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A B S T R A C T   

Evapotranspiration (ET) plays a vital role in the water cycle and energy cycle and serves as an important linkage 
between ecological and hydrological processes. Accurate estimation of ET based on data-driven methods is of 
great theoretical and practical significance for exploring soil evaporation, plant transpiration and the regional 
hydrological balance. Most existing estimation approaches were proposed based on multiple meteorological 
variables. This study proposed a novel hybrid estimation approach to estimate the monthly ET using only his-
torical ET time series in the southeastern margins of the Tengger Desert, China. The approach consisted of three 
sections including data preprocessing, parameter optimization and estimation. The model evaluation demon-
strated that the hybrid model based on the variational mode decomposition (VMD) method, grey wolf optimizer 
(GWO) algorithm and support vector machine (SVM) model achieved superior computational performance 
compared to the performance of other methods. The Nash–Sutcliffe coefficient of efficiency (NSCE) increased 
from 0.8588 to 0.8754 and the mean absolute percentage error (MAPE) decreased from 28.42% to 23.22% in the 
testing stage. Thus, we suggest that the hybrid VMD-GWO-SVM model will be the best choice for estimating ET in 
the absence of regional meteorological monitoring.   

1. Introduction 

Evapotranspiration (ET) is the sum of the vegetation transpiration 
and soil evaporation capacity within a certain period, which is closely 
related to meteorological parameters (precipitation, solar radiation, 
wind speed and temperature), soil moisture, vegetation traits and other 
factors (Eagleson, 2002; Rodríguez-Iturbe and Porporato, 2004; Feng 
et al., 2016; Wu et al., 2020). ET plays a vital role in the water cycle and 
energy cycle and is also an important linkage between ecological and 
hydrological processes (Li et al., 2016; Fan et al., 2018). Therefore, how 
to precisely estimate ET is a core issue for understanding the water cycle 
regime in soil–plant-atmosphere continuous systems (Li et al., 2016; 
Malik et al., 2018). 

Traditional ET estimation methods are mainly physically based 
methods (Wu et al., 2020; Liu et al., 2020), such as the Priestley–Taylor 
(Priestley and Taylor, 1972), Hargreaves (Hargreaves and Samani, 
1985), corrected FAO-24 Penman (Allen and Pruitt, 1991), and FAO-56 
Penman-Monteith (Feng et al., 2016) methods, which have great limi-
tations in accurately estimating ET in cases lacking meteorological 

parameters (e.g., solar radiation, wind speed, and air temperature) 
(Feng et al., 2016; Fan et al., 2018; Wu et al., 2020). However, machine 
learning models are likely to solve similar issues due to not requiring any 
assumptions (Rezaie-Balf et al., 2017; Wang et al., 2017; Wu et al., 
2020). Current machine learning models include multilayer perceptron 
(Traore et al., 2016), long short-term memory (Majhi et al., 2019), radial 
basis function neural networks (Petković et al., 2016), multilayer arti-
ficial neural networks (Keskin and Terzi, 2006; Jain et al., 2008; Wu 
et al., 2020), extreme learning machine (Abdullah et al., 2015; Feng 
et al., 2016; Gocic et al., 2016; Wu et al., 2020; Zhu et al., 2020), genetic 
programming (Shiri et al., 2012), self-organizing map neural networks 
(Malik et al., 2018), support vector machine (SVM) (Wen et al., 2015), 
and random forest (Feng et al., 2017). As the structure and parameters of 
machine learning models also affect computing accuracy (Gocić et al., 
2015; Wang et al., 2019; Wu et al., 2020), machine learning models 
hybridized with swarm intelligence algorithms (e.g., the whale optimi-
zation algorithm, genetic algorithm, particle swarm optimization algo-
rithm, firefly algorithm, and quantum-performed particle swarm 
optimization algorithm) are often used to overcome these shortcomings, 
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allowing them to be the best choice for estimating ET (Gocić et al., 2015; 
Petković et al., 2016; Yin et al., 2017; Moazenzadeh et al., 2018; Wu 
et al., 2020; Zhu et al., 2020). 

