators to environmental 
change 

A novel empirical method developed by Seddon et al. (2016) can 
quantify the sensitivity of different regions to climate change. This study 
will use this method to explore the impact of a changing environment on 
ecological indicators and then reveal the driving mechanism for these 
changes (Fig. S3). In this study, three environmental variables, LAI, 
VPD, and GW, were used. And the ecological indicator data with a lag of 
one month were used as the fourth variable in the regression to study the 
potential impact of the memory effect on driving ecological indicator 
dynamics. First, to remove the seasonal components in the annual time 
series, the annual data were de-trended and then standardized using the 
Z-score normalization formula: 

Zi =
xi − xi

σi
(10)  

where xi is the detrended data in the i-th year and xi and σi are the mean 
and standard deviation of the variable x in all years, respectively. Next, 
the ARI multiple regression method was used to calculate the linear 
relationship between ecological indicators and environmental variables 
and the influence of the memory effect on each pixel: 

EIt = α × EIt− 1 + β × LAIt + γ × VPDt + δ × GWt + εt (11)  

where EIt is the standardized ecological indicator value (GPP or ET or 
WUE) at time t and EIt− 1 is the abnormal standardized ecological indi-
cator (GPP or ET or WUE) at time t-1. LAIt, VPDt, and GWt are stan-
dardized LAI, VPD, and GW at time t, respectively. εt is the residual term 
at time t, and α, β, γ, and δ are the LAI, VPD, GW, and EIt− 1 coefficients of 
each pixel, respectively. Compared with the correlation coefficient, 
which can only reflect whether the ecosystem responds to environ-
mental variability, the regression coefficient can further reflect the 
response amplitude. To eliminate collinearity among the four variables, 
principal component regression (PCR) was applied within each pixel to 
quantify the relative importance of each variable in driving changes in 
ecological indicators. Principal components that were significantly 
related to the environment (p < 0.1) were selected. The load scores of 
each variable were then multiplied by the PCR coefficients, and the 
results were added up to estimate the relative importance of each vari-
able in driving interannual changes in ecological indicators. 

2.4. Structural equation model 

The structural equation model (SEM) is a comprehensive statistical 
analysis method combining factor analysis and path analysis. It has 
many advantages that traditional statistical analysis methods do not 
have: it can not only study the internal structure relationship of vari-
ables, but also study the relationship between variables, allowing for 
error and measuring multiple variables. Therefore, this study used the 
structure function model to study the correlation between ecological 
indicators and environmental factors, and whether correlation between 
environmental factors exists. By combining this approach with the 
sensitivity analysis, the driving mechanism of change patterns can be 
better analyzed. 

3. Results and analysis 

3.1. Change characteristics of ecological indicators based on pixel scale 

Among the GPP change patterns (Fig. 3a), linear change (67.70%) is 
the most common, and the linear decreasing pattern accounts for the 
largest percentage (35.62%) of the eight change patterns. This type of 
pattern is mainly distributed in the desert area of the basin. The per-
centage of linear growth pattern is the highest among all growth pat-
terns, at 32.10%. Among the other change patterns, the percentages of 
exponential growth, exponential decrease, logarithmic growth, 
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logarithmic decrease, logistical growth, and logistical decrease were 
10.37%, 0.22%, 7.92%, 1.66%, 11.81%, and 0.30%, respectively. In 
terms of overall trend, the percentage of the area with an upward trend 
(62.20%) was higher than the percentage with a downward trend 
(37.80%). As for future change trends in GPP (Fig. 3b), the area with 
continuous increasing GPP trend accounted for the highest percentage 
(42.46%); the percentage of the area with a low level of stability was the 
lowest (1.96%). In the future, areas with decreasing trend (35.85%) will 
be mainly desert, followed by grassland vegetation. Accordingly, the 
future change trend of GPP is that the area percentage of continuous 
improvement and high-level stable state (62.20%) will be higher than 
that of continuous deterioration and low-level stable state (37.80%). 
GPP is generally in or tends to be in a benign state. 

Fig. 3c shows the spatial distribution of ET change patterns. Among 
all change patterns, the logistical growth pattern dominated (42.67%), 
and the bare desert land in the Tarim River Basin mainly presented this 
change pattern. Among all the negative change patterns, the linear 
decreasing pattern accounted for the highest percentage (13.88%). 
Overall, the percentage of the growth pattern (85.25%) was much larger 
than that of the decreasing pattern (14.75%). The decreasing patterns 
were most intensively distributed in the midstream reach, with only a 
few in the upstream reach. As for the future development trend of ET 
(Fig. 3d), areas in a high-level stable state accounted for the highest 
percentage (48.69%), and the areas in a low-level stable state accounted 
for the lowest (0.83%). In the future, ET in a few areas of the midstream 
and upstream reaches will continue to decrease (13.92%). In general, 
the percentage of pixel area where ET continues to rise or is in a high- 
level stable state (85.25%) is much larger than the percentage where 

ET continues to decrease or is in a low-level stable state (14.75%), 
indicating that ET will continue to rise or maintain a high value. 

Fig. 3e shows the spatial distribution of WUE change patterns. The 
linear decreasing pattern accounted for 53.24%, which is far more than 
other change patterns, and was concentrated in the bare desert land in 
the Tarim River Basin. In general, the percentage of pixel area with a 
negative WUE trend (66.37%) was higher than the percentage with a 
positive trend (33.63%), and the distribution area of positive WUE 
pattern in the upstream and midstream reaches was larger than in the 
downstream reach. From the perspective of future WUE trends (Fig. 3f), 
WUE in more than half the area will continue to decrease (53.95%), with 
the areas in a high-level stable state accounting for the lowest percent-
age (11.50%). WUE in most areas of the Tarim River Basin can be ex-
pected to continue to decrease or to maintain a low-level stable state 
(66.37%), whereas the areas where WUE will continue to improve or to 
maintain a high-level stable state are mainly distributed in the upstream 
and midstream reaches (33.63%). 

The research method in this study can also detect the mutation point 
of linear patterns. Among all the pixels of GPP, ET, and WUE, the per-
centages of pixels with a mutation point were 58.25%, 70.81%, and 
49.04% respectively (Fig. S4). In terms of the occurrence year of the first 
GPP mutation point (Fig. S5a), since 2000, the percentage of pixels 
undergoing transformation has generally shown an increasing trend 
with time, and the transformation year of the upstream and downstream 
reaches was generally earlier than that of the midstream reach. 
2014–2016 was the main period of GPP transformation, during which 
the percentage of pixels that changed was 50.52%, mainly distributed in 
the midstream reach. The first mutation point of ET, appearing in 2012, 

Fig. 3. The spatial distribution of gradual change pattern (a, c, e), and future change trend (b, d, f) of GPP, ET and WUE, respectively, in the Tarim River Basin during 
the period 2001–2018. There are four patterns: linear pattern, exponential pattern, logarithmic pattern, and logistic pattern. Each pattern is further divided into two 
types: positive and negative pattern. The future trend includes: keep increasing, keep decreasing, high stable level and low stable level. 
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accounted for 38.23% of pixels and was concentrated in the midstream 
and downstream reaches (Fig. S5b). The first mutation point of WUE 
generally appeared from 2014 to 2016. During this period, transition 
pixels were widely distributed in the upstream and midstream reaches, 
accounting for 42.30% of all pixels (Fig. S5c). 

The logistic change pattern reached a relatively stable state after the 
second mutation point, and the spatial distribution of the year at the 
second mutation point is shown in Figs. S5d–S5f. For GPP change 
(Fig. S5d), the percentage of stable regional area showed a significantly 
increasing trend from 2010 to 2018, and the percentage of total pixel 
area reached 81.73% during this period. The second ET mutation point 
was mostly in 2013, with a continuous lamellar distribution in the 
midstream and downstream reaches (Fig. S5e). WUE stopped changing 
mainly from 2011 to 2016, and the area of the pixels where WUE 
stopped changing during this period accounted for 83.46% of total pixel 
area (Fig. S5f). 

According to the results, the longest duration of the logical change 
pattern in the Tarim River Basin was 15 years. The study divided 15 
years of continuous change into four types: less than two years, three to 
four years, five to seven years, and eight years or more. The spatial 
distributions of the duration of change of GPP, ET, and WUE are shown 
in Figs. S5g–S5i. In Fig. S5g, the percentage of duration of change of GPP 
within 2 years is the highest, reaching 33.95%, followed by change 
taking more than 8 years, which accounted for 26.19%, and change 
taking 3–4 years with the lowest percentage, 14.45%. The highest per-
centage of ET change duration in Fig. S5h is also 1–2 years, accounting 
for 63.51% of pixels, and the lowest percentage is more than 8 years, 
accounting for 9.64%. In Fig. S5i, the highest percentage of WUE change 
duration is more than 8 years, accounting for 38.41%, followed by 1–2 
years (28.11%), and 3–4 years (11.31%). The spatial distributions of the 
change durations of GPP and WUE showed obvious spatial 

heterogeneity, but the pixel distribution of ET change lasting less than 2 
years had spatial continuity, these changes were mainly distributed in 
the midstream and downstream reaches. 

