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Abstract— In this article, the graphics processing unit (GPU)-
accelerated CatBoost (GPU-CatBoost) algorithm for hyperspectral
image classification is first introduced and comparatively studied
using diverse features. To further foster the classification perfor-
mance from both accurate and efficient viewpoints, an ensemble
version of GPU-CatBoost, the GPU-accelerated CatBoost-Forest
(GPU-CatBF) algorithm, is proposed by adopting the parallelized
minimum redundancy maximum relevance (mRMR) ensemble
(PmRMRE) feature selection (FS) algorithm. To evaluate the
performance and suitability of mRMR and PmRMRE, 11 other
state-of-the-art FS algorithms are comprehensively investigated.
Experimental results on three widely acknowledged hyperspectral
benchmarks showed that: 1) GPU-CatBoost is also an advanced
ensemble learning (EL) algorithm for hyperspectral image clas-
sification using diverse features; 2) mRMR and PmRMRE have
advanced properties for highly discriminative features and band se-
lection, and the best results are achieved by PmRMRE in most cases
in terms of both the robustness and computational efficiency; and
3) GPU-CatBF always outperforms CatBoost and GPU-CatBoost,
while compatible and even better results are reachable without los-
ing much computational efficiency in contrast with other selected
decision tree-based EL algorithms.

Index Terms—CatBoost, ensemble learning (EL), feature
selection (FS), gradient boosted decision tree (GBDT),
histogram-based gradient boosting trees (histGBT), hyperspectral
image classification, lightGBM, minimum redundancy maximum
relevance (mRMR), parallelized mRMR ensemble (PmRMRE).
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I. INTRODUCTION

LAND cover mapping is one of the main applications of
remote sensing (RS) data and is essential for understanding

the patterns and driving factors of land cover changes on the
earth’s surface [1], [2]. Over the past 40 years, large numbers
of supervised, unsupervised, and semisupervised shallow and
deep classification methods have been developed to map land
cover using RS data due to their superior robustness compared
to model-based approaches [3]–[6]. Theoretically and more
practically, an ideal supervised classifier should be capable of
addressing the following challenges.

1) The curse of dimensionality, i.e., the Hughes phenomenon
[7].

2) The nonlinearity of variables [8].
3) Small and class-imbalanced training samples [9].
4) Feature noise and label noise in both the labeled and

unlabeled samples [10].
5) Easy implementation and yet computationally efficient

[11].
Driven by such challenges, advanced machine learning (ML)

algorithms, such as support vector machines (SVMs) [4], arti-
ficial neural networks (ANNs) [12], extreme learning machines
(ELMs) [13], decision forests (DFs) [14], [15], and deep neural
networks (DNNs) [16], [17], have emerged as more accurate and
efficient alternatives to conventional model-based approaches,
particularly when faced with high-dimensional, complex data
spaces, multitemporal, and large-area mapping cases [18], [19].
However, some ML algorithms (e.g., SVMs, ELMs, ANNs, and
DNNs) are complicated due to having critical model parameters
that need to be tuned first, which is difficult to automate [12]–
[17]. Additionally, these algorithms have a tendency to overfit
the given data, especially in small-sample training scenarios.
Among these algorithms, ensemble learning (EL) algorithms
that utilize ensembles of decision trees (DTs) have received
increasing interest due to their ease of deployment, fast opera-
tion, more accurate classification results, and robustness to noise
compared to single classifiers [6], [14], [15], [20]–[22]. In this
family of EL, classifiers, including the random forest (RaF),
rotation forest (RoF), extremely randomized DTs (ExtraTrees),
extreme gradient boosting trees (XGBoost), and deep decision
forest (DDF) classifiers, are increasingly being adopted in a
variety of classification tasks using airborne and spaceborne
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multi/hyperspectral, light detection and ranging (LiDAR), syn-
thetic aperture radar (SAR), and polarimetric SAR (PolSAR)
systems [21]–[28].

As a novel and recent modification of ordered gradient boost-
ing (OGB) but with categorical feature support, CatBoost has
outperformed existing state-of-the-art algorithms such as gra-
dient boosted DT (GBDT) [29], XGBoost [30], LightGBM
[31], and H2O [32] on a diverse set of popular ML tasks on
both central processing unit (CPU) and graphics processing
unit (GPU) implementations [33]. However, according to our
previous work in [34], the superior performance of CatBoost in
terms of the classification accuracy was observed in only a few
cases with a large value set of boosting iterations, and it was less
computationally efficient than adaptive boosting (AdaBoost),
GBDT, XGBoost with the classification and regression trees
(CART) booster, and LightGBM on CPU implementation. This
limitation could become an important challenge in the classi-
fication of large volumes of hyperspectral images with high
dimensionality, especially in time-critical applications. Thanks
to recent advances in high-performance computing techniques,
accurate and efficient classification performance can be achieved
for adopted classifiers by exploiting specialized devices, such
as clusters and distributed computers, multicore CPUs, field-
programmable gate arrays (FPGAs), and GPUs in hyperspec-
tral image processing [35], [36]. Specifically, it is possible to
greatly accelerate the computational efficiency of a classifier on
a GPU-based parallel computing platform by benefiting from its
capacity of performing many computationally intensive tasks in
parallel [36]–[38]. Once the computational complexity of the
adopted classifier is greatly accelerated, it is also possible to
further boost the classification accuracy by constructing an EL
system [36], [37], [39]. Hence, it is of interest to investigate the
performance of the GPU-accelerated CatBoost (GPU-CatBoost)
algorithm and its ensemble version in hyperspectral image clas-
sification using diverse features.