ET is largely dependent on precipitation, air temperature, wind 
speed, barometric pressure, airflow, and humidity; and these parameters 
are usually influenced by the local landform and geomorphological 
traits (Li et al., 2016; Feng et al., 2016; Moazenzadeh et al., 2018; Wu 
et al., 2020). Furthermore, ET is also determined by the soil moisture 
and vegetation traits (Eagleson, 2002; Rodríguez-Iturbe and Porporato, 
2004; Li et al., 2018). As above, the factors affecting ET are complex, and 
the collected ET time series are highly nonlinear and exhibit seasonal 
irregularity (Pammar and Deka, 2017). Given this situation, only using a 
machine learning model may not be able to handle nonlinear data when 
preprocessing of the collected data is not performed (Gocić et al., 2015; 
Pammar and Deka, 2017; Rezaie-Balf et al., 2019). In this context, ma-
chine learning models coupled with the discrete wavelet transform 
(DWT) (Gocić et al., 2015; Pammar and Deka, 2017) or ensemble 
empirical mode decomposition (EEMD) (Rezaie-Balf et al., 2019) to 
estimate ET using only historical ET time series were proposed (Gocić 
et al., 2015; Pammar and Deka, 2017; Rezaie-Balf et al., 2019). Never-
theless, wavelet technology has the disadvantage of sensitivity to the 

selection of thresholds, and EEMD suffers from an intrinsic drawback of 
endpoint effects (Dragomiretskiy and Zosso, 2014; Zuo et al., 2020). 
Variational mode decomposition (VMD) is a more robust and self- 
adaptive data preprocessing method than DWT and EEMD, and thus 
VMD is widely used to extract effective features from nonlinear and 
nonstationary time series Dragomiretskiy and Zosso, 2014; Zuo 
et al.,2020); however, few studies use VMD to extract the main variation 
features from the observed ET time series for more precise estimation. 

Due to the highly nonlinear physical process and intrinsic complexity 
of ET, combining multiple methods to establish a hybrid estimation 
model without adequate meteorological data remains highly desirable 
(Feng et al., 2016; Wu et al., 2020; Zhu et al., 2020). In this paper, we 
proposed a series of hybrid models based on data preprocessing tech-
niques, including the DWT, EEMD and VMD, the grey wolf optimizer 
(GWO) algorithm (Mirjalili et al., 2014), and the SVM, to estimate ET 
using the existing observed ET from January 1991 to December 2018 in 
the southeastern margins of the Tengger Desert, China. First, the DWT, 
EEMD, and VMD were employed to extract the basic characteristics from 
nonstationary ET time series separately in order to counterbalance the 
weakness of directly estimating ET, which may lead to large errors. The 
best data preprocessing technique was chosen according to the signal-to- 

Fig. 1. The geographical of the study area. (A) The location of Ningxia Hui Autonomous Region. (B) The aerial map of the Tengger Desert. (C) The aerial map of 
study area and the observation location of ET. 
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noise ratio (SNR) and root mean squared error (RMSE). Second, the 
GWO algorithm was employed to optimize the penalty coefficient and 
radius of the kernel function of the SVM to overcome the sensitivity of 
parameter selection. Third, the hybrid VMD-GWO-SVM, EEMD-GWO- 
SVM, DWT-GWO-SVM, VMD-SVM, EEMD-SVM, DWT-SVM, and GWO- 
SVM models and single SVM model were used to estimate the monthly 
ET. Finally, the computing performances of the proposed models were 
compared using the evaluation criteria of the Nash–Sutcliffe coefficient 
of efficiency (NSCE), Pearson’s correlation coefficient (PCC), the mean 
absolute percentage error (MAPE), the normalized mean squared error 
(NMSE), the mean absolute error (MAE) and the RMSE. The most suit-
able estimation model was selected from the proposed models based on 
the comparison results. Compared to previous studies (Gocić et al., 
2015; Pammar and Deka, 2017; Moazenzadeh et al., 2018; Rezaie-Balf 
et al., 2019; Wu et al., 2020), the aims of this study are to establish a 
novel hybrid estimation model based on VMD, GWO and the SVM. This 
proposed model is able to simultaneously account for parameter opti-
mization and data preprocessing, achieve better computing performance 
than the other proposed hybrid and single SVM models, and can be 
applied to estimate ET without adequate meteorological parameters. 

