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suggestions to achieve a trade-off between accuracy and cost 
for above-ground biomass estimation using field work.
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Introduction

Forests sequester and store large amounts of carbon and play 
an important role in the carbon cycle (Foley et al. 2005). 
Above-ground biomass (AGB), which is a crucial indicator 
of the carbon storage capacity of forest ecosystems (Bonan 
et al. 1992), is an important parameter for evaluating car-
bon sinks and analyzing matter and energy flow in forest 
ecosystems (Alongi et al. 2003). However, many sources of 
uncertainty can affect forest biomass prediction (Temesgen 
et al. 2015). One of the challenges confronting scientists is 
the estimation of uncertainties in forest biomass prediction 
(Wang et al. 2009).

The traditional method to estimate forest AGB from the 
individual tree scale to larger scales involves three steps (van 
Breugel et al. 2011): (1) models are used to predict the AGB 
of individual trees in forest inventory plots; (2) AGB at the 
plot level is estimated by summing the AGB of all trees; and 
(3) Forest AGB at larger spatial scales is estimated by aver-
aging the AGB of all plots. Generally, above-ground bio-
mass of individual trees can be obtained by harvesting trees 
or by predicting the AGB using models. The first method is 
costly, time-consuming and destructive and cannot be used 
at a large scale. In the second method, AGB models are 
established based on allometric relationships between tree 
AGB and other variables, such as diameter at breast height 
(DBH) and height (H). Many countries have established 
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forest inventory systems and have obtained National For-
est Inventory (NFI) data at regular intervals. NFI data, in 
conjunction with AGB models, can be used to predict AGB 
of trees at the plot level and the data can be used to esti-
mate AGB at larger scales. Therefore, this method has been 
widely used to estimate the forest above-ground biomass.

Traditional methods to estimate forest biomass have three 
types of uncertainties (Gertner 1990): uncertainty associ-
ated with measurement error, model-related uncertainty, and 
sampling-related uncertainty. Measurement error occur due 
to multiple factors, such as recording errors (in reading the 
tape or recording), tree form, instrument accuracy, measure-
ment methods, measurement skills (McRoberts et al. 1994; 
Keller et al. 2001; Elzinga et al. 2005; Butt et al. 2013). 
Errors associated with NFI data and the calibration data set 
(CDS) can affect biomass estimation. Measurement error 
in CDS has a greater impact on AGB estimation (Qin et al. 
2019).

Model-related uncertainty is associated with the precision 
of the model predictions that depend on response variables 
(such as volume, biomass), which are difficult to measure 
(Petersson et al. 2012). The accuracy of a biomass model 
is affected by the sample size of the calibration data, the 
regression methods and the type of model (Sileshi 2014). 
Model-related uncertainty is attributed to four primary 
sources: the values of the independent variables, the choice 
of the allometric model, residual variability, and model 
parameter estimates (McRoberts and Westfall 2013).

Sampling-related uncertainty occurs with large forest area 
biomass estimates when inventory data are used over a wide 
geographic area. Sampling-related uncertainty is affected by 
the plot size (Mauya et al. 2015), the sample size of the plots 
(Guo et al. 2016), and heterogeneity of the landscape (Salk 
et al. 2013). Studies have shown that increasing the sample 
size and the sample area can reduce the uncertainty caused 
by sampling variability (Mauya et al. 2015; Guo et al. 2016). 
Reducing the uncertainty in forest AGB estimation requires 
an understanding of uncertainty at different levels. Sev-
eral researchers have predicted the effect of each different 
uncertainty sources on forest biomass estimation. Qin et al. 
(2019) quantified the effect of uncertainty due to measure-
ment error and found that the measurement error in the CDS 
had a larger impact on AGB estimation. Wayson et al. (2015) 
used a pseudo-data approach to generate the potential distri-
bution of the model parameters and found that this method 
could generate potential error structures that were used to 
propagate errors. McRoberts et al. (2014) used Monte Carlo 
simulation approaches to estimate the model uncertainty 
caused by residual variability and the model parameters, 
and found that Monte Carlo simulation approaches worked 
well in estimating the uncertainty in forest prediction. Fu 
et al. (2017) used a new method to predict sampling-related 
and model-related uncertainty; it was found that the model 