An EL system usually consists of two key components—
a strategy to produce classifiers with high diversity and a
rule to combine the results from multiple classifiers. The first
key component, which is the cornerstone for constructing an
effective EL system, can be achieved by resampling, label
switching, feature partitioning, feature selection (FS), feature
extraction (FE), model parameter shuffling, and hybridization
techniques [5], [13], [40]–[42]. In contrast with other methods,
FS- and FE-based techniques are capable of addressing the
curse of dimensionality and tasks with high feature-to-instance
ratios [43], [44]. In contrast with FS-based EL algorithms, the
computational burden brought about by the FE procedure is
always a challenge, particularly in the classification of large
volumes of hyperspectral images with high dimensionality [15],
[25]. Additionally, in the sense of maintaining the statistical
and physical meanings of original features, FS is superior in
terms of better readability and interpretability. Hence, we se-
lected the FS strategy to construct our proposed GPU-CatBF
model.

Theoretically, any FS method can be adopted to produce clas-
sifiers with high diversity to construct an EL system. However,
practically speaking, a robust and highly efficient FS method

is always the best option. Dimensionality reduction via FS,
including band selection, is one of the most popular techniques
to remove noise and redundant features, improve the learning
performance, reduce the computational cost, build models with
better generalizability, and decrease the amount of storage re-
quired in the context of hyperspectral image processing [45]–
[47]. Therefore, numerous FS algorithms have been introduced
and proposed in this field in the past few decades.

Based on whether a labeled training set is available, FS
algorithms can be grouped into supervised, unsupervised, and
semisupervised algorithms [48]–[50]. For the classification
problem, FS aims to select highly discriminate features that
are capable of discriminating samples belonging to different
classes. In this regard, the supervised FS algorithm works better
than unsupervised and semisupervised algorithms when suffi-
ciently labeled samples are available. Based on the relationship
between an FS algorithm and the inductive learning method
used to infer a model, supervised FS algorithms can further
be broadly categorized into three types—filter-, wrapper-, and
embedded-based methods [49]. Compared with wrapper-based
methods, which use a single learner as a black box to evaluate
the subsets of features according to their predictive power, and
embedded-based methods, which perform FS in the training
process and are usually specific to a given learning algorithm,
the filter-based method, which selects the subset of features as
a preprocessing step independent of the induced algorithm, is
advantageous for its low computational cost and good general-
ization ability [51]. Bing is one of the most powerful filter-based
FS methods among the ML community, as shown by its high
citation count (more than 8000). The minimum redundancy max-
imum relevance (mRMR) [52] algorithm has been extensively
studied in the fields of DNA microarray data classification [53],
protein classification [54], gene expression [55], water resource
system management [56], 3-D facial expression recognition
[57], lung cancer detection [58], real-time static voltage stability
assessment [59], and many others. However, only a few works
have introduced and investigated the performance of mRMR
for band selection from multispectral and hyperspectral images
[60]–[63].

To further boost the performance on maximal relevance and
minimal redundant FS according to the mutual information
(MI)-based maximal statistical dependency criterion, mRMRE
is an extension of mRMR by using an ensemble technique
[59]. However, mRMR is a centralized method, and it scales
quadratically with the number of features and grows linearly
with respect to the sample size [52], [65]. As a result, the compu-
tationally expensive limitation of mRMR will be inherited and
further enhanced in mRMRE and become a serious challenge
in high dimensionality and large-sample scenarios. To tackle
this limitation, proposals have been made on the acceleration of
mRMR and mRMRE using efficient parallelization techniques
[65]–[67]. To the best of our knowledge, parallelized mRMRE
(PmRMRE) has not yet been studied for FS-based hyperspectral
image classification, either on its CPU- or GPU-based imple-
mentations. Therefore, in this work, to satisfy the need for a
robust and highly efficient FS algorithm from the construction
of an FS-based EL system, PmRMRE is selected to construct the
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subspace ensemble version of GPU-CatBoost, the GPU-CatBF,
for hyperspectral image classification.

For the second key component of an effective EL system,
popular fusion methods, including majority voting, weighted
majority voting, error pruning, meta fusion, Bayesian fusion,
fuzzy integral, D-S evidence theory, consensual theory, Borda
count, and algebraic rule-based methods, can be used to combine
results from multiple classifiers [41], [68]. However, on the one
hand, advanced but complex fusion methods are not suitable
for large data with large ensemble sizes from a computationally
efficient point of view; on the other hand, simple voting-based
methods could limit or even degrade algorithm performance in
small ensembles and in large ensembles with lower classifier
diversity [26]. To overcome such limitations, a metaensemble
criterion that might yield the best solution was adopted.

The main contributions of this article are summarized as
follows.

1) GPU-CatBoost was introduced and comparatively investi-
gated for hyperspectral image classification using diverse
features.

2) mRMR and PmRMRE were introduced and comparatively
evaluated for discriminative subspace FS-based hyper-
spectral image classification.