2. Materials and methods 

2.1. 1. Study area and data collection 

The study site is located in the Shapotou region of the southeastern 
margins of the Tengger Desert (37◦32′ N, 105◦02′ E), Ningxia Hui 
Autonomous Region, China. The average annual precipitation was 
180.57 mm, and the annual evaporation was 2520.4 mm. Soil evapo-
ration is the main way of water loss while precipitation is the main 
source of soil water recharge in the southeastern margins of the Tengger 
Desert, where the underground water level exceeds 60 m deep. The 
location of the study area is illustrated in Fig. 1. 

The monthly ET data were collected from the meteorological moni-
toring data from 1991 to 2018 by Shapotou Desert Research and 
Experiment Station, Chinese Academy of Sciences. Statistical de-
scriptions of collected ET data at different time scales from 1991 to 2018 
are shown in Fig. 2. Using K-means clustering, the ETs in 1992, 2003, 
and from 2013 to 2018 were grouped into one category; and the other 
ETs were grouped into another category (Fig. 2A). Furthermore, the 
annual ET time series had a significantly decreasing trend and highly 
nonlinear characteristics (Fig. 2B), and the ET from April to August 
differed from that during other months (Fig. 2C). April - August is just in 
the growing season (from April to September) (Fig. 2D). In addition, the 
principles of K-means clustering and linear trend analysis are mentioned 
in the Appendix. 

2.2. Theoretical model and calculation method 

In this study, data preprocessing techniques, including the DWT, 
EEMD and VMD, were used to eliminate chaotic noise and extract 
effective features for collected ET data (the principles of the DWT, 
EEMD, and VMD are mentioned in the Appendix; and the flowcharts of 
the DWT, EEMD and VMD are shown in Fig. 3A). In the data pre-
processing, the single ET time series was decomposed into multiple 
additive signals, and a few signals were chosen from these. To obtain the 
best data preprocessing performance, the SNR and RMSE were chosen as 
the criteria to determine the optimal parameters of each data pre-
processing technique and evaluate the denoising performance of the 
DWT, EEMD and VMD (Rezaie-Balf et al., 2019; Zuo et al., 2020). 

The DWT was used with Daubechies wavelet order 4 (db4) because 
db4 has only three wavelet filter coefficients with exact reconstruction 
possibilities (Gocić et al., 2015; Pammar and Deka, 2017). To obtain the 
decomposed wavelet coefficients, db4 with levels 1 to 7 was tested, and 
the SNR and RMSE were selected as the benchmarks to determine the 
optimal decomposition level. As for EEMD, the number of intrinsic mode 

Fig. 2. The statistical descriptions of collected ET data at different time scales from 1991 to 2018. (A) The dendrogram of k-means clustering for annual ET. (B) The 
linear trend of annual ET from 1991 to 2018. (C) The dendrogram of monthly ET. (D) The average annual cycle of ET. 
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functions (IMFs) was 8, which was determined by [log2(n)], where [⋅]was 
the least integer function and nwas the length of the input data (Wu and 
Huang, 2009). The final standard deviation of error εne was controlled 
with εne = ε/

̅̅̅̅̅̅̅
NE

√
, where the number of ensemble membersNE = 500 

and the amplitudes of the added white noiseε = 0.1, 0.15, 0.2, 0.25, 0.3, 

0.35, and 0.4, respectively. The optimal amplitude of the added white 
noise and the outputs of EEMD were determined according to the 
maximum SNR and the minimum RMSE. The parameters of VMD areα =
0.05 andτ = 0, where α is the balancing parameter of the data fidelity 
constraint and τ is the time step of the dual ascent (Dragomiretskiy and 

Fig. 3. The flowchart of the proposed models. (A) The flowchart of DWT, EEMD and VMD. (B) The schematic of the longitudinal data selection method. (C) The 
flowchart of GWO-SVM. 
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Zosso, 2014). The maximum number of modes Kmaxwas obtained if the 
SNR and RMSE stopped changing (Zuo et al., 2020), the reasonable pre- 
estimation of K was Kmax − 1, and the KthIMF was discarded as chaotic 
noise. The new time series generated by the DWT, EEMD and VMD were 
fed to the machine learning model to estimate the ET. 

