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10.1  Background

Food security is a considerable challenge (Cole et  al.  2018; FAO  2017; FAO, IFAD, and 
WFP 2015) to realize the Sustainable Development Goals (SDGs) of the United Nations by 
2030 (United Nations 2015). One of the most severe threats to food security is insufficient 
water resources (Grayson 2013), and this threat is being exacerbated continuously. Drought 
responses of crops, especially responses of roots, improve crop resilience against drought 
(Grayson 2013; Rey et al. 2017; Gupta et al. 2020).

North China Plain (NCP) supports food security in China (Godfray 2010; Piao et al. 2010; 
SCIO_PRC 2019) as one of the critical grain-producing areas; however, it is also one of the 
areas with scarce water resources (Jeong et al. 2014). The average annual precipitation is 
about 500 mm, but the annual water requirement of wheat and maize is more than 900 mm 
(Hu et  al.  2010; Kendy et  al.  2003; Wang et  al.  2008). In addition, there is a mismatch 
between water resources and the distribution of population, which results in two critical 
water problems: (i) the drying up of the main course of the lower Yellow River reaches and 
(ii) eco-environmental degradation (Liu and Xia 2004). Due to its unique environment and 
food requirements, the water security and food security in NCP are particularly important. 
Therefore, the research on crop roots, soil nutrient utilization, soil structure, and water-use 
efficiency is essential to the growth and productivity of crops (Deng et  al.  2006; Fan 
et al. 2011; Zhang et al. 2008). Studies have shown that the basis for ensuring high and 
stable crop yield is large biomass, and the biomass amount is closely related to the 
development of crop roots. In the crop models, sufficient rooting depth is defined as 1.5 m 
for winter wheat (Ouyang and Luo 2002) and 1.0 m for maize in NCP (Liu and Luo 2010), 
with roots located mainly in the upper 0.2–0.3 m (Mo and Liu 2001).
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The main objectives of this chapter were to present the crop root research in the NCP, to 
explore the mechanisms of root water uptake and various relevant nutritional and metabolic 
processes, and to characterize the improved water absorption and fertilizer utilization 
capacity of crop roots under the premise of constant (or a small increase) in allocation and 
consumption of photosynthetic products.

10.2  General Information on the Study Area

10.2.1  North China Plain (NCP)

The NCP is one of the three major plains in China. It is an essential part of the Great Plains 
in Eastern China (Figure 10.1). It is also known as the Huang-Huai-Hai Plain (meaning 
that the three main rivers: Huanghe (Yellow) River, Huaihe River, and Haihe River flow 
through this area), and has an area of 300 000 km2. It has a flat terrain, convenient 
transportation, and numerous watercourses and lakes. It has been China’s political, 
economic, and cultural centre since ancient times. Its population and cultivated land each 
account for about 20% of the whole country.

Figure 10.1  Topographic map of the North China Plain. Source: Drawn by the authors using the 
DEM (Digital Elevation Model) data downloaded from: http://srtm.csi.cgiar.org/srtmdata/
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The fluvo-aquic soil is the most important cultivated soil type in the NCP. It has suitable 
tillage properties, is rich in mineral nutrients, and has a great potential in agricultural uti-
lization. The NCP has warm, temperate monsoon climate with pronounced seasonal varia-
tions. The Huaihe River Basin in the south of NCP is a transition area to the subtropical 
zone, which has higher temperature and precipitation than areas in the north. The average 
annual temperature on the plain is 8–15 °C, with cold and dry winters.

The cropping systems are mostly double-crop rotation in one year and three crops in two 
years only in some parts of the northern area. The main food crops are wheat and maize. In 
the NCP, the wheat production and sown areas are about 55% and 47%, respectively, of the 
whole China, and those of maize were about 22.6% and 23.2%, respectively. The total grain 
production and sown area account for 21.8% and 20.4%, respectively, of the whole of China 
(Table 10.1).