3) To improve the classification performance, a new ensem-
ble version of GPU-CatBoost, GPU-CatBF, was proposed
by combining multiple GPU-CatBoost models trained on
discriminative subspace features from PmRMRE.

II. RELATED WORKS

A. CatBoost

Many solid theoretical and empirical results indicate that
gradient boosting is a powerful ML method, especially for
dealing with noisy data, heterogeneous features, and complex
dependencies [29]–[33]. However, similar to standard boosting,
classical gradient boosting also suffers from overfitting caused
by the prediction shift in the learned model, also known as a
special kind of target leakage [88]. Furthermore, categorical
features with discrete sets of values that are not necessarily
comparable to each other cannot be directly handled by binary
trees. A common solution for using categorical features in gra-
dient boosting is converting them to numerical features. In this
regard, one-hot encoding (OHE), gradient statics (GS), target
statics (TS), greedy TS, holdout TS, and leave-one-out TS so-
lutions have been identified. Unfortunately, this transformation
procedure can also cause target leakage and prediction shifts
[88]. Hence, to avoid both issues of overfitting and target leakage
caused by gradient boosting categorical feature transformation,
CatBoost was proposed as a combination of OGB and ordered
TS [33], [88].

LetD = {(Xi, Yi)}ni represent a given set of n samples, where
Xi = (xi,1, . . . , xi,d) is a vector of d features (some numerical
and some categorical) and Yi ∈ R is a label value. CatBoost
substitutes the categorical feature xσp,k with

xσp,k =

∑p−1
j=1 [xσj ,k = xσp,k]Yσj

+ a · P∑p−1
j=1 [xσj ,k = xσp,k] + a

, k ∈ (1, d) (1)

whereσ = (σ1, . . . , σs) is the number of s random permutations
of the dataset and a is the weight of the prior value P . Then,
CatBoost can be built by following the pseudocode steps in
Algorithm 1. where I is the number of boosting iterations, L

Algorithm 1: Pseudocode for CatBoost [88]

Inputs: {(Xi, Yi)}ni , I, a, L, s, Mode
Process:

1) σr ← randompermutation of[1, n], r = 0, . . . , s;
2) M0(i)← 0fori = 0, . . . , n;

3) If Mode = Plain then
4) Mr(i)← 0 for r = 1, . . . , s, i : σr(i) ≤ 2j+1;
5) If Mode = Ordered then

6) For j ← 1 to �log 2n�do
7) Mr,j(i)← 0 for r = 1, . . . , s, i = 1, . . . , 2j+1

8) For t← 1 to I do
9) Tt, {Mr}sr=1 ←
Tree({Mr}sr=1, {(xi, yi)}nn=1, a, L, {σi}si=1,Mode);

10) Leaf0(i)← GetLeaf(xi, Tt, σ0)fori = 1, . . . , n;
11) g0 ← Gradient(L,M0, y);
12) Foreach Leaf j inTt do
13) btj = −avg(g0(i)for i : Leaf0(i) = j);
14) M0(i)←M0(i) + abtLeaf0(i)for i = 1, . . . n

Return: F (x) =
∑I

t=1

∑
j ab

t
jΛ{GetLeaf(x,Tt,Mode)=j}

is the loss function, Mr(i) is the support model from the rth
permutation using instance xi, and Mode is the boosting modes
of plain and ordered. The former mode is the standard GBDT
algorithm with inbuilt ordered TS. Due to limited space, [33]
and [88] are recommended to readers interested in more detailed
algorithmic descriptions. Both CPU and GPU implementation
of CatBoost.1

B. Minimum Redundancy Maximum Relevance

In pattern recognition applications, the definition of optional
characterization often means the minimum classification error.
In an unsupervised case where the classifiers are not specified,
minimal error requires the maximal statistical dependency of
target class c on the data distribution in the selected subspace
Rm. However, it is often difficult to obtain an accurate estimation
of the maximal dependency for multivariate density, which
often involves ill-posed problems. In addition, the computa-
tional complexity drawback of maximal dependency is the most
pronounced problem, not only for continuous feature variables
but also for discrete and categorical features. Alternatively, the
maximal relevance, which is usually characterized in terms of
correlation or MI, can be used to realize maximal dependency
efficiently [53].

In terms of the MI, the maximal dependency criterion tries
to find a feature set of S with m features, which jointly has the
largest dependency on target class c [53]

maxD(S, c), D = MI({xi, i = 1, 2, . . . ,m}; c) (2)

1Online. [Available]: https://catboost.ai/

https://catboost.ai/


SAMAT et al.: GPU-ACCELERATED CATBOOST-FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION 3203

Fig. 1. Technical flowchart for the GPU-CatBF algorithm.

where MI(xi; c) represents the MI between feature xi and class
c. To approximate (2), the maximal relevance is measured by the
mean value of all the MI values between the individual features
and target class c as follows:

maxD(S, c), D =
1

|s|
∑
xi∈S

MI(xi; c). (3)

However, features that are selected according to (3) could
have rich redundancy, and the dependency among features could
be large. As a result, the representative class discriminative
power would not change much if some of the features were
highly dependent on others. To solve these issues, the minimal
redundancy condition can be adopted for mutually exclusive
features by minimizing the following [54]:

minR(S), R =
1

|s|2
∑

xi,xj∈S
MI(xi, xj). (4)

In practice, maximum relevance and minimum redundancy
cannot always be achieved simultaneously. An optimization
criterion that combines the above two constraints into a single
constraint is called mRMR [54]

maxΦ(D,R),Φ = D −R

= max

[
1
|s|

∑
xi∈S

MI(xi; c)

]
−

1
|s|2

∑

xi,xj∈S
MI(xi,xj)

min(H(xi),H(xj))

(5)

where H(xi) and H(xj) are the entropy of the ith and jth
features, respectively.