The SVM is a widely used machine learning model that can effi-
ciently adapt to the nonlinear characteristics of ET change compared to 
statistical models and artificial neural networks (Feng et al., 2016; 
Mehdizadeh et al., 2017; Fan et al., 2018). The main description of the 
SVM is provided in the Appendix, and the longitudinal data selection 
method was adopted to determine the data structure of the integrated 
method (Zhao et al., 2019; Fu et al., 2020; Dong et al., 2021). A sche-
matic of the longitudinal data selection method with input dimension 
d = 3 is shown in Fig. 3B. The optimal input dimension of each proposed 
model was determined by trial and error. The dataset from January 1991 
to December 2010 (which had a total of 240 records or 72% of the entire 
dataset) was used as the training set, and the dataset from January 2011 
to December 2018 (which had a total of 96 records or 28% of the entire 
dataset) was used as the testing set. The ratio between the training and 
testing sets was approximately 7:2. The output dimensions of all the 
proposed estimation models were 1, namely, 1 month ahead estimation 
was performed. The output vector consisting of the 241st through 336th 
elements of each proposed model was regarded as the estimation result 
(Fig. 3B). Before training the network, the input and output data were 
normalized using the min–max normalization method, which is defined 
as 

x′

i =
xi − ximin

ximax − ximin
, i = 1, 2,⋯, n,

where x′

i,xi,ximin, and ximax are the normalized value, observed value, 
minimum value, and maximum value, respectively. 

It is well known that the SVM is characterized by employing the 

kernel trick to convert the lower-dimensional input data to a higher- 
dimensional feature space implicitly and perform a linear regression 
in this feature space (Vapnik, 1998; Pammar and Deka, 2017; Rezaie- 
Balf et al., 2019). In the simulation processes, the radial basis function 
(RBF) was chosen as the kernel function of the SVM (Pammar and Deka, 
2017), and the GWO algorithm was adopted to optimize the penalty -
coefficient and the radius of the kernel function. Descriptions of the 
GWO algorithm are provided in the Appendix, and the flowchart of the 
GWO-SVM is shown in Fig. 3C. The SVM hybridized with the GWO al-
gorithm is denoted as GWO-SVM, and VMD combined with the GWO- 
SVM is denoted as the VMD-GWO-SVM. The construction processes of 
the other hybrid EEMD-GWO-SVM, DWT-GWO-SVM, VMD-SVM, EEMD- 
SVM, DWT-SVM and GWO-SVM models are similar to that of the VMD- 
GWO-SVM. The MATLAB software (R2019a, Math Works, USA) was 
utilized to conduct all computing processes. 

The flowchart of the proposed models is shown in Fig. 3, and the 
main steps of the proposed models are as follows: 

Step 1. Data preprocessing techniques, including the DWT, EEMD 
and VMD, were used to decompose the monthly ET time series. 

Step 2. The SNR and RMSE were used to determine the optimal pa-
rameters of the DWT, EEMD and VMD; and the best data preprocessing 
technique was chosen according to the SNR and RMSE. 

Step 3. The collected ET time series and the outputs of the DWT, 
EEMD and VMD were divided into a training set and a testing set, 
respectively. The longitudinal data selection method was used to 
determine the input dimensions of the SVM. 

Step 4. The GWO algorithm was used to optimize the hyper-
parameters of the SVM. 

Step 5. Hybrid VMD-GWO-SVM, EEMD-GWO-SVM, DWT-GWO- 
SVM, VMD-SVM, EEMD-SVM, DWT-SVM, and GWO-SVM models and 
a single SVM model were employed to estimate the monthly ET. 

Step 6. The results of the proposed models were compared based on 

Table 1 
Evaluation metrics.  