10.2.2  Shandong Yucheng Agro-Ecosystem National Observation and 
Research Station (SYA-NORS)

Shandong Yucheng Agro-Ecosystem National Observation and Research Station (SYA-
NORS), also called Yucheng Comprehensive Experiment Station (YCES), is one of more 
than 50 stations supported by the Ministry of Science and Technology, the P.R. of China, 
and is also one of stations of the Chinese Academy of Sciences; it is located in Dezhou 
(36°56′N, 116°40′E, 23 m a.s.l.), Shandong Province. It has a warm, temperate semiarid 
climate. The annual mean air temperature is 13.3 °C, and the annual precipitation is 
560 mm according to the long-term observations in SYA-NORS (1980–2018). Precipitation 
is distributed unevenly, with 70% of the annual precipitation falling between June and 
September. The annual sunshine is 2640 hours. The soil type is aquents (poorly drained 
soils formed from human-transported material or on excavated landscapes) with high 
salinity (Tu and Li 2017).

Table 10.1  The percentages of wheat, maize, and total grain production and the corresponding 
planted areas in the North China Plain as proportions of the China’s totals.

Year
Wheat grain 
production (%)

Wheat planting 
area (%)

Maize grain 
production (%)

Maize planting 
area (%)

Total grain 
production (%)

2009 56 47 39 28 24

2010 56 47 36 28 24

2011 56 47 34 27 23

2012 56 48 32 27 23

2013 55 47 22 23 22

2014 55 47 22 22 21

2015 55 47 21 22 21

2016 54 47 21 22 21

2017 57 50 27 27 24
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The research direction of the SYA-NORS is aimed at the rational use of natural resources 
such as water, soil, and biology, and the sustainable development of the region. It 
concentrates on the mechanisms and models of energy cycling and conversion in the 
Earth’s surface layer. Experimental research is carried out on development of spatial energy 
conversion methods; innovative measurement methods and improvement and development 
of instruments; combining the theories, methods, and means of geography, ecology, and 
agronomy in studying the structure and function of agro-ecosystems; and optimizing the 
management models and developing pilot demonstrations of supporting technologies.

10.3  Methods

Given the importance of the root systems and the need to understand them better, it is 
necessary first to develop the appropriate root system research methods to investigate root 
morphology and physiology. Ideally, researchers would like to use the simple, destructive, 
or, even better, non-destructive research methods to determine quickly, accurately, and 
quantitatively the morphological and physiological characteristics of crop roots. At present, 
due to a wide variety of research methods on roots and the significant differences in 
measuring methods, it is not easy to classify the existing root research methods accurately. 
Based on different research purposes and requirements, the crop root research methods 
can be divided into the following categories:

i)  Direct sampling methods in the field, such as excavation, drilling, coring, sectioning, etc.
ii)  Direct observation methods, such as root chambers, glass walls, rhizotron cameras, etc.

iii)  Indirect observation methods, such as dyeing techniques, non-radioactive tracers, 
etc., and

iv)  Other methods, such as using in situ containers, tube cultivation, micro root canal sys-
tem observations, etc.

10.4  Root Research on Winter Wheat and Maize in the 
North China Plain: a Brief Overview

Wheat and maize are the main food crops in the NCP. Given the critical importance of the 
root systems, many studies have been conducted on wheat and maize roots in the NCP. The 
growth and development of above-ground biomass depend on the acquisition of soil 
nutrients and water by roots (Ju et  al.  2015; Qi et  al.  2012; Wang et  al.  2014; Wheeler 
et al. 1993).

10.4.1  Wheat Root Studies

The characteristics of the crop production in NCP are a lack of water and excessive use of 
nitrogen fertilizers. Water-use efficiency and nitrogen fertilizer-use efficiency of winter 
wheat production must urgently be improved in the NCP. Recently, there have been many 
studies about the relationship between root systems and other factors, such as different irri-
gation and nitrogen regimes, tillage practices, and rhizosphere microbiome (Liu et al. 2018b).
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The results showed that both the irrigation method and schedule influenced root devel-
opment, the root distribution pattern down the soil profile, and the dynamics of root water 
uptake (Guo et al. 2018; Jha et al. 2017; Li et al. 2010; Liu et al. 2018a; Lv et al. 2009, 2015; 
Shao et al. 2009; Xu et al. 2016). Irrigation in the stem elongation stage resulted in high 
grain yield and water-use efficiency and offered a sound basis for developing the deficit 
irrigation regimes in north China (Shao et al. 2009).