uncertainty was larger than the sampling-related uncertainty. 
Molto et al. (2013) compared errors associated with model 
type and the independent variables at the tree and plot levels 
and observed that the largest source of uncertainty in AGB 
estimates was the biomass model. McRoberts et al (2016) 
estimated the uncertainty of six uncertainty sources. These 
studies indicate that uncertainty in forest AGB estimation 
has been widely investigated. However, uncertainties in 
AGB estimation require further in-depth study, particularly 
in different countries because the results from one country 
may not be applicable to other countries due to different 
measurement instruments, input variables, and methods 
(Berger et al. 2014). Relatively little information is available 
on NFI data in China. In addition, many biomass models 
can be used to describe the relationships between single-
tree AGB and tree variables. It is necessary to determine 
which model type has the smallest uncertainty and which 
uncertainty type contributes the most to the overall error of 
the models.

In this study, we used Monte Carlo simulation (McRob-
erts et al. 2014, 2016) and the bootstrap resampling method 
to estimate uncertainty in AGB estimation using Chinese 
NFI data. The uncertainties associated with the measure-
ment error of the variables (DBH, H), the residual variabil-
ity, the variance in the model parameter estimates, and the 
sampling variability of the NFI data are estimated for five 
models. The objectives are: (1) to determine which of the 
four sources of uncertainty has the largest influence on the 
precision of AGB estimation for the different models; and, 
(2) to evaluate the performance of these five models for 
large-area AGB estimation when considering four sources 
of uncertainty.

Material and methods

Study area

This study was carried out in Longquan County located 
in eastern of China, southwestern of Zhejiang Province 
(Fig. 1) and covers an area of 3059 ha. It is located in the 
subtropical zone with a warm and humid climate. The aver-
age annual temperature is 17.6 °C, and annual precipitation 
is 1645.4 mm. Mountainous and hilly areas dominate the 
county and cover for more than 97% of the total area. Forest 
types include coniferous forests, evergreen broad-leaf for-
ests, and deciduous and evergreen broad-leaf mixed forests.

National forest inventory data

NFI data collected in 2009 was used to estimate the mean 
AGB per hectare. The data set contained 101 permanent 
plots (9886 sample trees) systematically distributed using a 
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4 km × 6 km grid (Fig. 1). The plot size was 28.3 m × 28.3 m 
(800 m2). In each plot, trees with a DBH ˃ 5 cm were meas-
ured. The frequency histogram of the DBH of sample trees 
at 2 cm intervals is shown in Fig. 2. Because measurements 
of H are tedious and expensive, the NFI data does not con-
tain information on height. In this study, the height-diameter 
model developed by Li and Fa (2011) was used to predict the 
H of Quercus, Cunninghamia lanceolate (Lamb.) Hook and 
Pinus massoniana Lamb. The calibration data were obtained 
from the NFI data, which were collected throughout China. 
Height was divided into nine levels according to different 
sites, and used the Chapman–Richard function was used 
to establish the height–diameter model. This method pro-
vides more accuracy of height prediction and can be applied 
throughout China. For the other broad-leaved species, we 
use the model of height developed by Shen (2002). This 

model was based on 1356 sample trees and used the Chap-
man–Richard function. The data set contained more than 10 
common subtropical broad-leaved tree species and included 
a range of possible variations in average stand diameter and 
average height. Although, our study area was different from 
that of Shen (2002). But both areas are located in the mid-
subtropics and are dominated by mountainous and hilly ter-
rain. This model was used to predict the H of broad-leaved 
species.

Calibration data

A total of 363 harvested trees were used to develop the AGB 
model. This dataset was collected from 13 counties across a 
large geographical area in Zhejiang Province and contained 
21 common tree species. In these sites, 363 NFI plots were 
selected (146 Cunninghamia lanceolate plots, 80 Pinus mas-
soniana plots, 173 broad-leaved tree plots) and one average 
bole was selected in each plot. According to the average 
boles, the harvested trees were selected outside the plots. 
Figure 3 shows the frequency histogram of each diameter 
class and the relationship between the AGB of harvest trees 
and DBH.