Metric Definition Equation 

NSCE Nash-Sutcliffe coefficient of efficiency 
NSCE = 1 −

∑n
i=1

(

xi − x̂i

)2
/
∑n

i=1(xi − x)2   

PCC Pearson’s correlation coefficient 
PCC =

∑n
i=1(xi − x)(x̂i − x)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(x̂i − x)2

√

MAPE Mean absolute percentage error 
MAPE =

1
n
∑n

i=1

⃒
⃒
⃒
⃒
⃒
⃒

xi − x̂i

xi

⃒
⃒
⃒
⃒
⃒
⃒
× 100%   

NMSE Normalized mean squared error 
NMSE =

1
n
∑n

i=1

⎛

⎝xi − x̂i

xi

⎞

⎠

2    

RMSE Root mean squared error 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1

(

xi − x̂i

)2
√

MAE Mean absolute error 
MAE =

1
n
∑n

i=1

⃒
⃒
⃒
⃒xi − x̂i

⃒
⃒
⃒
⃒

SNR Signal noise ratio 
SNR = 10log10

(
∑n

i=1x2
i /
∑n

i=1

(

xi − x̂i

)2
)

Note: xi denotes the observed data and x̂i denotes the estimated data. 

Table 2 
The denoising performance of the DWT, EEMD and VMD.  

Method Parameter SNR RMSE Method Parameter SNR RMSE Method Parameter SNR RMSE 

DWT db4 level1  40.8201  2.2127 EEMD  ε = 0.1   26.3839  11.6609 VMD K = 3  28.846  8.7827 
db4 level2  38.7179  2.8186  ε = 0.15   22.7863  17.6445 K = 4  40.3406  2.3383 
db4 level3  37.8902  3.1004  ε = 0.2   24.2796  14.8575 K = 5  42.6451  1.7934 
db4 level4  37.5044  3.2412  ε = 0.25   23.6078  16.0522 K = 6  42.6616  1.79 
db4 level5  37.2924  3.3213  ε = 0.3   24.2422  14.9217 K = 7  42.6616  1.79 
db4 level6  37.1721  3.3676  ε = 0.35   24.2386  14.9277 K = 8  42.6616  1.79 
db4 level7  37.1362  3.3815  ε = 0.4   24.8232  13.9562 K = 9  42.6616  1.79  
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the evaluation criteria of the NSCE, PCC, MAPE, NMSE, RMSE and MAE. 
The best hybrid model was chosen using the evaluation results. 

2.3. Model performance assessment 

The accuracy of the proposed models was evaluated with multiple 
evaluation indexes (Majhi et al., 2019; Wu et al., 2020; Dong et al., 
2021); and the evaluation indexes of the SNR, NSCE, PCC, MAPE, NMSE, 
RMSE and MAE are defined in Table 1. Due to the different emphases of 

the evaluation index, the evaluation directions of different evaluation 
indexes may be inconsistent. E.g., the NSCE and PCC are dimensionless 
metrics with the same evaluation direction, implying that the higher the 
computing accuracy is, the closer the evaluation index is to 1. Further-
more, the MAPE, NMSE, RMSE, and MAE have the same evaluation 
direction, implying that the smaller their values are, the higher the 
computing accuracy of the proposed model. Therefore, the NSCE and 
PCC can be regarded as positive indicators; and the MAPE, NMSE, 
RMSE, and MAE can be regarded as negative indicators. If the results of 

Fig. 4. The data preprocesses results of DWT, EEMD, and VMD. (A) The observed ET and the results of DWT. (B) The observed ET and the results of DWT. (C) The 
observed ET and the results of VMD. 
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the different evaluation indexes with the same evaluation direction are 
found to be inconsistent with each other, the NSCE and MAPE will be 
selected as the final benchmarks. 

3. Results and discussion 

3.1. Data preprocessing performance evaluation 

Table 2 shows that the maximum SNR and minimum RMSE of the 
DWT were 40.8201 and 2.2127, respectively, suggesting that the best 
level of db4 was 1. As for EEMD, Table 2 indicates that the maximum 
SNR and minimum RMSE were 26. 3839 and 11.6609, suggesting that 
the best amplitude of the added white noise is ε = 0.1. In VMD, the 
reasonable pre-estimation of the number of modes is 5 since the SNR and 
RMSE remain unchanged for K⩾6. The observed and generated ET time 
series of the DWT, EEMD and VMD with the optimal parameters are 
illustrated in Fig. 4. 