III. PROPOSED METHOD

Diversity is the cornerstone of constructing an effective EL
system, and the underlying rule of thumb theory to this concept
is that diversified classifiers lead to uncorrelated errors, which
in turn improve the classification accuracy. Although many
diversification techniques, as mentioned above, are available,
FS-based techniques are not only capable of addressing the curse
of dimensionality and high feature-to-instance ratio tasks but are
also superior in terms of their computational efficiency and better
feature readability and interpretability. Furthermore, the feature
subset selection algorithm not only takes the performance of
the ensemble into account but also directly supports the di-
versity of subsets of features. Additionally, from constructing
an accurate and efficient EL system point of view, a robust
and highly efficient FS algorithm is the best practical option.
Therefore, the GPU-CatBF algorithm is proposed by utilizing
the GPU-CatBoost and PmRMRE algorithm for subset FS, as
presented in Fig. 1.

Indeed, a robust and highly efficient FS algorithm is an ideal
choice, but the performance of an EL system constructed simul-
taneously using a robust FS algorithm (e.g., PmRMRE) and a
classifier (e.g., GPU-CatBoost) can be limited due to a lack of
diversity. For example, it is highly possible that the advanced
FS algorithm PmRMRE could return very similar and even
exactly the same feature subsets from two independent runs.
To overcome this limitation, an incremental FS strategy was
adopted in the subspace FS phase, and a metafusion criterion that
might be capable of yielding the best results was adopted in the
ensemble phase. Finally, the proposed GPU-CatBF algorithm
can be built by following the algorithmic steps described in
Algorithm 2.
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Algorithm 2: Algorithmic Code Steps for CatBoost-Forest

Inputs: Dataset D = {(Xi, Yi)}ni ,
Xi = (xi,1, . . . , xi,d);

Base learning algorithm ζGPU−CatBoost;
Feature selector λ̄PmRMRE;
Incremental FS range [�min, �max], �max ≤ d;
Incremental step υ;
Process:

1) for t = �min to�maxby step υ:
2) Ft = λ̄PmRMRE(D, t);
3) Dt = MapFt

(D), Dt ∈ D;
4) �t = ζGPU−CatBoost(Dt);

5) εt = 1
n

n∑
i=1

�t(xi) �= yi;

end

Return: H(x) = argmax{
�max−�min+1∑

t=1
�t(x), �

∗}

where Ft is a set of features selected by PmRMRE at round t,
Dt is the new data keeping only the features in Ft, �t is trained
GPU-CatBoost learner using Dt, εt is the error of �t, �∗is the
learner with the lowest classification error, and H(x) is the final
decision function for CatBoost-Forest.

IV. DATASETS AND SETUP

A. Datasets

To evaluate the performances of the considered methods,
three hyperspectral benchmark datasets, i.e., the Pavia Univer-
sity, GRSS-DFC2013 Houston, and GRSS-DFC2018 Houston
datasets, are utilized in our experiments.

1) Pavia University: This hyperspectral image was acquired
with a reflective optics system imaging spectrometer (ROSIS)
optical sensor, which provides 115 bands with spectral range
coverage ranging from 0.43 to 0.86 μm. The geometric reso-
lution is 1.3 m. The image shown in Fig. 1(a) was captured
over the Engineering School, University of Pavia, Pavia, Italy. It
has 610×340 pixels with 103 spectral channels (a few original
bands are very noisy and were discarded immediately after data
acquisition). The validation data refer to nine land cover classes;
Table I shows the details about the number of samples and the
legend.

2) GRSS-DFC2013 Houston: This hyperspectral image was
acquired at a spatial resolution of 2.5 m by the NSF-funded
Center for Airborne Laser Mapping (NCALM) over the Uni-
versity of Houston campus and the neighboring urban area on
June 23, 2012. It is 349×1905 pixels with 144 spectral bands
in the spectral range between 380 and 1050 nm. The 15 classes
of interest selected by the Data Fusion Technical Committee
(DFTC) of the IEEE Geoscience and Remote Sensing Society
(GRSS) are reported in Table I with the corresponding number
of samples for both the training and validation sets.

3) GRSS-DFC2018 Houston: This hyperspectral image was
collected by the NCALM at the University of Houston on
February 16, 2017, between 16:31 and 18:18 GMT using an
ITRES compact airborne spectrographic imager (CASI)-1500

sensor covering a 380–1050 nm spectral range with 48 bands at
a 1-m ground sampling distance (GSD). This data cube has been
orthorectified and radiometrically calibrated to spectral radiance
units (milli-SRU). The data were distributed in radiance, and the
image size was 4172×1202 pixels. The 20 classes of interest
by the DFTC of the GRSS are reported in Table I. The corre-
sponding number of samples for both the training and validation
sets account for 1% and 99% of the total ground-truth samples,
respectively, from Fig. 2(h).