3.2. Change characteristics of ecological indicators based on reach scale 

After all the pixel values in each year had been averaged, the change 
pattern of the whole region was obtained using the proposed framework 
(Figs. 4–6). As can be seen in Fig. 4, GPP in the mainstream, upstream, 
midstream, and downstream reaches of the Tarim River all showed an 
upward trend from 1982 to 2018. Among them, only the upstream 
change pattern was a logistic growth type, which began to change 
significantly in 1990 and became stable in 2011. The change patterns of 
the other reaches were all exponential growth, and the years of abrupt 
change points in the upstream, midstream, and downstream reaches 
were 1996, 2002, and 2001, respectively. The overall average GPP 
decreased gradually from upstream to downstream. 

Fig. 5 shows that ET in the mainstream, upstream, midstream, and 
downstream reaches all showed a positive trend from 1982 to 2018. 
Among these, the changes in ET in the mainstream and midstream 
reaches both showed exponential growth, and their transformation 
years were 1999 and 2001 respectively. Both upstream and downstream 
ET showed a logistic increase pattern. Their first transition points were 
in 1986 and 1998, respectively, and the changes started to stabilize in 
2000 and 2013, respectively. 

As for the regional change patterns of WUE (Fig. 6), the WUE of the 
mainstream, upstream, midstream, and downstream reaches all showed 
an exponential growth trend from 1982 to 2018, whereas the WUE of 
pixels with more than 50% area in Fig. 3g showed a downward trend. 
The significance test of WUE change mode of each pixel showed that 
41.22% of the pixels in the decreasing mode had no significant change 

Fig. 4. Processes of GPP gradual change pattern in four regions from 1982 to 2018. (a: Mainstream; b: Upstream; c: Midstream; d: Downstream).The contents of each 
subfigure include profiles of the original GPP timeseries (orange solid line), the prolonged timeseries (green dotted line), the fitting temporal profile (black line), and 
the time of the transition point (red word). Values in the horizontal axis in each subgraph represent the serial numbers in the prolonged timeseries (k) which ranges 
from 1 to L while that in the vertical axis are mean April to October GPP. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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and that 53.86% of the pixels in the linear decreasing mode had no 
significant downward trend (Table S3). The variation range of WUE in 
the Tarim River Basin from 1982 to 2018 was approximately 0.2–0.3. 
WUE in the four regions remained relatively stable before 2000, but 
increased significantly after 2000. The years of the transition points 
were 2003, 2007, 2008 and 2005, respectively. 

3.3. Sensitivity analysis of ecological indicators to environmental change 

The regions where GPP, ET, and WUE responded to changes in the 
three variables (LAI, GW, VPD) with amplification were first identified 
by calculating the sensitivity index (Fig. S6). GPP had the strongest 
sensitivity overall, followed by ET, and WUE was the weakest. Specif-
ically, the area of pixels with a GPP sensitivity index greater than 50 
accounted for 83.58% of the total; weak sensitivity (sensitivity index less 
than 50) generally appeared in desert areas; the overall sensitivity of 
GPP in the upstream southwestern regions was strong, and its sensitivity 
index remained above 60 (Fig. S6a). The area of pixels with ET sensi-
tivity index less than 50 accounted for 64.14% of the total, and the ET in 
the upstream southwestern region also showed strong sensitivity 
(Fig. S6b). The percentage of pixel area with WUE sensitivity index less 
than 40 was 74.63% (Fig. S6c). In particular, overall WUE sensitivity in 
the midstream reach was relatively low. 

The relative contribution of each variable to sensitivity was also 
evaluated (Fig. S7). GPP was the most sensitive to LAI changes. The 
regions driven by GW were mainly in the upstream and midstream 
reaches (Fig. S7a). The downstream area was mainly affected by the 
combination of LAI and VPD. ET also showed a high sensitivity to LAI. 
The upstream reach and the first half of the midstream reach were 
mainly affected by the combination of LAI and VPD, whereas the tran-
sition zone between the midstream and downstream reaches reacted 

strongly to GW changes (Fig. S7b). WUE was the most sensitive to 
changes in GW, especially in the upstream region. WUE in the 
midstream and downstream reaches was mainly driven by the combi-
nation of the three factors (Fig. S7c). 

The greater the weight of the t-1 coefficient, the stronger will be the 
memory effect. As shown in Fig. S8a, GPP in almost the entire study area 
showed a relatively weak memory effect (α < 0.4), with an area per-
centage of 80.60%. From the upstream to the downstream reaches, the 
memory effect of GPP gradually increased. ET also showed a relatively 
weak memory effect in general, with the area with α < 0.4 accounting 
for 63.63% of the pixels in the study area. The memory effect of ET in the 
midstream and downstream reaches was generally stronger than in the 
upstream reaches (Fig. S8b). Compared with GPP and ET, WUE showed 
a stronger memory effect. The area percentage with α > 0.4 of WUE was 
53.73%, and the overall memory effect downstream was stronger than 
that midstream and upstream (Fig. S8c). 

4. Discussion 

4.1. Driving process of the change pattern of ecological indicators 

In the mainstream, upstream, midstream, and downstream of the 
Tarim River Basin, GPP, ET, and WUE have shown an overall increasing 
trend since 1982 (Figs. 4–6). Many other researchers have found similar 
patterns when studying arid and semi-arid systems globally (Ichii et al., 
2013; Zhang et al., 2020). To analyze the reasons for this change in 
depth, a structural function model was constructed to study it. 

According to the results of the structure equation model (Fig. 7), LAI 
has a significant positive impact on changes in GPP, ET, and WUE. As a 
characteristic parameter of vegetation growth conditions, LAI can reflect 
the level of vegetation coverage. LAI increases the amount of 

Fig. 5. Processes of ET gradual changing pattern in four regions from 1982 to 2018. (a: Mainstream; b: Upstream; c: Midstream; d: Downstream). The contents of 
each subfigure include profiles of the original ET timeseries (orange solid line), the prolonged timeseries (green dotted line), the fitting temporal profile (black line), 
and the time of the transition point (red word). Values in the horizontal axis in each subgraph represent the serial numbers in the prolonged timeseries (k) which 
ranges from 1 to L while that in the vertical axis are mean April to October ETs. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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photosynthetically active sunlight that is absorbed by vegetation, thus 
enhancing productivity (Chen et al., 2019). LAI can also control the 
transpiration of vegetation and is therefore closely related to changes in 
ET. In this study, VPD has a negative effect on GPP, but a positive effect 
on ET. According to Yuan et al. (2019), an increase in VPD would lead to 
partial stomatal closure and inhibit photosynthesis and transpiration 
rate, thus decreasing GPP and ET. However, our study showed the 

opposite for ET. ET includes two main kinds of water loss: productive 
water consumed by plant transpiration, and unproductive water lost by 
soil evaporation and canopy interception (Sun et al., 2016). The 
conclusion of this study is mainly due to the increase of soil evaporation 
when the temperature-driven vapor pressure loss increases. In addition, 
VPD can also indirectly inhibit the increase in GPP through a direct 
negative effect on LAI. Chen et al. (2020) found that VPD controls the 

Fig. 6. Processes of WUE gradual changing pattern in four regions from 1982 to 2018. (a: Mainstream; b: Upstream; c: Midstream; d: Downstream). The contents of 
each subfigure include profiles of the original WUE timeseries (orange solid line), the prolonged timeseries (green dotted line), the fitting temporal profile (black 
line), and the time of the transition point (red word). Values in the horizontal axis in each subgraph represent the serial numbers in the prolonged timeseries (k) 
which ranges from 1 to L while that in the vertical axis are mean April to October WUEs. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 7. The results of structure equation model. (a: Mainstream; b: Upstream; c: Midstream; d: Downstream).  
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fall of old leaves, thus driving a dynamic change in the leaf area index. 
Groundwater (GW) depth has a direct negative effect on changes in GPP 
and ET. Groundwater is the main source of maintaining the existing 
structure and function of the landscape in hyper-arid areas (Madani 
et al., 2020). Under limited water supply condition, groundwater sup-
ports primary productivity by improving soil water availability (Madani 
et al., 2020). Many studies have also shown a positive correlation be-
tween groundwater depth and productivity in arid ecosystems 
(Kochendorfer et al., 2011; Scott et al., 2006). The shallower the 
groundwater depth, the more effectively water can be provided for plant 
transpiration and soil evaporation, and therefore ET will be greater. As 
for WUE, the positive or negative impacts of various environmental 
variables on it depend on the magnitude and direction of their relative 
impacts on GPP and ET. In comparison, GPP in the Tarim River Basin has 
the strongest correlation with LAI and is the most sensitive to LAI change 
(Fig. S7a). Therefore, LAI is the main controlling factor for GPP change 
in the Tarim River Basin. 