Table 2 and Fig. 4 show that the DWT displayed better denoising 
performance than EEMD from the overall or local point of view. 
Nevertheless, this did not mean that the denoising performance of 

EEMD was generally inferior to that of the DWT. This occurred because 
the values at the starting and end points of the monthly ET time series 
were not necessarily extreme values, and the upper and lower envel-
opments experienced significant fluctuations at the starting and end 
points, which significantly distorted the decomposition result and led to 
an endpoint effect. Compared with the DWT, the SNR of VMD with K =

5 was observed to increase from 40.8201 to 42.6451, and the RMSE 
decreased from 2.2127 to 1.7934 (Table 2), suggesting that the data 
preprocessing method of VMD performed better than that of the DWT. In 
summary, the denoising performance of VMD was the best among those 
data preprocessing techniques. 

As the chaotic noise in the observed ET time series was unknown, the 
PCC between the denoised ET time series and the residuals of each data 
preprocessing technique was computed to demonstrate the existence of 
chaotic noise in the collected ET time series; and the results were 
0.1293, − 0.04 and 0.0202, suggesting that our collected ET time series 
were disturbed by some types of noise. Eliminating chaotic noise from 
the observed datasets would be necessary for more credible estimation 
results. 

Table 3 
The parameters set for each proposed model found during training that was then used for testing.   

Parameters SVM DWT-SVM EEMD-SVM VMD-SVM GWO-SVM DWT-GWO-SVM EEMD-GWO-SVM VMD-GWO-SVM 

d =

2  
C 1 1 1 1 55.8789 100 100  4.557 
G 0.5 0.5 0.5 0.5 1.8911 1.2844 5.4948  8.2213 
MAPE 35.29% 34.99% 35.38% 34.93% 32.42% 31.80% 30.59%  31.23% 

d =

3  
C 1 1 1 1 100 16.0417 14.7823  86.0928 
G 0.3333 0.3333 0.3333 0.3333 0.6406 1.5487 0.2564  0.7648 
MAPE 28.42% 27.94% 28.65% 27.46% 24.73% 25.22% 26.47%  23.21% 

d =

4  
C 1 1 1 1 55.4135 68.9681 94.2325  72.5743 
G 0.25 0.25 0.25 0.25 0.7248 1.2431 0.7314  0.6521 
MAPE 31.65% 31.73% 31.32% 31.31% 24.14% 23.69% 26.23%  23.35% 

d =

5  
C 1 1 1 1 11.9326 89.3303 22.1642  11.617 
G 0.2 0.2 0.2 0.2 0.9692 0.01162 0.01  1.2953 
MAPE 33.25% 32.66% 34.15% 33.15% 31.58% 31.89% 35.59%  32.06% 

d =

6  
C 1 1 1 1 43.7784 5.0003 31.7629  52.0301 
G 0.1667 0.1667 0.1667 0.1667 0.42639 1.7186 2.5942  0.3707 
MAPE 35.39% 34.74% 36.43% 35.26% 30.46% 34.07% 34.00%  31.02% 

Note: C denotes the penalty coefficient and G denotes the radius of the kernel function, where G = 0.5σ− 2. 

Fig. 5. The estimating results of proposed model. (A) The estimating result of SVM; (B)-(H) The estimating results of hybrid models.  
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3.2. Evaluation of the proposed models 

The proposed models were used to estimate the monthly ET, and the 
parameter set for each model found during training that was then used 
for testing is shown in Table 3. The MAPE was chosen as the final 
benchmark among all the evaluation indicators to determine the optimal 
parameters of each proposed model. The optimal input dimensions of 

the SVM, DWT-SVM, EEMD-SVM, VMD-SVM, and VMD-GWO-SVM were 
3; and the optimal input dimensions of the GWO-SVM, DWT-GWO-SVM 
and EEMD-GWO-SVM were 4, which were obtained by comparing the 
MAPE of each proposed model with different input dimensions 
(Table 3). The penalty coefficient and the radius of the kernel function of 
the SVM, DWT-SVM, EEMD-SVM and VMD-SVM were 1 and 1/d, 
respectively. The purpose of choosing the hyperparameters of the SVM 