B. Experiment Setup

To generate diverse features, shallow but advanced spectral–
spatial and object FE methods, including extended morpho-
logical profiles (EMPs) [69], extended morphological profiles
with partial reconstruction (EMPPR) [70], extended maximally
stable extremal region guided morphogenesis profiles with mean
pixel values within regions (EMSER-MPsM) [25], [26], super-
pixel guided morphological profiles with superpixel means (SP-
MPsM) [71], and multiresolution segmentation (MRS)-based
object-oriented profiles (MRS-OO) [72], are selected. Specifi-
cally, all of these methods are applied to the first few (typically
three) features after principal component analysis (PCA) is
executed on the original hyperspectral datasets.

To analyze the performance of the introduced GPU-CatBoost
(Cls7) and the proposed GPU-CatBF algorithm (Cls12), popular
DT-based EL algorithms, including histogram-based gradient
boosting trees (HistGBT, Cls1) [73], random forest (RaF, Cls2)
[74], ExtraTrees (Cls3) [75], multiclass AdaBoost (Cls4) [76],
GBDT (Cls5) [29], CatBoost (Cls6) [33], XGBoost with CART
booster (XGB-CART, Cls8) [30], XGBoost with RaF booster
(XGB-RaF, Cls9), GPU-accelerated XGB-RaF (GPU-XGB-
RaF, Cls10) [30], [26], and light gradient boosting machine
(LiGBM, Cls11) [31], are applied to the three previously de-
scribed datasets.

To evaluate the performances of the mRMR and PmRMRE
algorithms, popular FS algorithms, namely, the relief-based
FS (ReliefF) [77], correlation-based FS (CFS) [78], joint MI
(JMI) [79], double input symmetrical relevance (DISR) [80],
interaction capping (ICAP) [81], Gini index (GiniI) [82], Fisher
score (FishS) [83], MI maximization (MIM) [84], conditional
MI maximization (CMIM) [85], conditional infomax FE (CIFE)
[86], and trace ratio (TraceR) [87] methods, are selected in the
experiments.

Finally, the classification overall accuracy (OA), kappa (κ)
statistic, and code running time in seconds were used to evaluate
the classification performances of the considered classifiers and
FS algorithms. All the experiments were conducted using Python
3.7.8 on a 64-bit Windows 10 system with an Intel Core i7-
7820X 3.60-GHz CPU and 128 GB RAM, and with an NVIDIA
Quadro P4000 card with CUDA toolkit version 10.2.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Evaluation of mRMR and PmRMRE

To evaluate the performance of mRMR and PmRMRE for FS
on hyperspectral images with diverse features, we first present
the OA values of an RaF model (ensemble size = 200, other
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TABLE I
CLASS NAMES, COLOR CODES, AND SAMPLE DETAILS FOR THE CONSIDERED DATASETS

parameters set to the default values) with an increasing number
of selected features using the considered FS algorithms on
the experimental datasets. For a more objective performance
evaluation, the mean OA values from ten independent runs of
the test were used to draw graphs.

According to the results in Fig. 3, it can be easily noticed
that the performance of mRMR can be further boosted by the
ensemble, which is in accordance with the results in [59], [65]–
[67]; see the “x”-marked lines in light blue for PmRMRE and
the “x”-marked lines in cyan for mRMR. Moreover, compared
with all the other adopted FS algorithms, PmRMRE shows the
fastest convergence speed in all cases of using the original spec-
tral, EMPs, EMPPR, EMSER-MPsM, SP-MPsM, and MRS-OO
features. Specifically, see the results shown by using EMPs [see
Fig. 3(b)] and EMSER-MPsM [see Fig. 3(d)] features from the
Pavia University data, the EMPs [see Fig. 3(g)] features from
the GRSS-DFC2013 Houston data, and the raw [see Fig. 3(k)],
EMPs [see Fig. 3(l)], and EMPPR [see Fig. 3(m)] features from
the GRSS-DFC2018 Houston data.

Advanced performance of mRMR is also true for hyperspec-
tral image FS, as shown by the “x”-marked lines in cyan. For
instance, a faster convergence speed than the ReliefF, CFS,
TraceR, FishS, MIM, and CIFE algorithms can be observed
for mRMR on the original spectral features from the Pavia
University data [see Fig. 3(a)]. The secondary fast convergence
speeds from mRMR can be observed on the original spectral
features from the GRSS-DFC2018 Houston data [see Fig. 3(k)].
In addition, obviously faster convergence speeds than the Reli-
efF, GiniI, and TraceR algorithms can be observed for mRMR
by using the EMPs [see Fig. 3(g) and (l)], EMPPR [see Fig. 3(h)

and (m)], and MRS-OO [see Fig. 3(i) and (n)] features from
the GRSS-DFC2013 Houston and GRSS- DFC2013 Houston
datasets, respectively. Nevertheless, MIM and CMIM could be
alternative choices to mRMR when dealing with highly cor-
related features with high dimensionality, such as EMPs and
EMPPR features from the test images, according to results
shown by the “x”-marked lines in pink and brown shown in
Fig. 3(g), (h), (l), and (m).

Aside from the robustness, the computational efficiency of an
FS algorithm is another key factor that needs to be considered in
practice. Hence, in Fig. 4, we present the CPU-based computa-
tional time costs for the considered FS algorithms using diverse
features from the experimental datasets.