The model can explain more than 97% of GPP changes in the 
mainstream, upstream, midstream, and downstream regions (Fig. 7). 
Although the increase in VPD (Fig. S9d) in the downstream reach had a 
negative effect on GPP, the correlation coefficient between VPD and GPP 
was very small. The increase in GW (Fig. S10b) in the upstream reach 
had a negative effect on GPP, but the correlation coefficient between the 
two was only 0.005, meaning that the negative effect on GPP change was 
small. Therefore, the GPP in the four regions eventually rose gradually 
(Fig. 4) because LAI in these four regions showed an upward trend 
(Fig. S11), Among the three factors, LAI has the highest correlation with 
ET and dominated the changes in ET. Increasing LAI will promote plant 
transpiration, and decreasing VPD will reduce soil evaporation. How-
ever, with decreasing groundwater depth, the corresponding water 
supply will increase, accentuating vegetation transpiration and soil 
evaporation. Therefore, ET eventually showed an upward trend (Fig. 5). 
The increasing trend of WUE in the four regions (Fig. 6) can be explained 
as follows: the increasing trend of WUE in the mainstream and upstream 
reaches was mainly controlled by the decreasing trend in VPD; the 
increasing trend of WUE in the midstream reach was mainly affected by 
the combined impact of the gradual increase in LAI and the continuous 
decrease in VPD; the change of WUE in the downstream reach was 
dominated by the rising trend in LAI. From the spatial distribution 
perspective, the percentage of pixel area with increasing trends of GPP 
and ET is greater than the percentage with a decreasing trend (Fig. 3a 
and c), which is consistent with the positive trend of regional change 
patterns (Figs. 4 and 5). The percentage of pixel area with a decreasing 
WUE trend (66.37%) was higher than the percentage with an increasing 
trend (33.63%) (Fig. 3e). However, the downward trend of 62.11% of 
the pixels was not significant (Table S3), and therefore, the increasing 
trend in regional WUE (Fig. 6) does not contradict it. Comparing the 
regional change trends of GPP and WUE (Figs. 4 and 6), WUE changed 
very gently before the mutation, and its transition point generally 
appeared later than that for GPP. This may have occurred because the 
comprehensive sensitivity of WUE to the three variables was very weak 
(Fig. S6c). Meanwhile, the memory effect for WUE was also stronger 
than that for GPP (the percentage of pixels with WUE’s t-1 coefficient 
weight less than 0.4 was much lower than for GPP, as shown in Fig. S8). 
As a result, when the ecosystem is faced with external disturbances, 
vegetation has a lagging response to water utilization and makes timely 
adjustments to the changing environment. This is manifested as the 
phenomenon that WUE remains stable for some time after human 
interference and the mutation year is overall later than for GPP. 

As for the regional GPP change pattern, the whole mainstream reach 
is still in the continuous rising stage (Fig. 4a). Therefore, it is necessary 
to strengthen the reconstruction of the Tarim River Basin to promote 
further development and restoration of the ecosystem. The upstream 
area has the largest inflow and a good water regime, and the vegetation 
has the fastest response to the ecological water supply and the best 
growth, so that the upstream GPP has reached a stable state (Fig. 4b). In 

the future, minimal attention will be needed in this area, but efforts 
should focus on protection. GPP in the midstream region has moved 
from a stable period to a continuous acceleration period since 2002 and 
is expected to show a benign development trend (Fig. 4c). Therefore, the 
midstream reaches of the basin should be a focus of attention, and 
restoration efforts should be intensified. Theoretically, the effect of 
ecological water supply shows a lagging process from upstream to 
downstream. However, the rise of downstream GPP is likely to stabilize 
gradually (Fig. 4c), which is related to the focus on downstream regions 
in recent years. The change patterns of GPP in different zones are 
consistent with hydrological conditions and prove the correctness of the 
proposed method. 

4.2. Performance and advantages of the novel multi-model fusion 
framework 

The emergence of high-resolution satellite remote-sensing time-se-
ries products provides an opportunity to study dynamic changes in 
ecological indicator time profiles. In this study, multi-source remote- 
sensing data and actual monitoring data were used for research, 
including GLASS finished product data, MODIS data, GRACE satellite 
data, GLDAS data, and measured groundwater depth data. The data set 
was large and comprehensive, and data accuracy was further improved 
by inversion correction. To calculate VPD, LST data were used to 
reconstruct the missing pixels of RH data and to correct the VPD 
calculation results. In addition, the groundwater depth data obtained by 
remote-sensing inversion were corrected by measured groundwater 
depth data, improving their accuracy. 

At present, the trend analysis method is widely used to study the 
change law of ecological indicators. The trend analysis method is simple, 
effective, and clear. Univariate linear regression analysis is the most 
popular method. However, this method is a parametric method. Only 
when the four preconditions are strictly met can the slope value esti-
mated by this method accurately represent the annual average change 
rate of ecological indicators in the study period (Wessels et al., 2012). 
Although the Theil-Sen method and the Mann-Kendall trend analysis 
method require no assumptions, the Theil-Sen method can only estimate 
the median slope of a time series and cannot test the significance of the 
results, whereas Mann-Kendall trend analysis can determine the overall 
change direction of a time series, but cannot determine any information 
about the change magnitude for ecological indicators. The simple trend 
analysis method can generally be used to clarify change location, di-
rection, and amount, but it cannot fully extract detailed change infor-
mation about ecological indicators that is hidden in the time-series 
trajectory. In view of the shortcomings of trend analysis methods, new 
detection methods have been developed, including the breakpoint 
detection algorithm and the trend decomposition method. The DBEST 
method is currently widely used in the breakpoint detection algorithm. 
This method often requires manual setting of important parameters to 
determine the major feature points in a time series, such as change 
threshold, change duration, and number of breakpoints (Jamali et al., 
2015). Therefore, it is difficult to achieve automatic extraction of 
long-term change information for ecological indicators. The BFAST 
method is a representative trend decomposition method and has been 
widely used to analyze the long-term change process of ecological in-
dicators (Fang et al., 2018). However, due to the different numbers of 
breakpoints detected in the remote-sensing time series for different 
pixels, it is difficult to generalize the decomposed trend components into 
an easily understood pattern, which makes it difficult to carry out 
comparative analysis of the change process of ecological indicators be-
tween pixels or regions. 

Therefore, some researchers have tried to find a more universal 
method to study the change process of ecological indicators under a 
changing environment. In recent years, the application of time-series 
trajectory detection methods to detect changes in ecological indicators 
has aroused more and more research interest. Among these, the logistic 
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function is widely used to fit vegetation index time series to estimate the 
phenological date of vegetation. Verification shows that the model has 
high accuracy (Cao et al., 2015). Specifically, a new function integrating 
the logistic function and an asymmetric Gaussian function has been used 
to fit LAI data to determine the end date of the growing season (EGS) 
(Che et al., 2014). Validation results show that the inversion results of 
EGS are highly consistent with the minimum observed values of the 
autumn GPP (Che et al., 2014). This study is encouraging: to simplify the 
steps, existing relevant research usually considers only monotonic 
change processes of ecological indicators, ignoring more complex 
changes. However, the integration function used in this study can not 
only fit the monotonic logistic change process conforming to ecological 
significance, but can also consider a non-monotonic Gaussian function 
change process in which ecological indicators undergo degradation after 
restoration or the reverse. To improve the testing ability of our model, 
the new integration function was adopted to detect change processes in 
ecological indicators. Compared with the single logistic function and the 
asymmetric Gaussian function, the ensemble function showed better 
fitting performance and recognition ability (Che et al., 2014), providing 
a more comprehensive analysis method for exploring the dynamic pro-
cess of ecological indicators after an ecosystem has been disturbed. 

This study is the first to apply the new function integrating the four- 
parameter logistic function and the asymmetric Gaussian function to the 
nonlinear fitting of vegetation GPP, ET, and WUE changes and to use 
linear regression to fit the linear change trend. The proposed method is 
improved in the following two main aspects: the Gaussian function is 
combined with the logistic function to fit the nonlinear change trend, so 
that the introduced Gaussian function can add a new change pattern 
(Gaussian) beyond the three change patterns (exponential, logarithmic, 
and logistic) fitted by the logistic function. This enables the method to 
detect non-monotonic changes, such as the decline of ecological in-
dicators after restoration, or the reverse. Because mutation points 
occurred in some linear patterns, the Mann-Kendall mutation test was 
used to test these points. By extending the data time series according to 
its recent change trend, the proposed model can predict future change 
trends, which effectively solves the problem encountered in previous 
studies, that future development trends could not be predicted. 