Fig. 6. The estimating performance of proposed models in the training stage.  
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as the default values was to conveniently compare the effects of data 
preprocessing and parameter optimization on the estimation perfor-
mance. As for the models integrated with the GWO algorithm, the 
number of search agents was 20, and the range of the penalty coefficient 
and the radius of the kernel function were [0.01, 100]. For each fixed 
input dimension d, includingd = 2, 3, 4, 5, and 6, the optimal hyper-
parameters of the SVM and the estimated results of the hybrid GWO- 
SVM, DWT-GWO-SVM, EEMD-GWO-SVM and VMD-GWO-SVM models 

were chosen according to the minimum MAPE from 5 replications. 
Table 3 shows that the parameters used for model building influ-

enced each other, and varying the value of one parameter inevitably 
resulted in a change in the other parameters. The estimation accuracy of 
the proposed models with different input dimensions had significant 
differences regardless of whether the hyperparameters of the SVM were 
fixed or optimized. For each fixed input dimension, the effects of data 
preprocessing and parameter optimization on the estimation accuracy 

Fig. 7. The estimating performance of proposed models in the testing stage.  
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were significant. As shown in Table 3, the MAPEs of the hybrid models 
simultaneously accounted for parameter optimization, and the data 
preprocessing decreased to varying degrees when compared with the 
single SVM model, implying that the estimation accuracy was signifi-
cantly improved by combining the data preprocessing techniques and 
GWO algorithms with the SVM. 

The results of the proposed models with the optimal parameters are 
shown in Fig. 5. Fig. 5 shows that all the proposed models could be 
employed to estimate the monthly ET with high computing accuracy by 
using only historical ET time series. The estimated values were on par 
with the observed middle range ET values, which constituted the ma-
jority of dataset points. The extremely high and low values were over-
estimated, especially in the testing stage. 

In order to illustrate the practicability and effectiveness of the pro-
posed models, scatter plots of the computing results and observed values 
in the training and testing stages are shown in Figs. 6 and 7, respectively. 
The estimation performance of any model was better in training than in 
testing, and the scatter diagrams of the observed and estimated monthly 
ET values in the training stage show that the slopes of the fitted lines 
were all less than 1 except for that of the hybrid DWT-GWO-SVM model 
(Fig. 6). Furthermore, the regression coefficients between the observed 
and estimated values were all less than 1 in the testing stage (Fig. 7), 
indicating that all the proposed models somewhat overestimated the 
monthly ET. Overall, the hybrid GWO-SVM, DWT-GWO-SVM, EEMD- 
GWO-SVM, and VMD-GWO-SVM models with the optimal hyper-
parameters showed better performance than the hybrid DWT-SVM, 
EEMD-SVM, VMD-SVM and SVM models with default hyper-
parameters (Figs. 6 and 7). 

The computing accuracies of the proposed models were assessed 
both in the training and testing stages; and the results of evaluation 
indexes, including NSCE, PCC, MAPE, NMSE, RMSE and MAE, are 
illustrated in Table 4. The average performance indexes of the hybrid 
GWO-SVM, DWT-GWO-SVM, EEMD-GWO-SVM and VMD-GWO-SVM 
models with the optimal input dimensions were obtained via 5 repli-
cations because the outputs of the models integrated with GWO were 
random. The results of different evaluation indexes with the same 
evaluation direction were found to be inconsistent with each other on 
certain occasions. To avoid confusion in the evaluation processes caused 
by multiple evaluation indexes, the NSCE and MAPE were chosen as the 
main benchmarks. 

Table 4 shows that the SVM has its own advantages in the monthly 
ET computing procedure. However, the computing accuracy of the SVM 
should be improved by choosing the best data preprocessing technique. 
As shown in Table 4, the computing performance of the hybrid DWT- 
SVM and VMD-SVM models was better than that of the SVM, suggest-
ing that both the DWT and VMD effectively extracted the basic char-
acteristics from nonstationary ET time series and improved the 
calculation accuracy. The estimation performance of the hybrid EEMD- 
SVM model was not found to be improved because the output of EEMD 

was distorted to some extent due to endpoint effects. This indicates that 
relying on one data preprocessing technique alone did not necessarily 
counterbalance the weakness of directly estimating ET, leading to large 
errors. Overall, the computing performance of the hybrid VMD-SVM 
model was better than those of the DWT-SVM, EEMD-SVM and SVM 
because the MAPE was observed to decrease from 28.42% to 27.46% in 
the testing stage. 