The effects of different tillage practices (plough tillage, rotary tillage, and no-tillage) on 
root growth, water consumption characteristics, grain yield, water use, and water-use 
efficiency were evaluated under rain-fed conditions in a field with 20 years of rotary tillage 
history (Ali et al. 2018). Zhao et al. (2014) studied the effects of tillage (moldboard plough 
to a maximum depth of 15 cm, deep moldboard plough to a maximum depth of 30 cm, and 
chisel plough to a maximum depth of 30 cm) and crop residue management on soil 
respiration and its mechanisms in the NCP area. Compared with the moldboard 
plough + crop residue removed treatment, the root dry weight density of the deep 
moldboard plough + crop residue retained treatment and the chisel plough + crop residue 
removed treatment increased by 45% and 39%, respectively.

The rhizosphere harbours complex microbial communities, whose dynamic associations 
are considered critical for plant growth and health (De Vries et al. 2020). Distinct microbial 
co-occurrence patterns exist in the wheat rhizosphere, which could be associated with 
various agricultural ecosystem properties (Fan et al. 2018).

10.4.1.1  Winter Wheat Root Distribution down the Soil Profile
Root length distribution changed with the growth stages (Figure 10.2) (Zhang et al. 2004b). 
Root length distribution in the upper 80 cm declined from 94% in the booting stage to 80% 
at maturity. The treatments with large amount of irrigation water had more roots than the 
treatments with less irrigation and the rain-fed treatments (Zhang et al. 2004b).
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Figure 10.2  Root length distribution (%) of winter wheat along the soil profile (0–40, 40–80, 
80–120, and 120 cm and deeper) in the North China Plain. Means ± SE. Source: Data from Zhang 
et al. (2004b).
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10.4.1.2  Influence of Cropland Management on Winter Wheat Root Growth
Agronomic management influenced the distribution of winter wheat roots along the soil 
profile (Benjamin and Nielsen  2006; Zhang et  al.  2004b). In particular, the irrigation 
methods altered root distribution (Lv et al. 2010; Phene et al. 1991; Proffitt et al. 1985). 
Wang et al. (2014) found that irrigation and nitrogen fertilization influence root growth 
and grain yield of winter wheat, with grain yield strongly correlated with root weight 
density (positively at 20–60 cm, but negatively in deep soil layers) in the Huanghuai wheat 
production area of China.

No significant difference in root length density of winter wheat was found between 
shallow and deep tillage (Zhang et al. 2004b). However, deep tillage was conducive to root 
growth in deeper soil layers (40–120 cm). Furthermore, more roots were found under the 
rows than between the rows (Zhang et al. 2004b) in the 0–20 cm layer. No significant differ-
ence was recorded in the other soil layers.

Winter wheat roots reached the 2.0 m depth (Zhou et al. 2008), with the maximum depth 
achieved at flowering. The 15N isotope data showed that deep-rooted winter wheat could 
use soil nitrate up to 2.0 m depth. A significant decrease in nitrate content at the 1.4–2.0 m 
soil depth was observed at winter wheat maturity (Figure 10.3).

The research on nitrogen fertilization is often combined with irrigation. Wang et  al. 
(2014) evaluated the effects of irrigation and nitrogen regimes on wheat root growth under 
high-yielding conditions in the Huanghuai wheat production area of China by performing 
field experiments at three locations in Henan Province. Liu et al. (2018b) investigated the 
effects of irrigation and N regimes on root development and their relationship with soil 
water and N use in different soil layers.

10.4.2  Maize Root Studies

Another critical food crop in the NCP is maize. There have been many studies on the maize 
root systems in the recent years, including grain productivity, nitrate leaching, soil water, 
and soil N content. The effective and modern cultivation model for high maize productivity 
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Figure 10.3  15N in winter wheat grain from the tracer placed at six soil depths. Means ± 
SE. Source: Data from Zhou et al. (2008)
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in the semiarid areas is plastic film mulching that enhanced ear and grain properties, and 
root spatial and temporal distribution down the soil profile, resulting in increased grain 
yields and reduced productivity risks in dryland farming systems (Jia et al. 2018).