Compared with the trend analysis method, the method proposed 
here can automatically track the trajectory curves of changes in 
ecological indicators and obtain detailed information such as the time 
and duration of disturbance events according to the model parameters. 
Thus, it can comprehensively detect the long-term change process of 
ecological indicators. In addition, because the time series has been 
smoothed, it is easier for the simulated curve to pass the significance 
test, thus detecting a wider range of areas of significant variation. In 
general, the method proposed in this paper has the following advan-
tages. First, no threshold or empirical constant needs to be set separately 
when processing each pixel, which renders pixel analysis easy to 
implement, making this method globally applicable. The method can 
also reduce the uncertainty caused by human subjective factors. In 
addition, this model can not only detect linear change trends, but also 
identify monotonic and non-monotonic nonlinear change trends, and all 
change patterns can be explained from a clear biophysical perspective. 
Finally, although the proposed method uses only one function form, it 
integrates four functions (exponential, logarithmic, logistic, and 
Gaussian) without setting other complex functions, which simplifies the 
calculation steps and makes detection by the model simple and 
convenient. 

The basic problem in time series-based change detection is evalu-
ating the method. The proposed framework is designed on the basis that 
the temporal trajectories of ecological indicators will alter after a major 
disturbance event. Temporal evidence of abrupt changes in ecological 
indicators at pixel and reach scales was used to assess the effectiveness of 
this method. For example, in the Tarim River Basin, there is good con-
sistency between the mutation year detected in the GPP change pattern 
and the implementation time of major initiatives. On the pixel analysis 

scale, the mutation years of GPP, ET, and WUE are mostly concentrated 
after 2011 (Figs. S5a–S5f), which is consistent with the time that unified 
management of four-source flow was instituted. On the reach scale, the 
first sudden change of GPP in the upstream reach occurred in 1990 
(Fig. 4b), which is the year when the Tarim River Basin Authority was 
established to begin overall management of the mainstream reach and 
strengthen water management practices. The GPP in the upstream reach 
attained a stable level in 2011 (Fig. 4b), which is in line with the time 
when the four sources and one trunk of the Tarim River Basin were 
placed under the oversight of the Tarim River Basin Authority for unified 
management to ensure ecological use of mainstream water resources. 
The years of GPP mutation in the midstream and downstream reaches 
were 2002 and 2001 respectively (Fig. 4c and d), which is close to the 
time when the Tarim River Basin began to implement ecological water 
transportation in 2001. These examples demonstrate the accuracy of this 
method, which can accurately detect abrupt disturbances in the long- 
term change process of ecological indicators. 

However, an optimal detection method should be able to completely 
depict all the characteristics of the long-term changes of ecological in-
dicators. It should not only identify where, how, when, and what 
ecological indicators have changed, but also explain the reasons for such 
changes. Therefore, how to build a framework that can comprehensively 
detect the long-term change process of ecological indicators and identify 
its driving mechanism has become an urgent problem to be solved in this 
research field. Changes in ecological indicators are the result of the 
combined effects of various factors, and the mechanisms of action are 
very complicated. This study has attempted to fully analyze the reasons 
for the changes by seeking fewer variables. Therefore, ecological 
changes were considered from the three aspects of physiology, envi-
ronment, and hydrology, and a representative index was selected for 
each aspect to comprehensively characterize environmental changes 
and to study how these changes drive the changes in ecological 
indicators. 

In the early stage, quantitative research on the relationship between 
ecological indicators and environmental changes aimed mainly to study 
the consistency between ecological and climatic indicators by 
comparing the annual variation trajectory curves of ecological and cli-
matic indicators, with the objective of determining the dominant factors 
affecting changes in ecological indicators. Based on remote-sensing 
parameter time-series data, many researchers have quantified the re-
lationships between global or regional changes in ecological indicators 
and climate factors by the coefficients or parameters in the linear 
regression model (Zhao et al., 2021). Among the applicable methods, 
correlation analysis should be the most widely used. For example, the 
Pearson, Spearman, and Kendall methods can reveal the degree of cor-
relation between two variables (Keenan et al., 2013); the partial corre-
lation coefficient of each environmental factor can be calculated by 
controlling other factors to reveal the relationships between changes in 
ecological indicators and specific environmental factors (Liu et al., 2020; 
Beer et al., 2010); multivariate correlation analysis can be used to 
explain the response of ecological indicators to changes in various 
environmental factors (Sun et al., 2016; Zhang et al., 2020). However, 
these methods only seek the average response relationship between 
ecological indicators and various driving factors, and there are often 
differences in the degree of response of ecological indicators in different 
regions. Therefore, the spatial pattern of the response of ecological in-
dicators to different factors should be clearly expressed. The variation in 
the spatial distribution of the contribution rate of each factor to changes 
in ecological indicators also needs to be given. 

A sensitivity analysis method was therefore chosen to solve these 
problems. Through the correlation coefficient in the ARI model, the 
relative importance of the three environmental factors to changes in 
ecological indicators was determined (Seddon et al., 2016). The weight 
of the t-1 coefficient can be used to identify the influence of the memory 
effect (Seddon et al., 2016). Based on the sensitivity index, the response 
amplification area of ecological indicators to environmental change can 
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be determined, and the factors leading to changes in ecological in-
dicators can be identified (Seddon et al., 2016). 

The proposed framework detects the evolution law of ecological in-
dicators in accordance with ecological logic under a changing environ-
ment using the integrated function, identifies the degree of response to 
the changing environment of ecological indicators by sensitivity anal-
ysis, and clarifies the direction of response to the changing environment 
of ecological indicators by introducing the structural function model. 
This is a comprehensive analysis framework that considers both the 
change law and the driving mechanism of ecological indicators. The 
whole process of the framework involves no specific assumptions or 
special requirements, making the framework universal, without clear 
regional restrictions. It is not only suitable for research in arid areas, but 
also in any other region of the world. 

4.3. Important indications of GPP and WUE in water resource 
management 

On a large spatio-temporal scale, a certain amount of water can only 
maintain a corresponding vegetation area, but a reasonable water 
transfer scheme can maximize the vegetation area corresponding to the 
scale of the water volume. For example, in the Tarim River Basin, GPP 
generally shows an upward trend (Fig. 3a), whereas WUE mainly shows 
a downward trend (Fig. 3e). WUE has not continued to rise due to the 
increase in water transmission in recent years. Relevant studies have 
also confirmed that ecological water conveyance in some areas near the 
downstream reaches of the Tarim River has reached an oversaturated 
state and the groundwater level has reached its highest level (Deng et al., 
2017). The water consumption of soil evaporation after the groundwater 
rise and of lake surface evaporation after the increase in the surface 
elevation of Taitema Lake have both increased significantly, resulting in 
a gradual increase in water consumption by ineffective evaporation. 
However, vegetation growth in arid areas is mainly controlled by water 
availability (Beer et al., 2010; Jiao et al., 2021). Expanding the receiving 
area for water delivery will help promote vegetation growth and achieve 
larger areas of vegetation restoration and protection (Hu et al., 2021). 
Besides, due to the uneven distribution of water between reaches, there 
are significant differences in their ecological environmental conditions. 
For example, GPP in the downstream reaches of the Tarim River Basin 
has tended to be stable (Fig. 4d), but GPP in the midstream reaches is 
still in the stage of continuous growth (Fig. 4c). Similarly, China’s Heihe 
River Basin has been practicing ecological water conveyance since 2000 
(Liu et al., 2013). At present, the ecology in the downstream reaches of 
the Heihe River is in the stage of balanced maintenance and develop-
ment, and the ecological situation has improved significantly (Liu et al., 
2013). However, when the amount of water delivered is large, even the 
downstream reaches have overflowed many times, while the ecology of 
the midstream reach is seriously degraded. Therefore, any basin should 
be viewed as a whole, to coordinate water resource distribution and 
realize sustainable development of the whole basin. 

In order to consolidate and improve the effect of ecological water 
conveyance, it is necessary to change the previous single channel water 
conveyance mode and introduce the ditch-branch infiltration irrigation 
mode in appropriate areas, controlling the amount of water entering the 
lake and reducing ineffective evaporation from the water surface. A 
ditch-branch infiltration irrigation study took China’s largest inland 
river, the Tarim River, as its research object to construct a “double 
channel and gully branch” surface water conveyance mode, creating a 
timely, appropriate and moderate ecological irrigation mode that uses 
first diffuse irrigation, then infiltration irrigation, and finally rotation 
irrigation (Deng et al., 2020). This irrigation method is intended to 
maximize the limited ecological water for vegetation protection and 
riparian ecosystem restoration, to promote the formation and develop-
ment of accurate and efficient regulation patterns of ecological water in 
arid areas (Deng et al., 2020). According to the ecological restoration 
needs and the eight change patterns presented by GPP, the areas with 

logarithmic and logical change patterns were regarded as an ecological 
protection region, where the vegetation growth was nearly stable, and 
the ditch-branch infiltration irrigation was mainly used to control the 
groundwater level (<stressed water level) to meet the ecological water 
demand of vegetation. The area with linear change pattern was taken as 
an ecologically fragile region, where the vegetation was dominated by 
grasses and young forests, with a focus on regulating the flood overflow 
process to maintain species diversity and enable young trees to become 
forests. The area with exponential change pattern was considered as an 
ecological restoration region, where adult Populus euphratica was the 
main vegetation component and the hydrological conditions were poor. 
The ditch-branch infiltration irrigation was adopted to raise the 
groundwater level and encourage the budding of Populus euphratica 
roots, combined with flood disturbance to promote seed germination 
(Fig. 8). In the Tarim River Basin, the areas of ecological protection, 
ecologically fragile, and ecological restoration regions accounted for 
21.1%, 68.2%, and 10.7% respectively (Fig. 8). This refined zoning 
regulation approach can manage different areas more precisely, thus 
making regulation more purposeful and pertinent. Other basins can also 
carry out accurate zoning management by referring to this zoning 
regulation method and combining it with the actual situation of the 
basin itself. 