According to the results, we can clearly see that the highest
computational efficiency is achieved by PmRMRE on all the
considered features from the considered datasets, while FishS
and TraceR achieved the second best efficiency, and the lowest
computational efficiency is attained by CFS, especially using
the MRS-OO features with the highest dimensionality (see the
results shown by green bars). Similar to the FS algorithms,
including ReliefF, JMI, DISR, ICAP, GiniI, MIM, CMIM, and
CIFE, mRMR shows the computational efficiency at the third
state. In addition, as the computational efficiencies of CFS, JMI,
DISR, ICAP, GiniI, MIM, mRMR, CMIM, CIFE, and PmRMRE
decrease with increasing data dimensionality, no obvious effects
are shown by the ReliefF, FishS, and TraceR algorithms for all
three datasets.

Based on the results shown in Figs. 3 and 4, we can conclude
that PmRMRE is an ideal algorithm for constructing an EL
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Fig. 2. Experimental datasets: (a) Pavia University; (d) GRSS-DFC2013 Houston; and (g) GRSS-DFC2018 Houston with the corresponding ground-truth maps
(b), (c), (e), (f), and (h) used in this article.

system from the perspectives of both robustness and efficiency.
However, there is high possibility that a robust FS algorithm
(i.e., PmRMRE) returns highly similar and even exactly the
same features in independent runs, which results in low classifier
diversity and could limit the performance of the EL system. To
avoid this issue, an incremental FS criterion was adopted. Con-
sidering the heterogeneous properties of the considered datasets
on dimensionality and landscapes, the values of the incremental
FS ranges ([�min, �max], �max ≤ d), as shown in Algorithm 2,
need to be determined empirically.

According to the results in Fig. 3, we can see that RaF
reached OA values higher than 68% by using ten raw spec-
tral features (approximately one-tenth of the total number of
spectral bands), and there were no obvious improvements when
using more than 30 raw spectral features for Pavia University
data [approximately one-third of the total number of spectral
bands, see Fig. 3(a)]. Similarly, practically acceptable OA values
(>65%) are reached by RaF when using only five selected
raw spectral features (exactly one-ninth of the total numbers

of spectral bands), and obvious improvements are not avail-
able by using more than 20 features for the GRSS-DFC2018
data [see Fig. 3(k)]. Additionally, for the EMPs, EMPPR, and
EMSER-MPsM features, approximately 8–10 features for the
lower range and 25–30 features for the upper range can be
noticed, as shown by Fig. 3(b)–(d) for the Pavia University
data, Fig. 3(g)–(i) for the GRSS-DFC2013 Houston data, and
Fig. 3(l)–(n) for the GRSS-DFC2018 Houston data. Based on
the above results and for simple implementation, we roughly set
the range to �min = d/10 and �min = d/3 for GPU-CatBF in the
next experiments, where d is the feature dimensionality.

B. Evaluation of the Proposed Method

Usually, the performance of a classifier is evaluated in terms
of the classification accuracy and computational complexity.
Hence, we show the OA values versus the ensemble sizes of the
considered classifiers using various features from the considered
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Fig. 3. RaF-based classification accuracy curves versus the number of selected features using considered feature selectors on various feature sets [(a), (f), (k):
raw; (b), (g), (l): EMPs; (c), (h), (m): EMPPR; (d), (i), (n): EMSER-MPsM; (e), (j), (o): MRS-OO] from ROSIS University (row 1), GRSS-DFC2013 Houston
(row 2), and GRSS-DFC2018 Houston (row 3). Each curve shows the mean OA from ten independent runs of experiments.

Fig. 4. Computational costs from considered feature selectors on various features from the (a) Pavia University, (b) GRSS-DFC2013 Houston, and (c) GRSS-
DFC2018 Hyperspectral datasets.

datasets in Fig. 5, where the computational cost versus the
ensemble size of the considered classifiers are shown in Fig. 6.

According to the results for the Pavia University data shown
in the first row of Fig. 5, HistGBT (Cls1) and LightGBM (Cls11)
showed the fastest convergence speed compared with the other
classifiers by using the raw spectral features (see the learning
curves in red and brown, respectively), while the worst results
were attained by GPU-XGB-RaF (Cls10) (see the learning curve
in olive green). Moreover, GPU-CatBF (Cls12) reaches the
upper bound of the OA values when the ensemble size is greater
than 150; see the learning curve in dark green. Compared with
the results from CatBoost (Cls6) and GPU-CatBoost (Cls7), as
shown by the learning curves in magenta and green, respectively,
the learning curve from GPU-CatBF is always high. While the
same results for GPU-CatBF are superior to those of CatBoost
and GPU-CatBoost in terms of the classification accuracy and
can also be found in Fig. 5(b)–(d) for the EMPs, EMPPR, and
MRS-OO features, respectively, the highest OA values reached

by and GPU-CatBF using the EMPs and EMPPR features, as
shown by the dark green learning curves in Fig. 5(b) and (c),
particularly when the ensemble size is greater than 150. Ad-
ditionally, CatBoost, GPU-CatBoost, and GPU-CatBF showed
better capability of avoiding the well-known overfitting issue
compared with AdaBoost (Cls4), GBDT (Cls5), and GPU-XGB-
RaF (Cls10), as shown by the learning curves in spring green,
blue, and cyan, respectively.