Nitrate that leached below the maize root zone was still available to deep-rooted wheat in 
the summer maize-winter wheat rotation in the NCP (Zhou et  al.  2008). Overuse of 
inorganic N fertilizers and high net mineralization and nitrification, together with a 
predominance of rainfall in the summer season and light soil texture, are the main 
controlling factors responsible for a high nitrate leaching loss in this soil-crop-climate 
system (Huang et al. 2017).

Root length density of fine roots (diameter <0.2 mm) in the 0–20 cm soil layer was 
significantly and positively correlated with soil water content and negatively with soil 
mineral N content. The root length density of fine roots, as well as roots with the diameter 
>0.4 mm in the 20–60 cm soil layer, was positively correlated with shoot N uptake (Zhang 
et al. 2018).

10.4.2.1  Summer Maize Root Distribution along the Soil Profile
Figure  10.4 shows the root dry weight density and distribution down the soil profile. 
Compared with the roots of winter wheat, the summer maize roots were distributed mainly 
in the shallow layer, with more than 90% growing at 0–40 cm depth (Zhou et al. 2008).

Usually, maize root dry weight reaches a maximum at the tasseling (VT) stage 
(Figure 10.5) (Qi et al. 2012). For the two most popular maize genotypes, the maximum 
root dry weight of DH661 was 35.2 and 34.5 g plant−1 in 2009 and 2010, respectively, and 
that of ZD958 was 19.2 and 18.8 g plant−1 in 2009 and 2010, respectively (Qi et al. 2012).

10.4.2.2  Influence of Cropland Management on Summer Maize Root Growth
The summer maize roots grew up to 1.2 m soil depth (Zhou et  al.  2008), reaching the 
maximum depth at silking. Maize root length density varied in different growing stages 
(Figure 10.6) (Ren et al. 2018).
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Figure 10.4  Root dry weight (RDW) density at three growth stages and the relative RDW 
distribution at harvest of summer maize in the North China Plain. Means ± SE. Source: Data from 
Zhou et al. (2008).
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In the NCP, one reason for the wheat-maize rotation system being popular is that the 
nitrate leached during the winter wheat season remained in the maize root zone, maintain-
ing relatively high nitrate content without N fertilization for the maize season.

10.5  Relationship Between Roots, Water Use, 
and Crop Yield

10.5.1  Wheat

The current research on crop roots in the NCP is mainly through the combination of field 
experiments and stable isotope techniques to explore the relationship between plant roots 
and rhizosphere microorganisms, irrigation methods, water-use efficiency, and nitrogen 
utilization. After decades of research, it has been proposed to enhance crop growth and 
yield by promoting the growth of roots.

At the SYA-NORS, located in the NCP, we have accomplished a substantial body of work 
on wheat and maize root systems. Zhao et al. (2018) evaluated water uptake models (Molz–
Remson model, Selim–Iskandar model, and Feddes model) by using the precise field obser-
vation data. The hydrogen and oxygen stable isotopes revealed dynamic characteristics of 
soil water absorption by roots of winter wheat and summer maize during the whole 
growth period.

We have done long-term observations of the root system in the field trials to collect data 
on roots, grain yield, meteorological parameters, and soil-related indicators in the 
2009–2014 period, monitoring wheat and maize root density three times each year. In the 
wheat growth period, we chose the stages of stem elongation (March), booting (April), and 
grain ripening (May and June). In the maize growth period, we chose the stages of seedling 
growth (July), stem elongation (August), and grain ripening (September). Figure  10.7 
shows the root density of wheat in five years (2009–2010 and 2012–2014), with clear 
differences in both intra- and inter-season variability.

The data on wheat root density and production were shown in Table 10.2. We studied the 
potential relationship between production and root density during three periods of wheat. 
The results showed that the maximum root density at grain ripening was 341 g m−3, and the 
period of intensive growth of wheat roots was mainly in the stem elongation to booting 
stages (Table 10.2). The irrigation in this period of intensive root growth was a significant 
factor in enhancing wheat growth.