Time is another key factor for successful restoration of an ecosystem 
(Crouzeilles et al., 2016). In the Tarim River Basin, the longest contin-
uous change time for GPP was 15 years, which was the maximum time 
interval required for its ecological regulation. The durations of GPP 
change are mainly one to two years and more than eight years (Fig. S5g). 
Changes lasting for one or two years generally involve herbaceous 
plants, which require a shorter time for recovery or degradation. 
Changes with a duration greater than eight years generally involve trees 
and shrubs, for which the recovery process is relatively slow. From the 
ecological point of view, the importance of tree and shrub vegetation to 
the community in an arid inland river basin is greater than that of 
herbaceous plants. Restoration of trees and shrubs is a long-term and 
slow process. This means that an ecological management project cannot 
be completed in a short period of time. However, in the Aral Sea basin, 
where the problem of ecological degradation is equally serious, the five 
Central Asian countries cannot reach a consensus to cooperate on 
transboundary water. In the past 20 years, only intermittent governance 
has been carried out, and the Aral Sea crisis has not been fundamentally 
reversed (Su et al., 2021). In addition, related studies in the Heihe and 

Fig. 8. Regulation zoning division of Tarim River Basin according to the 
change pattern of GPP. (L: Linear; E: Exponential; Log: Logarithmic; S: Logistic. 
D: Decreasing; I: Increasing. Main: Mainstream; Up: Upstream; Mid: Midstream; 
Down: Downstream). 
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Shiyang River Basins of China also pointed out that it will take a long 
time to restore the ecological environment of the basin and improve soil 
and water conservation (van der Meijden et al., 2010; Wang et al., 
2019). Ecological restoration will not completely restore biodiversity 
and vegetation structure, but if there is enough time for ecological 
succession, old forests can be replenished, and the supplementary value 
of restoration helps to reduce the loss rate of biodiversity and improve 
vegetation structure (Crouzeilles et al., 2016). 

Under multiple pressures of climate and environment such as 
drought, heat waves, and carbon dioxide fertilization, the structure and 
function of the global dryland ecosystem may undergo more drastic 
changes (Yao et al., 2020). All these processes interact with each other to 
produce nonlinear and lagging effects on the dryland ecosystem-climate 
cycle (Yao et al., 2020). In addition, projected increases in future 
drought events and environmental variability will bring further threats 
to ecosystems, especially in arid ecosystems with low productivity and 
high sensitivity (Yang et al., 2016). According to this study, GPP has the 
strongest comprehensive sensitivity to environmental changes among 
the three ecological indicators (Fig. S6). This may be related to the fact 
that the main type of vegetation restored in the basin is herbaceous and 
the overall biomass level is relatively low. Grassland is the ecosystem 
that responds most rapidly to environmental changes, and therefore, the 
loss of resilience associated with dieback will occur first (Knapp and 
Smith, 2001). Previous theories and studies have also shown that an 
intact ecosystem can compensate for its vulnerability to environmental 
changes (Martin and Watson, 2016), but that ecosystems close to the 
tipping point are more prone to collapse (Dai et al., 2012). Large-scale 
conservation projects contribute to greening the planet and have a 
positive impact on carbon sequestration (Tong et al., 2018). On a 
regional scale, ecological engineering projects can reduce the sensitivity 
of an ecosystem to environmental disturbances and reduce the risk of 
desertification, but only when the biomass has been restored to a certain 
extent by increasing vegetation cover (Tong et al., 2018). The ecological 
response of vegetation using groundwater for growth will gradually 
appear on a large space and time scale. This research has determined 
that WUE has the strongest memory effect, but the weakest sensitivity 
(Figs. S6c and S8c), and that regional WUE growth shows a significant 
time lag (Fig. 6). Another study has shown that in all biological com-
munities from grassland to forest, the entire ecosystem has an inherent 
system sensitivity to water availability, regardless of hydrological and 
climatic conditions, or in other words, WUE has a strong memory effect 
(Campos et al., 2013). This suggests that the rules for managing and 
organizing species in arid ecosystems according to their tolerance to 
hydrologic stress are robust despite the long-term disturbance of low 
rainfall (Campos et al., 2013). 

The growth of desert riparian vegetation requires moderate water 
conditions. When an ecosystem is mainly constrained by water re-
sources, if drought continues, the resilience of the ecosystem may 
collapse as the ecosystem WUE decreases to a certain threshold (Campos 
et al., 2013). Crossing this threshold will lead to reorganization of the 
biological community (Campos et al., 2013). However, some wet areas 
characterized by peatlands, bogs, and wetlands experience water surplus 
(Jiao et al., 2021), and it has been reported that waterlogging limits 
productivity in these areas (Minasny et al., 2019). Therefore, increasing 
the amount of water resources does not necessarily make an ecosystem 
more favorable to vegetation production and efficient use of water. 
According to the theory of moderate interference, under moderate water 
delivery conditions, a combination of grasses and shrubs will form (Ling 
et al., 2019) where the overall biomass level of the basin is relatively 
high and water use efficiency is also high. Currently, ecosystem water 
use has not been widely used to restrict GPP on a regional or global scale. 
Specifically, one study showed that terrestrial carbon absorption does 
not increase proportionately with an increase in water consumption (i. 
e., evapotranspiration), but is largely (about 90%) driven by increasing 
water use efficiency (Cheng et al., 2017). This provides us with a di-
rection for thought and strong support to explore the optimal 

relationship between GPP and WUE. In this regard, the following 
research question can be proposed: what level of watershed biomass can 
be restored to maximize the benefits of water conservation during 
ecological water transport? By calculating the multi-year average GPP 
and WUE for each pixel, a strong correlation between GPP and WUE was 
found (R2 = 0.925; p < 0.05). Therefore, a polynomial function rela-
tionship was established between WUE and GPP, and the WUE threshold 
corresponding to the GPP threshold was estimated (Fig. 9). For the 
Tarim River Basin, when the GPP and WUE are 216.44 g C m− 2 and 0.93 
g C m− 2 mm− 1 respectively, the optimal combination of ecological and 
water transport benefits can be achieved. The underlying reason for the 
disproportionate changes in WUE and GPP is that excessive water 
transport leads to shallow groundwater depth, which leads to increased 
soil salinization and excessive water content (Ling et al., 2020). Exces-
sive water means that plant roots may be anaerobic or anoxic for a long 
time, which will limit the energy production required for plant respi-
ration and vegetation growth (Si et al., 2015). In addition, the high salt 
content of the soil means that excess water accelerates accumulation of 
sodium and chloride ions in the root system (Si et al., 2015), which in 
turn damages the function of plant roots and destroys the normal 
physiological process of P. euphratica roots (Si et al., 2015). Therefore, 
GPP and WUE threshold points should be taken as the basis for 
ecological water release regulation to achieve double optimization of 
GPP and WUE when carrying out ecological restoration in the water-
shed. Ecological restoration is not endless. Finding such a threshold 
point can provide an important reference for long-term and rational 
water resource management in water-scarce inland river basins, and can 
also provide an important target for promoting stable and sustainable 
development of the region. 

5. Conclusions 

In this study, a novel multi-model fusion framework was constructed, 
including two modules: the first using an ensemble function that in-
tegrates a logistic function and an asymmetric Gaussian function to 
automatically identify the change characteristics of ecological in-
dicators; and the second, based on an ARI multiple regression analysis 
model and the sensitivity index, to reveal the response mechanism of 
ecological indicators to changes in their environment. This framework 
can not only identify the nonlinear change process of ecological in-
dicators, but also detect non-monotonic change processes in which 
ecological indicators undergo degradation after restoration or the 
reverse. Moreover, future development trends can be predicted ac-
cording to the recent shape of ecological indicator change curves. 
Research and application have demonstrated that this framework can 
accurately detect major disturbances in the long-term evolution of 
ecological indicators (especially GPP). In addition, quantifying the 
sensitivity and memory effect of ecological indicators to changes in their 
environment can further reveal the driving mechanism of ecological 
indicator change patterns. Therefore, this study used this framework, 
combined with multi-source remote sensing and groundwater depth 
monitoring data, to carry out a comprehensive analysis of the long-term 
evolution law, future development trend, and driving mechanism of 
desert riparian forest ecological indicators under environmental 
changes. The results of this study also have important guiding signifi-
cance for future rational and effective water-management activities in 
other inland river basins in arid areas. 