After sample trees were felled at ground level, the tree 
species, DBH and H were recorded. The stems were cut at 
2-m intervals if the H ≥ 10 m, and cut at 1-m intervals if the 
H < 10 m. Branches and leaves were divided into four lev-
els: ≤ 1 cm, 1.1–2.0 cm, 2.1–3.0 cm and > 3 cm. One standard 
branch was selected from each level, and weight of the branch 
and foliage were determined. Fresh weights of bole, bark, 
branches, and foliage were measured in the field. The samples 
of each component were oven-dried until their weight stabi-
lized. The ratio of dry mass to fresh mass was used to predict 
the biomass of each component, and the total AGB of each 

Fig. 1   Location of the study area and the sampling plots

Fig. 2   Frequency histogram of each diameter class for the National 
Forest Inventory data

Fig. 3   Frequency histogram of each diameter class and the relation-
ship between DBH and the AGB of harvested trees for the calibration 
data
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harvested tree was estimated by summing all components. As 
shown in Figs. 2 and 3, the maximum DBH of the CDS is 
smaller than that of the NFI data. However, only 39 trees in 
the NFI data are outside of the DBH range of the CDS. Thus, 
the calibration data are representative the NFI data.

Measurement error data

We performed a double-blind re-measurement of 276 tree 
samples to estimate the measurement error. The sample size 
of each species group is determined according to the NFI data, 
and confirmed that DBH distribution was similar to the DBH 
distribution of the NFI data. The detailed description of this 
data set is available in Qin et al. (2019). According to the regu-
lations for continuous NFI in China, the measurement error 
of H should not exceed 5%. In this study, it was assumed that 
the measurement error was followed a uniform distribution 
�H − �(−0.05H, 0.05H) ; the measurement error was randomly 
selected from this range. Picard et al. (2015) assumed that the 
measurement error of DBH followed a uniform distribution 
due to the lack of measurement error data.

Mean AGB estimation

The calibration data was used to establish individual tree AGB 
allometric models and were used to predict the individual tree 
AGB in each plot. The tree-level AGB predictions were aggre-
gated to produce plot-level AGB predictions. Finally, system-
atic sampling estimators were used with the plot-level AGB 
predictions to forecast the mean above-ground biomass per 
unit area. This procedure is referred to as hybrid inference, a 
term was coined by Corona et al. (2014) to describe the use of 
a model to predict the response variables of probability sam-
ples of auxiliary data. The population parameters (mean, total) 
were estimated using a probability-based estimator and the 
probability sample predictions (McRoberts et al. 2016; Ståhl 
et al. 2016).

Estimation of single‑tree above‑ground biomass

Many forms of allometric models can be used for developing 
tree AGB models. In this study, five model types were selected 
(Wang et al. 2015; Cecep et al. 2018; Martínez-Sánchez et al. 
2020):

(1)M = �1D
�2 + �

(2)M = �1 + �2D + �3D
2 + �

(3)M = �1 + �2D + �3D
2 + �4D

3 + �

where D is the DBH (cm), H is H (m); M is the individual 
tree AGB (kg), �1 , �2 , �3 and �4 are estimated parameters. 
The model performances were evaluated with the coefficient 
of determination (R2).

Uncertainty caused by measurement error

The measurement error is assumed to follow a Gaussian dis-
tribution (Chave et al. 2004; Berger et al. 2014; McRoberts 
and Westfall 2016). We fitted a model to the SD (standard 
deviation) of measurement error and DBH to simulate the 
measurement error.

The method consisted of the following steps (Hosmer 
and Lemeshow 1989; Berger et al. 2014; Qin et al. 2019): 
(1) All trees were ranked in ascending order with respect 
to D , where D is the mean of two DBH measurement val-
ues, and the difference ( DDif ) between two measurements 
for each tree was calculated as: DDif = D1 − D2,where D1 
and D2 represent the first and second DBH measurement, 
respectively; (2) After ranking, all trees were divided into n 
groups according to the new order. Each group contained at 
least 15 trees to generate a sufficient number of groups. If 
the last group contained less than 15 trees, the trees in the 
last group were placed in the previous group; and, (3) for 
the ith group, the mean DBH ( Di ) of D and the SD ( �Dif ) of 
the differences between the two measurements were calcu-
lated. Finally, the relationship between the Di and �Dif was 
described by a liner model:

Based on this model, Monte Carlo simulations were used 
to predict the effect of the measurement error on AGB esti-
mation. This procedure contained four steps:

Step 1 Using Eq. (6), the SD ( �Dij ) of the measurement 
error of DBH for the ith tree in the jth plot was predicted. For 
each tree in a plot, a measurement error �Dij was randomly 
selected from a Gaussian distribution �Dij ∼ N(0, �Dij) . The 
new DBH for each tree was then calculated by adding �Dij to 
the original DBH.