Figure 10.8 shows the relationships between wheat root density and grain yield in the 
5-year period (see Table  10.2). The rainfall in 2010  was higher than in the other years; 
hence, the 2010 data were excluded in Figure 10.8a. There was an obvious relationship 
between wheat root density (at stem elongation and ripening) and grain yield 
(Figure 10.8a,c). However, there was no correlation between grain production and the root 
density at booting (Figure 10.8b).

The positive relationship between wheat root density and yield at ripening (Figure 10.8c) 
was similar to that in the other studies (Ehdaie et al. 2011; Liu et al. 2018a). The results 
further indicated that the optimization of wheat root density would increase the final yield 
of wheat. In addition, other relevant studies have also shown that, under experimental 



Table 10.2  Wheat root system density in the top 1 m of soil 
and grain yield in five seasons on the North China Plain.

Sampling time Root density (g m−3) Grain yield (t ha−1)

20 March 2009 258 ± 32 6.8 ± 0.29

22 April 2009 261 ± 49

21 May 2009 363 ± 31

27 March 2010 192 ± 18 6.9 ± 0.82

24 April 2010 367 ± 108

28 May 2010 337 ± 47

5 April 2012 140 ± 47 6.3 ± 0.58

15 May 2012 274 ± 51

1 June 2012 273 ± 44

12 April 2013 199 ± 78 6.4 ± 0.51

3 May 2013 391 ± 3

3 June 2013 308 ± 25

1 April 2014 280 ± 43 7.3 ± 0.38

3 May 2014 297 ± 39

28 May 2014 341 ± 69
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Figure 10.7  The root density of wheat in the top 1 m of soil during five growing seasons on the 
North China Plain. The central line in each box represents the mean value.
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conditions, rational application of fertilizers and irrigation can improve water-use effi-
ciency and soil N-use efficiency by optimizing root density of wheat (Man et al. 2016; Plett 
et al. 2020).

Effects of irrigation on wheat root system have been a research focus on the NCP for 
many years. Wheat in the rain-fed treatment and the irrigated treatment (with a few irriga-
tion events) tended to have relatively greater root density in deeper layers of soil than the 
highly irrigated treatments. In the topsoil layer, this trend was reversed (Zhang et al. 2004b), 
with wheat in the non-irrigated treatment and the treatment with a few irrigation events 
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Figure 10.8  Wheat roots density in the top 1 m of soil in various growth stages and grain 
production on North China Plain over a 5-year period. (a) at stem elongation; (b) at booting; and 
(c) at grain ripening. The light-grey symbol in (a) was an outlier and was excluded from the analysis.
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having lower root density than in the more frequently irrigated treatments. At grain ripen-
ing, wheat root length density below 140 cm was higher in the rain-fed treatment (T0) than 
the treatment receiving three irrigations (T3) (Figure 10.9). In contrast, in the topsoil layer, 
the latter had a higher root length density than the former.

In the field trials at the Yucheng Comprehensive Experimental Station, in order to 
assess relative root growth, rate of biomass increase, and grain yield, we designed a 
range of treatments in which soil water contents were kept at 80%, 65%, and 50% of the 
field capacity by applying irrigation at depths of 0, 30, 50, and 100 cm (Li et al. 2002). 
The results showed that the 0–30 cm soil layer had a larger wheat root length density 
when a smaller amount of water was supplied (Figure 10.10a), suggesting the adaptive 
plant responses to increasing root absorptive capacity. In addition, the distribution of 
wheat roots was related to the type of irrigation, with surface irrigation associated with 
roots being mainly in the topsoil and root length density decreasing exponentially with 
the soil depth (Figure 10.10b).

When deep irrigation was applied, wheat root length density in the top 20 cm of soil was 
low, and root growth in deeper layers was stimulated compared with the surface irrigation 
(Figure 10.10b). Hence, manipulating water supply can change root distribution density 
down the soil profile.