Under the influence of enhanced water resource management ac-
tivities, the GPP in the Tarim River Basin generally shows an increasing 
trend and is expected to continue to rise or to maintain a high-level 
stable state. To carry out accurate ecological water supply forecasting 
and realize efficient utilization of ecological water according to the eight 
change patterns presented by GPP, the regions with logistic and loga-
rithmic growth patterns were regarded as high-level stable regions, 
where protection was given priority to maintain the stability of the 
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ecosystem. Areas showing other change patterns were all treated as key 
control areas, where restoration efforts should be strengthened to pro-
mote their recovery. In the process of ecological management, persis-
tence is essential. The longest duration of GPP change was 15 years, and 
therefore, in the process of ecological restoration in desert riparian 
forest, it is necessary to achieve long-term, continuous, and accurate 
water volume regulation. Moreover, the years of GPP changeover 
coincided with the implementation years of major water resource re-
form initiatives in the Tarim River Basin (1990, 2001, and 2011), which 
verifies the accuracy of the research framework. 

WUE in arid areas has a maximum threshold with increasing GPP, 
which provides an important basis for ecological water supply. Excessive 
water transfer inhibits biomass growth and leads to low water use effi-
ciency; moderate water transfer is conducive to vegetation production 
and makes efficient use of ecological water. It was found that when GPP 
reached 216.44 g C m− 2, the highest WUE was attained, at 0.93 
g C m− 2 mm− 1. The threshold point should be taken as the goal of 
ecological restoration to realize dual optimization of ecological and 
water resource benefits when conducting ecological water supply 
management. 

Arid ecosystems are inherently sensitive to water availability (the 
memory effect) and will have a delayed response to water use when 
faced with external disturbances. In 80.60% of pixels, GPP showed a 
weak memory effect (α < 0.4), but in 53.73% of pixels, WUE showed a 
strong memory effect (α > 0.4). This means that changes in WUE on the 
regional scale showed a significant time lag. Among the three ecological 
indicators, GPP was the most sensitive to environmental change and LAI, 
and the correlation between GPP and LAI was also the strongest (p <
0.001). LAI can therefore be used as the main factor for judging plant 
growth. 

Author contribution 

Z.K. obtained, processed, and analyzed the data, drew charts and 
completed the original manuscript. F.H. and H.L. designed the research 
and methodology. F.H. wrote the program code, drew the chart, and 
modified the content of the method part. H.L. completed an in-depth 
discussion of the results of the study and revised the draft. M.D. 
contributed to the results discussion section. M.L and J.Y contributed to 
the processing and analysis of saturated vapor pressure deficit and 
groundwater data. All the authors reviewed and approved the final 
manuscript. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This research was funded by the Xinjiang Tianshan Youth Program 
(2019Q006), the West Light Foundation of Chinese Academy of Sciences 
(2019-XBQNXZ-A-001), and the Xinjiang Water Conservancy Science 
and Technology Special Fund Project (XSKJ-2022-10). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jenvman.2022.115592. 

References 

Ahlstrom, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., 
Reichstein, M., Canadell, J.G., Friedlingstein, P., Jain, A.K., Kato, E., Poulter, B., 
Sitch, S., Stocker, B.D., Viovy, N., Wang, Y.P., Wiltshire, A., Zaehle, S., Zeng, N., 
2015. The dominant role of semi-arid ecosystems in the trend and variability of the 
land CO2 sink. Science 348 (6237), 895–899. 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., 
Arain, M.A., Baldocchi, D.D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., 
Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O., 
Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010. Terrestrial 
gross carbon dioxide uptake: global distribution and covariation with climate. 
Science 329 (5993), 834–838. 

Campos, G.E.P., Moran, M.S., Huete, A., Zhang, Y., Bresloff, C., Huxman, T.E., Eamus, D., 
Bosch, D.D., Buda, A.R., Gunter, S.A., Scalley, T.H., Kitchen, S.G., McClaran, M.P., 
McNab, W.H., Montoya, D.S., Morgan, J.A., Peters, D.P.C., Sadler, E.J., Seyfried, M. 
S., Starks, P.J., 2013. Ecosystem resilience despite large-scale altered hydroclimatic 
conditions. Nature 494 (7437), 349–352. 

Cao, R., Chen, J., Shen, M., Tang, Y., 2015. An improved logistic method for detecting 
spring vegetation phenology in grasslands from MODIS EVI time-series data. Agric. 
For. Meteorol. 200, 9–20. 

Che, M., Chen, B., Innes, J.L., Wang, G., Dou, X., Zhou, T., Zhang, H., Yan, J., Xu, G., 
Zhao, H., 2014. Spatial and temporal variations in the end date of the vegetation 
growing season throughout the Qinghai-Tibetan Plateau from 1982 to 2011. Agric. 
For. Meteorol. 189, 81–90. 

Chen, J.M., Ju, W., Ciais, P., Viovy, N., Liu, R., Liu, Y., Lu, X., 2019. Vegetation structural 
change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 
10, 4259. 

Chen, X., Maignan, F., Viovy, N., Bastos, A., Goll, D., Wu, J., Liu, L., Yue, C., Peng, S., 
Yuan, W., da Conceicao, A.C., O’Sullivan, M., Ciais, P., 2020. Novel representation of 
leaf phenology improves simulation of amazonian evergreen forest photosynthesis in 
a land surface model. J. Adv. Model. Earth Syst. 12 (1). 

Cheng, L., Zhang, L., Wang, Y.P., Canadell, J.G., Chiew, F.H.S., Beringer, J., Li, L., 
Miralles, D.G., Piao, S., Zhang, Y., 2017. Recent increases in terrestrial carbon uptake 
at little cost to the water cycle. Nat. Commun. 8, 110. 

Chu, J., Syktus, J., McAlpine, C., Thatcher, M., Scarth, P., Jeffrey, S., Katzfey, J., 
Zhang, H., McGregor, J., Adams-Hosking, C., 2011. Validation of land surface 
products for modelling the climate impacts of large-scale revegetation in 
Queensland. In: MODSIM 2011 - 19th International Congress on Modelling and 
Simulation – Sustaining Our Future: Understanding and Living with Uncertainty, 
pp. 2676–2682. December 2011.  

Crouzeilles, R., Curran, M., Ferreira, M.S., Lindenmayer, D.B., Grelle, C.E.V., Rey 
Benayas, J.M., 2016. A global meta-analysis on the ecological drivers of forest 
restoration success. Nat. Commun. 7, 11666. 

Dai, L., Vorselen, D., Korolev, K.S., Gore, J., 2012. Generic indicators for loss of resilience 
before a tipping point leading to population collapse. Science 336 (6085), 
1175–1177. 

Fig. 9. The polynomial function relationship of WUE with GPP.  

Z. Kong et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.jenvman.2022.115592
https://doi.org/10.1016/j.jenvman.2022.115592
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref1
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref1
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref1
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref1
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref1
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref2
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref2
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref2
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref2
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref2
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref2
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref3
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref3
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref3
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref3
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref3
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref4
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref4
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref4
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref5
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref5
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref5
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref5
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref6
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref6
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref6
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref7
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref7
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref7
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref7
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref8
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref8
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref8
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref9
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref9
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref9
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref9
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref9
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref9
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref10
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref10
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref10
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref11
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref11
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref11


Journal of Environmental Management 318 (2022) 115592

15

de Jong, R., Verbesselt, J., Schaepman, M.E., de Bruin, S., 2012. Trend changes in global 
greening and browning: contribution of short-term trends to longer-term change. 
Global Change Biol. 18 (2), 642–655. 

Deng, M., Huang, Q., Chang, J., Huang, S., 2020. Large-scale ecological operation 
research and practice. J. Hydraul. Eng. 51 (7), 757–773. 

Deng, M., Yang, P., Zhou, H., Xu, H., 2017. Water conversion and strategy of ecological 
water conveyance in the lower reaches of the Tarim River. Arid Zone Res. 34, 
717–726. 

Fang, X., Zhu, Q., Ren, L., Chen, H., Wang, K., Peng, C., 2018. Large-scale detection of 
vegetation dynamics and their potential drivers using MODIS images and BFAST: a 
case study in Quebec, Canada. Remote Sens. Environ. 206, 391–402. 

Fensholt, R., Langanke, T., Rasmussen, K., Reenberg, A., Prince, S.D., Tucker, C., 
Scholes, R.J., Le, Q.B., Bondeau, A., Eastman, R., Epstein, H., Gaughan, A.E., 
Hellden, U., Mbow, C., Olsson, L., Paruelo, J., Schweitzer, C., Seaquist, J., 
Wessels, K., 2012. Greenness in semi-arid areas across the globe 1981-2007 - an 
Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 
121, 144–158. 