Step 2 If the individual tree AGB model contained H, the 
measurement error of H for the ith tree in the jth plot was 
randomly selected from the uniform distribution 
�Hij − �(−0.05Hi,j, 0.05Hi,j) , where Hi,j is the original H for 
the ith tree in the jth plot. The new H ( H′

i,j
 ) for each tree was 

then calculated by adding �Hij to the original H.
Step 3 For ith tree in the jth plot, the individual tree AGB 

was predicted using the new DBH and H simulated from step 
1 and step 2. The total AGB of the jth plot was predicted by 

(4)M = �1D
�2H�3 + �

(5)M = �1(D
2H)�2 + �

(6)�Dif = a + bDi
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summing all individual tree AGB: Pj =
∑n

i
Mi,j , where n is the 

number of trees in the jth plot and Mi,j is the AGB of ith tree 
in the jth plot. The mean AGB per hectare was estimated as:

where, m is the number of the plot.
Step 4 Steps 1–3 were repeated 2000 times. The mean of 

AGB per hectare and the variance of the replications were 
predicted following Rubin (1987):

where, �me is the mean AGB over replications, 
W1 =

1

nrep−1

∑nrep

k=1
(� − P

k
)2 is the between-simulation vari-

ance, W2 =
1

nrep−1
Var(P

k
) is the mean within-simulation vari-

ance,P
k is the mean AGB per hectare in the kth replication 

and nrep is the number of replications. The replications were 
continued until �me and Var(�me) stabilized. The relative 
uncertainty Rme =

√

Var(�me)

�me

× 100% was then used as the 
index to assess the uncertainty.

Uncertainty caused by residual variability

This was also estimated using Monte-Carlo simulations by 
adding a random error to each models’ predictions (McRoberts 
et al. 2014). In this study, we first constructed a model from the 
standard deviation of the residual and the predicted AGB. The 
fitting method was the same as fitting models to the SD of the 
measurement error and DBH. McRoberts and Westfall (2013, 
2016) used this method to develop models from the calibration 
data of tree volume and residual variability. The method had 
the following steps: (1) � , ⌢

M were ranked in ascending order 
with respect to ⌢

M , where � is the residual of each harvested 
tree, ⌢

M is the model prediction of single tree AGB; (2) All 
trees in the CDS were divided into n groups after ranking. In 
this study, 20 trees were placed in a single group. If the last 
group contained less than 20 trees, the trees in the last group 
were placed in the previous group; (3) For the ith group, the 
mean of the ⌢

M and the SD of the � was calculated. The rela-
tionships between the SD and the mean of the ⌢

M were then 
estimated using the liner model:

(7)P =
1

m

m
∑

j=1

pj

(8)�me =
1

nrep

nrep
∑

k=1

p
k

(9)Var(�me) =

(

1 +
1

nrep

)

×W1 +W2

(10)𝜎ε = aε + bεM̂

where �ε is the SD of the � in each group,aε and bε are the 
model parameters, and M̂ is the mean of ⌢

M in each group. 
Based on this model, a four-step procedure was used to sim-
ulate the effect of residual variability on AGB estimation.

Step 1 For the ith sample tree in the jth plot, the tree 
AGB was predicted using the AGB model established from 
the CDS.

Step 2 For the ith tree in the jth plot, the SD ( �ε ) of the 
residual was predicted by model (10). Based on �ε , a random 
residual ( �i,j ) of each sample tree was randomly obtained 
from the Gaussian distribution �i,j = N(0, �εij),where �εij is 
the SD of the residual of the ith tree within jth plot. Then, 
the new single-tree AGB value of each element in the NFI 
data was calculated as M�

i,j
=

⌢

Mi,j + 𝜀i,j , where M′

i,j
 is the new 

AGB of ith tree in the jth plot, and 
⌢

Mi,j is the original pre-
dicted value of the single tree AGB.