Table 4 shows that the hybrid GWO-SVM model exhibited higher 
estimation accuracy than the hybrid DWT-SVM, EEMD-SVM, and VMD- 
SVM and single SVM models. The MAPE decreased from 28.42% to 
24.56%, suggesting that the SVM hybridized with the GWO algorithm 
effectively improved the estimation performance. The optimization of 
parameters was crucially important to obtain more precise estimation 
results. 

Compared with the hybrid GWO-SVM model, the estimation per-
formance of the hybrid EEMD-GWO-SVM model was not better than that 
of the hybrid GWO-SVM model due to the endpoint effects of EEMD. 
Although there is a systematic overestimation in each proposed esti-
mation model, the estimation performance of the DWT-GWO-SVM and 
VMD-GWO-SVM were better than that of the GWO-SVM. The positive 
indicators increased and the negative indicators decreased to var-
ying degrees. Compared with the hybrid DWT-GWO-SVM model, the 
hybrid VMD-GWO-SVM model exhibited higher computing accuracy 
than the hybrid DWT-GWO-SVM model. The NSCE increased from 
0.8593 to 0.8754 and the MAPE decreased from 23.77% to 23.22% in 
the testing stage, suggesting that choosing the best data preprocessing 
technique and optimal parameters by trial and error were crucially 
important to obtain the optimal estimation results. The best estimation 
model was obtained only by fully considering the factors that affected 
the accuracy of the estimation results. 

Overall, the positive and negative indicators in Table 4 showed that 
the computing performance of the hybrid VMD-GWO-SVM model was 
the best among the proposed models. The NSCE was observed to in-
crease from 0.8588 to 0.8754 and the MAPE was found to decrease from 
28.42% to 23.22% in the testing stage. Thus, we suggest that the hybrid 
VMD-GWO-SVM model will be the best choice for estimating ET in the 
absence of regional meteorological monitoring. 

4. Conclusions 

This paper presents an application of the SVM hybridized with the 
GWO algorithm and data preprocessing methods, including the DWT, 
EEMD and VMD, for accurately estimating the monthly ET using only 
historical ET time series. Different from the existing ET estimation 
models, the proposed estimation model simultaneously conducts 
parameter optimization and the selection of data preprocessing tech-
niques and requires fewer meteorological parameters for observation. 
Numerical simulation results showed that the hybrid VMD-GWO-SVM 
model exhibited superior computational performance over other 

Table 4 
The computing performance of proposed models in training and testing stages with the optimal parameters.  

Estimating model Training Testing 

NSCE PCC MAPE NMSE RMSE MAE NSCE PCC MAPE NMSE RMSE MAE 

SVM  0.8700  0.9328  18.89%  0.0909  45.5818  33.9835  0.8588  0.9369  28.42%  0.1740  40.3111  33.4904 
DWT-SVM  0.8775  0.9368  18.23%  0.0850  44.2475  32.8495  0.8633  0.9403  27.94%  0.1665  39.6668  32.9807 
EEMD-SVM  0.8671  0.9312  18.99%  0.0984  46.0874  34.7602  0.8596  0.9356  28.65%  0.1779  40.1962  33.3937 
VMD-SVM  0.8705  0.9331  19.10%  0.0937  45.4876  34.0165  0.8591  0.9375  27.46%  0.1760  40.2667  33.4178 
GWO-SVM  0.9254  0.9621  15.47%  0.0474  34.542  25.3157  0.8575  0.9416  24.56%  0.1303  40.4901  32.7588 
DWT-GWO-SVM  0.9479  0.9737  13.76%  0.0346  28.8268  22.3948  0.8593  0.9371  23.77%  0.1021  40.2469  32.6383 
EEMD-GWO-SVM  0.9344  0.9667  15.77%  0.0533  32.2793  24.7613  0.8477  0.9413  26.67%  0.1472  41.866  34.7280 
VMD-GWO-SVM  0.8923  0.9448  16.98%  0.0544  41.4806  29.7499  0.8754  0.9450  23.22%  0.1122  37.8756  30.2081 

Note: The performance indexes average of the models integrated with GWO are marked in bold. 
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methods, and thus the method could be highly recommended for esti-
mating ET without adequate meteorological parameters. 
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