Friedlingstein, P., O’Sullivan, M., Jones, M.W., Andrew, R.M., Hauck, J., Olsen, A., 
Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Quere, C.L., Canadell, J.G., Ciais, P., 
Jackson, R.B., Alin, S., Aragao, L.E.O.C., Arneth, A., Arora, V., Bates, N.R., 
Becker, M., Benoit-Cattin, A., Bittig, H.C., Bopp, L., Bultan, S., Chandra, N., 
Chevallier, F., Chini, L.P., Evans, W., Florentie, L., Forster, P.M., Gasser, T., 
Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., 
Haverd, V., Houghton, R.A., Ilyina, T., Jain, A.K., Joetzjer, E., Kadono, K., Kato, E., 
Kitidis, V., Korsbakken, J.I., Landschutzer, P., Lefevre, N., Lenton, A., Lienert, S., 
Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D.R., Nabel, J.E.M.S., 
Nakaoka, S.I., Niwa, Y., OBrien, K., Ono, T., Palmer, P.I., Pierrot, D., Poulter, B., 
Resplandy, L., Robertson, E., Rodenbeck, C., Schwinger, J., Seferian, R., Skjelvan, I., 
Smith, A.J.P., Sutton, A.J., Tanhua, T., Tans, P.P., Tian, H., Tilbrook, B., van der 
Werf, G., Vuichard, N., Walker, A.P., Wanninkhof, R., Watson, A.J., Willis, D., 
Wiltshire, A.J., Yuan, W., Yue, X., Zaehle, S., 2020. Global carbon budget 2020. 
Earth Syst. Sci. Data 12 (4), 3269–3340. 

Hu, S., Ma, R., Sun, Z., Ge, M., Zeng, L., Huang, F., Bu, J., Wang, Z., 2021. Determination 
of the optimal ecological water conveyance volume for vegetation restoration in an 
arid inland river basin, northwestern China. Sci. Total Environ. 788, 147775. 

Ichii, K., Kondo, M., Okabe, Y., Ueyama, M., Kobayashi, H., Lee, S.J., Saigusa, N., Zhu, Z., 
Myneni, R.B., 2013. Recent changes in terrestrial gross primary productivity in Asia 
from 1982 to 2011. Rem. Sens. 5 (11), 6043–6062. 

Jamali, S., Jonsson, P., Eklundh, L., Ardo, J., Seaquist, J., 2015. Detecting changes in 
vegetation trends using time series segmentation. Remote Sens. Environ. 156, 
182–195. 

Jasechko, S., Sharp, Z.D., Gibson, J.J., Birks, S.J., Yi, Y., Fawcett, P.J., 2013. Terrestrial 
water fluxes dominated by transpiration. Nature 496 (7445), 347–351. 

Jiang, C.Y., Ryu, Y., Fang, H.L., Myneni, R., Claverie, M., Zhu, Z.C., 2017. Inconsistencies 
of interannual variability and trends in long-term satellite leaf area index products. 
Global Change Biol. 23 (10), 4133–4146. 

Jiao, W., Wang, L., Smith, W.K., Chang, Q., Wang, H., D’Odorico, P., 2021. Observed 
increasing water constraint on vegetation growth over the last three decades. Nat. 
Commun. 12 (1), 3777. 

Jonsson, P., Eklundh, L., 2002. Seasonality extraction by function fitting to time-series of 
satellite sensor data. IEEE Trans. Geosci. Rem. Sens. 40 (8), 1824–1832. 

Keenan, T.F., Hollinger, D.Y., Bohrer, G., Dragoni, D., Munger, J.W., Schmid, H.P., 
Richardson, A.D., 2013. Increase in forest water-use efficiency as atmospheric 
carbon dioxide concentrations rise. Nature 499 (7458), 324–327. 

Knapp, A.K., Smith, M.D., 2001. Variation among biomes in temporal dynamics of 
aboveground primary production. Science 291 (5503), 481–484. 

Kochendorfer, J., Castillo, E.G., Haas, E., Oechel, W.C., Paw, K.T.U., 2011. Net ecosystem 
exchange, evapotranspiration and canopy conductance in a riparian forest. Agric. 
For. Meteorol. 151 (5), 544–553. 

Li, D., Wu, S., Liu, L., Zhang, Y., Li, S., 2018. Vulnerability of the global terrestrial 
ecosystems to climate change. Global Change Biol. 24 (9), 4095–4106. 

Ling, H., Guo, B., Yan, J., Deng, X., Xu, H., Zhang, G., 2020. Enhancing the positive 
effects of ecological water conservancy engineering on desert riparian forest growth 
in an arid basin. Ecol. Indicat. 118, 106797. 

Ling, H., Xu, H., Guo, B., Deng, X., Zhang, P., Wang, X., 2019. Regulating water 
disturbance for mitigating drought stress to conserve and restore a desert riparian 
forest ecosystem. J. Hydrol. 572, 659–670. 

Ling, H., Zhang, P., Xu, H., Zhang, G., 2016. Determining the ecological water allocation 
in a hyper-arid catchment with increasing competition for water resources. Global 
Planet. Change 145, 143–152. 

Liu, B., Guan, H., Zhao, W., Yang, Y., Li, S., 2017. Groundwater facilitated water-use 
efficiency along a gradient of groundwater depth in arid northwestern China. Agric. 
For. Meteorol. 233, 235–241. 

Liu, J., Zang, C., Tian, S., Liu, J., Yang, H., Jia, S., You, L., Liu, B., Zhang, M., 2013. Water 
conservancy projects in China: achievements, challenges and way forward. Glob. 
Environ. Change Hum. Policy Dimens. 23 (3), 633–643. 

Liu, X., Feng, X., Fu, B., 2020. Changes in global terrestrial ecosystem water use 
efficiency are closely related to soil moisture. Sci. Total Environ. 698, 134165. 

Liu, Y.B., Xiao, J.F., Ju, W.M., Zhu, G.L., Wu, X.C., Fan, W.L., Li, D.Q., Zhou, Y.L., 2018. 
Satellite-derived LAI products exhibit large discrepancies and can lead to substantial 
uncertainty in simulated carbon and water fluxes. Remote Sens. Environ. 206, 
174–188. 

Ma, J., Xiao, X., Miao, R., Li, Y., Chen, B., Zhang, Y., Zhao, B., 2019. Trends and controls 
of terrestrial gross primary productivity of China during 2000-2016. Environ. Res. 
Lett. 14 (8), 084032. 

Madani, N., Kimball, J.S., Parazoo, N.C., Ballantyne, A.P., Tagesson, T., Jones, L.A., 
Reichle, R.H., Palmer, P.I., Velicogna, I., Bloom, A.A., Saatchi, S., Liu, Z., Geruo, A., 
2020. Below-surface water mediates the response of African forests to reduced 
rainfall. Environ. Res. Lett. 15 (3), 034063. 

Martin, T.G., Watson, J.E.M., 2016. Intact ecosystems provide best defence against 
climate change. Nat. Clim. Change 6 (2), 122–124. 

Minasny, B., Berglund, O., Connolly, J., Hedley, C., de Vries, F., Gimona, A., Kempen, B., 
Kidd, D., Lilja, H., Malone, B., McBratney, A., Roudier, P., O’Rourke, S., Rudiyanto 
Padarian, J., Poggio, L., ten Caten, A., Thompson, D., Tuve, C., Widyatmanti, W., 
2019. Digital mapping of peatlands-A critical review. Earth Sci. Rev. 196, 102870. 

Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J.W., Chen, A., Ciais, P., 
Tommervik, H., Nemani, R.R., Myneni, R.B., 2020. Characteristics, drivers and 
feedbacks of global greening. Nat. Rev. Earth Environ. 1 (1), 14–27. 

Poulter, B., Frank, D., Ciais, P., Myneni, R.B., Andela, N., Bi, J., Broquet, G., Canadell, J. 
G., Chevallier, F., Liu, Y.Y., Running, S.W., Sitch, S., van der Werf, G.R., 2014. 
Contribution of semi-arid ecosystems to interannual variability of the global carbon 
cycle. Nature 509 (7502), 600–603. 

Ryu, Y., Berry, J.A., Baldocchi, D.D., 2019. What is global photosynthesis? History, 
uncertainties and opportunities. Remote Sens. Environ. 223, 95–114. 

Scott, R.L., Huxman, T.E., Williams, D.G., Goodrich, D.C., 2006. Ecohydrological impacts 
of woody-plant encroachment: seasonal patterns of water and carbon dioxide 
exchange within a semiarid riparian environment. Global Change Biol. 12 (2), 
311–324. 

Seddon, A.W.R., Macias-Fauria, M., Long, P.R., Benz, D., Willis, K.J., 2016. Sensitivity of 
global terrestrial ecosystems to climate variability. Nature 531 (7593), 229–232. 

Si, J., Feng, Q., Yu, T., Zhao, C., Li, W., 2015. Variation in Populus euphratica foliar 
carbon isotope composition and osmotic solute for different groundwater depths in 
an arid region of China. Environ. Monit. Assess. 187 (11), 705. 