Step 3 The total AGB of the jth plot was estimated as 
Pj =

∑n

i
M

�

i,j
 , where n is the number of trees in the plot, and 

M
′

i,j
 is the ith individual tree AGB in the jth plot. The mean 

of all plots was estimated as P =
1

m

∑m

j=1
Pj where m is the 

number of the plot.
Step 4 Steps 1–3 were repeated 2000 times.
The relative uncertainty caused by the residual variability 

was estimated as RU(rv) =

√

Var(�rv)

�rv

× 100% , where �rv and 
Var(�rv) are the mean and variance of the replications, 
respectively; these were estimated as Eqs. (8) and (9).

Uncertainty caused by the variance of the parameter 
estimates

Monte-Carlo simulations can be used to simulate the vari-
ances of the parameters of the AGB model. This simulates 
the actual sampling process (if known) of the original data. 
Wayson et al. (2015) used this method to generate a large 
pseudo-data of variables and refitted the biomass model. 
McRoberts et al. (2014) also used this method to simulate 
the potential distribution of the parameters in the biomass 
model and predicted the uncertainty caused by the variance 
of the parameter estimates. In this study, a five-step Monte-
Carlo simulation was used to estimate the uncertainty caused 
by model parameters:

Step 1 The original CDS was grouped into DBH classes 
at 1-cm intervals. If the sample size in one group was insuf-
ficient, then the sample trees were placed in the previous 
group. Finally, each group contained at least nine sample 
units.

Step 2 In each group, the AGB, DBH, and H of each har-
vest tree were randomly resampled until the original class 
size was achieved. During resampling, AGB, DBH and H 
were assumed to be a uniform distribution and each variable 
was randomly selected from the existing range.
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Step 3 The new data set generated in Step 2 were used to fit 
a new single-tree AGB model for each model type and predict 
the single-tree AGB in each plot.

Step 4 The total AGB of the jth plot was predicted as 
Pj =

∑n

i

⌢

Mi,j , where n is the number of trees in the plot, and 
M̂i,j is the ith predicted individual tree biomass in the jth plot. 
The mean AGB of all plots was estimated as: P =

1

m

∑m

i
Pj , 

where m is the number of the plot.
Step 5 Steps 1–4 were repeated 2000 times. The relative 

uncertainty associated with the parameter estimates was esti-

mated as Rpar =

√

Var(�par)

�par

× 100% , where �par and Var(�par) 

are the mean and variance of the replications; these were esti-
mated using Eqs. (8)–(9).

Uncertainty caused by the sampling variability 
of the NFI data

In this study, bootstrap resampling was used to estimate the 
uncertainty associated with the sampling variability of the 
NFI data. This method assumed that the sample represented 
the population from which the sample was drawn, and each 
observation in the sample had an equal probability of being 
selected from the population (Hinkley 1988). This method can 
be used to estimated standard errors, confidence intervals, and 
variances of a survey data (Efron and Tibshirani 1986). In this 
study, bootstrap sampling was performed using the “bootstrap” 
package in the R software; the bootstrap times were set to 
2000. After 2000 bootstraps times, the mean above-ground 
biomass and the variance of mean were estimated as:

where �sam is the mean AGB after 2000 resampling steps, 
p
k

sam
 the mean AGB of kth resampling step, Varsam the vari-

ance of the mean AGB after 2000 resampling steps, and n 
the number of resampling steps. The relative uncertainty 
associated with the sampling variability of NFI data was 
estimated Rsam =

√

Var(�sam)

�sam

× 100%.