From the results shown in the second row of Fig. 5 for the
GRSS-DFC2013 Houston data, it can be clearly seen that: 1)
higher OA values are always available for GPU-CatBF com-
pared with CatBoost and GPU-CatBoost; 2) GPU-CatBF shows
the highest OA values in cases using the EMPs, EMPPR, and
MRS-OO features; and 3) worse classification results caused by
overfitting are obvious for XGBoost with RaF booster (Cls9)
by using raw spectral, EMPs, EMPPR, and MRS-OO features,
and for ExtraTrees (Cls3) using EMPPR features, as shown by
learning curves in colors cyan and grey, respectively.
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Fig. 5. Classification accuracy curves versus ensemble size of considered classifiers using various features [(a), (e), (i): raw; (b), (f), (j): EMPs; (c), (g), (k):
EMPPR; (d), (h), (l): MRS-OO] from the Pavia University (row 1), GRSS-DFC2013 Houston (row 2), and GRSS-DFC2018 Houston (row 3) datasets.

Fig. 6. Model training complexity curves versus ensemble size of considered classifiers using various features [(a), (e), (i): raw; (b), (f), (j): EMPs; (c), (g), (k):
EMPPR; (d), (h), (l): MRS-OO] from the Pavia University (row 1), GRSS-DFC2013 Houston (row 2), and GRSS-DFC2018 Houston (row 3) datasets.
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TABLE II
OA, KAPPA, AND PREDICTION TIME VALUES FROM THE CONSIDERED CLASSIFIERS USING THE VARIOUS FEATURES OF THE

PAVIA UNIVERSITY DATA (ENSEMBLE SIZE = 150)

TABLE III
OA, KAPPA, AND PREDICTION TIME VALUES FROM THE CONSIDERED CLASSIFIERS USING THE VARIOUS FEATURES OF THE

GRSS-DFC2013 HOUSTON DATA (ENSEMBLE SIZE = 150)

Looking at the graphs from the last row of Fig. 5, the best re-
sults with the highest OA values are reached by HistGBT (Cls1),
LightGBM (Cls11), and XGBoost with CART booster (Cls8)
on raw spectral, EMPs, EMPPR, and MRS-OO features, while
better than results from RaF (Cls2), ExtraTrees (Cls3), AdaBoost
(Cls4), GBDT (Cls5), CatBoost (Cls6), GPU-CatBoost (Cls7),
XGBoost-RaF (Cls9), GPU-accelerated XGBoost-RaF (Cls10)
are obtained by GPU-CatBF (Cls12) on raw spectra, EMPs,
and EMPPR features. Additionally, the OA of GPU-CatBF is
maximized only when the ensemble size is greater than 150.

According to the computational complexity cost results
shown in Fig. 6, the following results can be observed. First
and foremost, RaF (Cls2, orange curves) and ExtraTrees (Cls3,
grey curves) are the most efficient algorithms in all cases
compared with the other classifiers. Moreover, GPU-CatBoost
(Cls7) is always at least ten times faster than the CPU-based
implementation of CatBoost (Cls6), as expected, as depicted
by the cost curves in green and magenta, respectively. Further-
more, greater computational efficiency than HistGBT (Cls1) is
reachable for GPU-CatBF (Cls12) on the Pavia University and
GRSS-DFC2018 Houston datasets, particularly if the ensemble
size is approximately less than 150. GPU-CatBF is more efficient
than LightGBM (Cls11) on the GRSS-2013 Houston data only
when the ensemble size is less than 100. Finally, HistGBT
(Cls1, red curves) is at least 100 times faster than the original
LightGBM version when large amounts of training data are
available (see the graphs in the second row of Fig. 6), which
is in accordance with the assumption in [73].

Summarizing the above results drawn from Figs. 5 and 6, we
empirically set the ensemble size of the proposed GPU-CatBF
algorithm to 150 for both accurate and efficient classification.

C. Classification Results Comparison

To further compare the proposed classification approach
for land cover mapping using hyperspectral images, Tables
II –IV show the classification OA, κ, and prediction time
cost in seconds for the considered classifiers using different
types of features, and Figs. 7 and 8 present the final best
classification maps with the OA values highlighted in boldface
from Tables II–IV. For a fair comparison, the ensemble size
for all the classifiers is set to the same value of 150, which
is the recommended value of the ensemble size for CatBoost,
CPU-CatBoost, and the proposed GPU-CatBF algorithm.

Again, it can be clearly seen that the HistGBT classifier
reaches the highest classification values for raw spectral
features from all three test images; see the highlighted
numbers in bold from the third column of Tables IV–VI.
However, HistGBT is slower than all the other classifiers in
the prediction phase, specifically using the raw spectral, first
ten principal components (PC10), EMPs, EMPPR, SP-MPsM,
and EMSER-MPsM features from the Pavia University and
GRSS-DFC2018 Houston test images and using all features
from the GRSS-DFC2013 test image; see the underlined
numbers from the first row of Tables II–IV.
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TABLE IV
OA, KAPPA, AND PREDICTION TIME VALUES FROM THE CONSIDERED CLASSIFIERS USING THE VARIOUS FEATURES OF THE

GRSS-DFC2018 HOUSTON DATA (ENSEMBLE SIZE = 150)

Fig. 7. Classification maps with OA values corresponding to the numbers in bold from (a)–(g) Table II and (i)–(o) Table III and ground-truth maps for the (h)
Pavia University (column 1) and (p) GRSS-DFC2013 (column 2) datasets.
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Fig. 8. Classification maps with OA values correspondent to the numbers in bold from (a)–(g) Table IV and the (h) ground-truth map for the GRSS-DFC2018
Houston data.