To quantify the effects of shallow water tables on the distribution of root dry weight den-
sity of winter wheat at the Yucheng Comprehensive Experimental Station, we set a field 
trial under rain-fed conditions with lysimeters and water table at different depths (40, 70, 
110, or 150 cm) (Liu and Luo 2011). Figure 10.11 shows the distribution of wheat root dry 
weight density in the soil profile at harvest in the treatments with different groundwater 
table depths in 2010. The root dry weight within 0–100 cm layer ranged from 55 to 185 g m−3 
and increased with an increase in the groundwater table depth. The groundwater table at 
150 cm was associated with the largest root dry matter weight, having 238% more root dry 
matter compared with the groundwater table at 40 cm depth.

10 cm

20 cm

30 cm

40 cm

50 cm

60 cm

70 cm

80 cm

90 cm

T0T3

100 cm

110 cm

120 cm

130 cm

140 cm

150 cm

160 cm

170 cm 5

4

3

2

1

0

Figure 10.9  Distribution of root 
length density down the soil profile 
depth (in cm) at maturity for rain-fed 
(T0) and irrigated winter wheat (T3; 
three irrigation events at 60 mm 
water each). Source: Data from Zhang 
et al. (2004b).



10.5  Relationship  Between R oots,  Water  Use, and Crop   Yiel 283

0

20

40

60

80

100

120

140

0 1 2 3 4

D
ep

th
 (

cm
)

Root length density (cm/cm3)

Field capacity 80%

Field capacity 50%

0

20

40

60

80

100

120

140

0 1 2 3 4

D
ep

th
 (

cm
)

Root length density (cm/cm3)

Surface irrigation

Irrigation at 30 cm

Irrigation at 50 cm

Figure 10.10  Distribution of wheat root length density down the soil profile as influenced 
by differential water availability and the irrigation type. (a) surface irrigation; (b) water 
content = 80% of field capacity supplied by three types of irrigation. Source: Data from 
Li et al. (2002).

Dry weight density (g/m3)

100 cm

90 cm

80 cm

70 cm

40 cm 70 cm 110 cm 150 cm

60 cm

50 cm

40 cm

30 cm

20 cm

10 cm Depth (cm)
150

100

50

0

Figure 10.11  Distribution of wheat root dry weight density in the soil profile at harvest 
as dependent on the water table depths (40, 70, 110, or 150 cm). Source: Data from 
Liu and Luo (2011)



10  Winter Wheat and Summer Maize Roots in Agro-Ecosystems on the North China Plain284

10.5.2  Maize

Across the five field trials, maize roots grew until the grain ripening stage (Figure 10.12), 
with the maximum root density of 1317 g m−3. The irrigation was supplied only at sowing.

In the same trials over the five seasons, maize grain yield ranged from 7.4 to 9.7 t ha−1 
(Table 10.3).

10.6  Conclusions

The NCP represents the critical food production area (winter wheat-summer maize crop-
ping) with scarce water resources. Understanding temporal and spatial dynamics of wheat 
and maize root growth is an essential factor in achieving efficient use of water ad nutrient 
resources to ensure food security. The main growth period of wheat roots was in the stem 
elongation and booting stages, whereas the maize roots had a longer growth period extend-
ing all the way to grain ripening.

Given that root density was positively correlated with grain yield, it was suggested that 
increases in root biomass could be linked to an enhanced nutrient and water absorption. 
The distribution of root density along the soil profile plays a critical role in soil water 
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Figure 10.12  The intra- and inter-seasonal variability in maize root density over the 5-year period.
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utilization. The findings suggested that optimization of the root system contributed to 
increased grain yield.

We suggest that the future research should focus on the interactions between crop roots 
and irrigation, climate, crop genotype, fertilizer application, and root-associated soil microbi-
ome to develop and utilize a water-soil-crop-energy flow model suited for the crops grown on 
the NCP. This model is likely to contribute to food security, environmental safety, economic 
development, and the sustainable intensification of agricultural production on the NCP.
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(No. 41771292, No. U1906219, No. 31170414), National Natural Science Foundation of China, 
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