Calculation of overall uncertainty

The overall relative uncertainty ( RT ) of each model was pre-
dicted as:

We assumed the uncertainty between each other was 
independent. McRoberts and Westfall (2013) found that this 

(11)�sam =

∑n

i
p
k

sam

n

(12)Varsam =
1

n − 1

n
∑

k=1

(�sam − P
k

sam
)2

(13)RT =

√

(

Rme

)2
+
(

Rrv

)2
+
(

Rpar

)2
+
(

Rsam

)2

assumption is reasonable for predicting tree volume over 
large areas. In addition, Berger et al. (2014) used the law of 
error propagation and a Monte Carlo simulation to estimate 
the uncertainty associated with measurement error for tree 
volume estimations; they found that the results of the two 
methods were similar.

Results

Model fitting

The parameters and R2 of the models are listed in Table 1, 
and the relationships between the predicted AGB and the 
AGB of harvested trees are shown in Fig. 4. The fits of all 
models to the data resulted in large R2 values (R2 > 0.83), 
and the model that contained DBH and H produced bet-
ter fitting results than the one with only DBH.

Uncertainty calculation

The model used to predict the standard deviation of the 
measurement error had the form 𝜎̂D = 0.0173D + 0.0185 , 
with an R2 of 0.61 (Qin et al. 2019). Figure 5 shows the 
mean AGB per hectare and the relative uncertainty for the 
five models. Both the mean AGB and the relative uncertainty 
tended to stabilize after 500 simulations. Table 2 shows the 
sources of uncertainties of the five models. The measure-
ment error had the largest effect on the biomass estimation 
for model 4 and the smallest for models 1 and model 3. 
Although the results of the different models were affected to 
various degrees by the measurement error, the uncertainty 
related to the measurement error was negligible.

Figure 6 shows the relationships between the standard 
deviation of the residual and the predicted tree above-ground 
biomass of each group. The fit of the model describing the 
relationship between the estimated tree AGB and the SD 
of the residual was excellent and all models had very large 
R2 values. Figure 7 shows the mean AGB per hectare and 
the relative uncertainty of all models for 2000 simulations. 
Both the mean AGB and the relative uncertainty tended to 
stabilize after 300 simulations. As shown in Table 2, the 
residual variability had the largest influence on the biomass 

Table 1   Estimated parameters of the models

Model form 𝛼̂
1

𝛼̂
2

𝛼̂
3

𝛼̂
4

R2

M = �
1
D

�
2 0.11 2.35 / / 0.83

M = �
1
+ �

2
D + �

3
D

2 6.52 − 3.01 0.45 / 0.85
M = �

1
+ �

2
D + �

3
D

2 + �
4
D

3 71.55 − 17.11 1.35 − 0.02 0.84
M = �

1
D

�
2H

�
3 0.05 1.70 1.00 / 0.88

M = �
1
(D2

H)�2 0.06 0.89 / / 0.88
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estimation for model 1, whereas model 5 was least affected 
by the residual variability. The uncertainty associated with 
residual variability was larger than that of the measurement 
error but did not exceed 1.2%. Therefore, the residual vari-
ability also had a slight effect on forest biomass estimation.

The uncertainty associated with the variance of the 
parameter estimates (Table 2; Fig. 8) was larger than that of 

the measurement error and residual variability and ranged 
from 3.9% (model 1) to 11.1% (model 2) for the five models.

Figure 9 shows the frequency histogram of the estimated 
mean above-ground biomass per unit area for the five mod-
els after 2000 bootstraps. Model 2 had the largest sampling 
uncertainty (10.9%), and model 3 had the smallest sampling 
uncertainty (9.7%). Sampling variability was the largest 

Fig. 4   Relationships between the predicted AGB and the AGB of the harvested trees for different models M1–M5 are the biomass models 
defined in Eqs. (1)–(5)

Fig. 5   Simulated mean AGB and relative uncertainty associated with the measurement error for the five models M1–M5 described by Eqs. (1)–
(5)
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source of uncertainty for all models (Table 2). For total 
uncertainty, model 1 had the smallest uncertainty (11.3%), 
and model 2 had the largest uncertainty (15.6%) (Table 2).

Discussion

In recent years, increasing attention has focused on the 
assessment of uncertainty in forest biomass estimation. Sev-
eral studies have quantified different types of uncertainty, 
such as measurement uncertainty, model uncertainty, and 
sampling uncertainty (Chave et al. 2004; Picard et al. 2015; 
Shettles et al. 2015). In this study, the uncertainty associated 
with the measurement error, residual variability, variance 
of the parameter estimates and sampling variability in NFI 
data for different models was estimated. The results showed 
that the sampling variability in the NFI data was the primary 
source of uncertainty. In addition, the uncertainty caused by 
the parameter estimates should not be overlooked.