Song, X.P., Sexton, J.O., Huang, C., Channan, S., Townshend, J.R., 2016. Characterizing 
the magnitude, timing and duration of urban growth from time series of Landsat- 
based estimates of impervious cover. Remote Sens. Environ. 175, 1–13. 

Su, Y., Li, X., Feng, M., Nian, Y., Huang, L., Xie, T., Zhang, K., Chen, F., Huang, W., 
Chen, J., Chen, F., 2021. High agricultural water consumption led to the continued 
shrinkage of the Aral Sea during 1992-2015. Sci. Total Environ. 777, 145993. 

Sun, Y., Piao, S., Huang, M., Ciais, P., Zeng, Z., Cheng, L., Li, X., Zhang, X., Mao, J., 
Peng, S., Poulter, B., Shi, X., Wang, X., Wang, Y., Zeng, H., 2016. Global patterns and 
climate drivers of water-use efficiency in terrestrial ecosystems deduced from 
satellite-based datasets and carbon cycle models. Global Ecol. Biogeogr. 25 (3), 
311–323. 

Tagesson, T., Tian, F., Schurgers, G., Horion, S., Scholes, R., Ahlstrom, A., Ardo, J., 
Moreno, A., Madani, N., Olin, S., Fensholt, R., 2021. A physiology-based Earth 
observation model indicates stagnation in the global gross primary production 
during recent decades. Global Change Biol. 27 (4), 836–854. 

Tong, X., Brandt, M., Yue, Y., Horion, S., Wang, K., De Keersmaecker, W., Tian, F., 
Schurgers, G., Xiao, X., Luo, Y., Chen, C., Myneni, R., Shi, Z., Chen, H., Fensholt, R., 
2018. Increased vegetation growth and carbon stock in China karst via ecological 
engineering. Nat. Sustain. 1 (1), 44–50. 

van der Meijden, C.M., Veringa, H.J., Rabou, L.P.L.M., 2010. The production of synthetic 
natural gas (SNG): a comparison of three wood gasification systems for energy 
balance and overall efficiency. Biomass Bioenergy 34 (3), 302–311. 

Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D., 2010. Detecting trend and 
seasonal changes in satellite image time series. Remote Sens. Environ. 114 (1), 
106–115. 

Wang, C., Jiang, Q.o., Shao, Y., Sun, S., Xiao, L., Guo, J., 2019. Ecological environment 
assessment based on land use simulation: a case study in the Heihe River Basin. Sci. 
Total Environ. 697, 133928. 

Wessels, K.J., van den Bergh, F., Scholes, R.J., 2012. Limits to detectability of land 
degradation by trend analysis of vegetation index data. Remote Sens. Environ. 125, 
10–22. 

Xiao, Z., Liang, S., Wang, J., Jiang, B., Li, X., 2011. Real-time retrieval of Leaf Area Index 
from MODIS time series data. Remote Sens. Environ. 115 (1), 97–106. 

Xiao, Z., Liang, S., Wang, J., Xiang, Y., Zhao, X., Song, J., 2016. Long-time-series global 
land surface satellite leaf area index product derived from MODIS and AVHRR 
surface reflectance. IEEE Trans. Geosci. Rem. Sens. 54 (9), 5301–5318. 

Yang, Y., Guan, H., Batelaan, O., McVicar, T.R., Long, D., Piao, S., Liang, W., Liu, B., 
Jin, Z., Simmons, C.T., 2016. Contrasting responses of water use efficiency to 
drought across global terrestrial ecosystems. Sci. Rep. 6, 23284. 

Yao, J., Liu, H., Huang, J., Gao, Z., Wang, G., Li, D., Yu, H., Chen, X., 2020. Accelerated 
dryland expansion regulates future variability in dryland gross primary production. 
Nat. Commun. 11 (1), 1665. 

Yao, Y., Liang, S., Li, X., Chen, J., Wang, K., Jia, K., Cheng, J., Jiang, B., Fisher, J.B., 
Mu, Q., Gruenwald, T., Bernhofer, C., Roupsard, O., 2015. A satellite-based hybrid 
algorithm to determine the Priestley-Taylor parameter for global terrestrial latent 
heat flux estimation across multiple biomes. Remote Sens. Environ. 165, 216–233. 

Yu, G., Song, X., Wang, Q., Liu, Y., Guan, D., Yan, J., Sun, X., Zhang, L., Wen, X., 2008. 
Water-use efficiency of forest ecosystems in eastern China and its relations to 
climatic variables. New Phytol. 177 (4), 927–937. 

Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., 
Dong, W., Hu, Z., Jain, A.K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J.E. 
M.S., Qin, Z., Quine, T., Sitch, S., Smith, W.K., Wang, F., Wu, C., Xiao, Z., Yang, S., 
2019. Increased atmospheric vapor pressure deficit reduces global vegetation 
growth. Sci. Adv. 5 (8), eaax1396. 

Z. Kong et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0301-4797(22)01165-3/sref12
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref12
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref12
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref13
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref13
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref14
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref14
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref14
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref15
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref15
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref15
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref16
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref16
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref16
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref16
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref16
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref16
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref17
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref19
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref19
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref19
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref23
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref23
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref23
http://refhub.elsevier.com/S0301-4797(22)01165-3/optbJVVwIzSyy
http://refhub.elsevier.com/S0301-4797(22)01165-3/optbJVVwIzSyy
http://refhub.elsevier.com/S0301-4797(22)01165-3/optbJVVwIzSyy
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref24
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref24
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref25
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref25
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref25
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref26
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref26
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref26
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref27
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref27
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref29
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref29
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref29
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref30
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref30
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref31
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref31
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref31
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref32
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref32
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref33
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref33
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref33
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref34
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref34
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref34
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref35
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref35
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref35
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref36
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref36
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref36
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref37
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref37
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref37
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref38
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref38
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref39
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref39
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref39
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref39
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref40
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref40
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref40
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref41
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref41
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref41
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref41
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref42
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref42
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref43
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref43
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref43
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref43
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref45
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref45
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref45
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref46
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref46
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref46
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref46
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref48
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref48
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref49
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref49
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref49
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref49
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref50
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref50
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref51
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref51
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref51
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref52
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref52
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref52
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref53
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref53
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref53
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref54
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref54
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref54
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref54
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref54
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref55
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref55
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref55
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref55
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref56
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref56
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref56
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref56
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref57
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref57
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref57
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref58
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref58
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref58
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref59
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref59
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref59
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref60
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref60
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref60
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref61
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref61
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref62
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref62
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref62
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref63
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref63
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref63
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref64
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref64
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref64
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref65
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref65
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref65
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref65
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref66
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref66
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref66
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref67
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref67
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref67
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref67
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref67


Journal of Environmental Management 318 (2022) 115592

16

Zhang, L., Xiao, J., Zheng, Y., Li, S., Zhou, Y., 2020. Increased carbon uptake and water 
use efficiency in global semi-arid ecosystems. Environ. Res. Lett. 15 (3), 034022. 

Zhang, X.Y., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Gao, F., 
Reed, B.C., Huete, A., 2003. Monitoring vegetation phenology using MODIS. Remote 
Sens. Environ. 84 (3), 471–475. 

Zhao, J., Feng, H., Xu, T., Xiao, J., Guerrieri, R., Liu, S., Wu, X., He, X., He, X., 2021. 
Physiological and environmental control on ecosystem water use efficiency in 
response to drought across the northern hemisphere. Sci. Total Environ. 758, 
143599. 

Z. Kong et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0301-4797(22)01165-3/sref68
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref68
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref69
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref69
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref69
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref70
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref70
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref70
http://refhub.elsevier.com/S0301-4797(22)01165-3/sref70

	A novel multi-model fusion framework diagnoses the complex variation characteristics of ecological indicators and quantitat ...
	1 Introduction
	2 Materials and methods
	2.1 Overview of the study area
	2.2 Datasets and pre-processing
	2.3 A novel multi-model fusion framework
	2.3.1 An integrated function to identify patterns of ecological indicator change
	2.3.2 Identifying the sensitivity of ecological indicators to environmental change

	2.4 Structural equation model

	3 Results and analysis
	3.1 Change characteristics of ecological indicators based on pixel scale
	3.2 Change characteristics of ecological indicators based on reach scale
	3.3 Sensitivity analysis of ecological indicators to environmental change

	4 Discussion
	4.1 Driving process of the change pattern of ecological indicators
	4.2 Performance and advantages of the novel multi-model fusion framework
	4.3 Important indications of GPP and WUE in water resource management

	5 Conclusions
	Author contribution
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