GPU-CatBF achieves higher OA values than CatBoost and
GPU-CatBoost, but prediction is slower. This finding is uni-
versally true for all cases of using various features from the
considered test images and is in accordance with the previous
results shown in Figs. 5 and 6. In addition, compared with
the results from the other classifiers, GPU-CatBF is capable of
reaching compatibility and achieves an even better classification
accuracy. For instance, GPU-CatBF reached the highest OA
values by using EMPs, EMPPR, SP-MPsM, EMSER-MPsM,
and MRS-OO features from the GRSS-DFC2013 Houston data;
see the numbers in bold in the last row of Table III. If we compare
the results from the Pavia University data, although the best
results are not obtained by GPU-CatBF, OA values higher than
those from other classifiers are present. For example, HistGBT
and LightGBM obtained OA values of 92.37% and 92.10%,
respectively, when using EMPs features, while an OA value of
92.75% was reached by GPU-CatBF in a shorter prediction time.
From the results from the GRSS-DFC2018 Houston test data,
although the highest OA values are reached by either HistGBT
or LightGBM in most cases, OA values higher than those from
GBDT and XGB- CART can be observed for GPU-CatBF using
the raw spectral, EMPs, EMPPR, and MRS-OO features.

In our previous works in [25], [26], [71], and [72], the per-
formances of EMSER-MPsM, SP-MPsM, and MRS-OO were
separately investigated by comparison with the MPs, EMPPR,
EMPs, and EMPPR features. Hence, it is worth comprehensively
comparing their performances here. First, according to the re-
sults shown in Tables II– IV and Figs. 6 and 7, it is clear that better
classification results with higher OA values can be obtained by
the SP-MPsM and EMSER- MPsM features than with the EMPs
and EMPPR features. For example, while all the considered
classifiers reached OA values between 89.04% and 96.94% by
using the EMSER-MPsM features from the Pavia University

data, the OA value ranges shown by the considered classifiers
are between 85.33% and 93.42% and between 84.13% and
89.85 when using the EMPs and EMPPR features, respectively.
Furthermore, when we compare the classification results from
the SP-MPsM, EMSER-MPsM, and MRS-OO features, gener-
ally better classification results are obtained by EMSER-MPsM
in contrast with the results from SP-MPsM features for Pavia
University and GRSS-DFC2013 Houston test images, while the
best results are obtained from MRS-OO features for all the
test images. For instance, see that the area in the lower part
of the GRSS-DFC2013 Houston image, which is covered by
dense cloud shadows, is more precisely classified by using the
MRS-OO features.

VI. CONCLUSION

In this article, the GPU-CatBoost algorithm for hyperspectral
image classification was introduced and comparatively studied
in terms of the classification accuracy and computational effi-
ciency using diverse features. To further boost the classification
performance by considering its highly accelerated advantage
with respect to the CPU-based implementation of CatBoost,
an incremental subspace FS-based ensemble version, GPU-
CatBF, is proposed. To evaluate the performance of the pro-
posed approach, 11 popular DT-based EL algorithms, namely,
the HistGBT, RaF, ExtraTrees, AdaBoost, GBDT, CatBoost,
GPU-CatBoost, XGB-CART, XGB-RaF, GPU-XGB-RaF, and
LightGBM algorithms, are selected in the experiments. More-
over, 11 popular FS algorithms, namely, the ReliefF, CFS, JMI,
DISR, ICAP, GiniI, FishS, MIM, TraceR, CMIM, and CIFE
methods, are selected to evaluate the performance of mRMR
and PmRMRE. According to the experimental results from three
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widely used hyperspectral benchmarks, the concluded results are
as follows.

1) Compared with existing popular FS algorithms, the su-
perior properties of mRMR and PmRMRE for highly
discriminative subspace FS from hyperspectral images
categorized with diverse feature sets are clear, while the
best results are shown by PmRMRE in the context of both
the robustness and computational efficiency.

2) Compared with popular DT-based EL algorithms and the
CPU-based implementation of CatBoost, GPU-CatBoost
is also an advanced EL algorithm for hyperspectral image
classification using various features.

3) While further improved performance of the proposed
GPU-CatBF is clear compared with CatBoost and GPU-
CatBoost, similar and even better classification accuracy
results are reachable for GPU-CatBF in some cases.

Although GPU-CatBF outperforms CatBoost and GPU-
CatBoost in terms of the classification performance, the com-
putational cost from a larger value set of the ensemble size is
also clear. Additionally, as an advanced FS algorithm, the com-
putational efficiency of PmRMRE could be further enhanced in
its GPU-based implementation. Therefore, we will focus on the
self-adaptive selection of the ensemble size of GPU-CatBoost,
GPU acceleration of PmRMRE, and mixed-precision technique
in future work.
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