The measurement error may be minimized by training, 
but is not completely avoidable (Elzinga et al. 2005). In this 
study, uncertainty associated with the measurement error 
was negligible, regardless of whether the model contained 
diameter or diameter and height. This is consistent with that 
of other studies (Berger et al. 2014; McRoberts and West-
fall, 2016). In this study, we assumed that the measurement 
error were independent, which minimized the total error for 
a large number of trees, because errors will compensate each 

Table 2   Uncertainties associated with various sources for different 
models

ME, RV, PU and SAM represent the measurement error, residual var-
iability, parameter estimates and sampling error respectively; M1–M5 
are the 5 selected models described by Eqs. (1)–(5)

Model form Uncer-
tainty 
sources

Mean (t ha−1) Relative 
uncertainty 
(%)

Total 
uncer-
tainty (%)

M1 ME 41.9 0.1 11. 3
RV 41.3 1.2
PU 41.9 3.9
SAM 41.3 10.5

M2 ME 38.8 0.1 15. 6
RV 38.8 1.2
PU 39.1 11.1
SAM 38.7 10.9

M3 ME 42.5 0.1 11. 4
RV 42.7 1.0
PU 42.6 5.8
SAM 42.9 9.7

M4 ME 39.6 0.1 11.5
RV 39.6 0.9
PU 40.7 5.2
SAM 39.4 10.3

M5 ME 39.8 0.1 11. 6
RV 39.6 0.9
PU 38.8 5.2
SAM 39.5 10.3

Fig. 6   Relationships between the estimated tree biomass and the SD of the residual for the 5 selected models M1–M5 described by Eqs. (1)–(5)
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other. Dependent errors were not considered, for example, 
a systematic bias due to faulty material. The uncertainty 
caused by this source of error needs further examination. 
In addition, the predicted H was taken as the “true” H. This 
may produce other uncertaintes, but the referenced studies 
did not show the distribution of residual and this was not 
considered.

In this study, the influence of residual variabilities on 
the results was insignificant. This is consistent with studies 
by Chen et al. (2015) and Picard et al. (2015). Chave et al. 
(2004) and Chen et al. (2015) found that the error of single-
tree above-ground biomass estimation caused by the residual 
varibility was more than 30%. This type of uncertainty at a 
regional scale was much samller than that at tree level. One 
reason may be that a normal distribution of the residuals was 

assumed. This residual error at tree level is levelled off when 
residuals are randomly selested. Trees with positive residu-
als compensate for trees with negative residuals, resulting 
in a small variance between simulations. In addition, Chave 
et al. (2004) and Chen et al. (2015) and found that the uncer-
tainty at the plot level was in negatively correlated with the 
number of trees in a plot. In this study, the average number 
of trees in all plots was 99, resulting in relatively low uncer-
tainty at the plot level.

We also found that the model containing diameter at 
breast height and height resulted in smaller uncertainties 
associated with residual variability, both at the single tree 
level (Fig. 5) and at the regional level (Table 2). The inclu-
sion of additional variables in biomass models typically 
improves model accuracy (Ketterings et al. 2001), which has 

Fig. 7   Simulated mean AGB and relative uncertainty associated with the residual variability of the 5 models M1–M5 described by Eqs. (1)–(5)

Fig. 8   Simulated mean AGB and relative uncertainty associated with the parameter estimates for 5 models M1–M5 described by Eqs. (1)–(5)
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been confirmed in many studies. Lambert et al. (2005) found 
that the root mean squared error of tree biomass predictions 
was reduced by approximately 8% and 25% for hardwood 
and softwood species, respectively, if height was added to 
the model. Goodman et al. (2014) found that the addition of 
crown radius to biomass models further reduced the bias of 
total above-ground biomass by 11–14%. In addition, addi-
tional species traits (e.g., wood density) could be included, 
especially when a significant species effect on model residu-
als is found (Ngomanda et al. 2014).

The uncertainty caused by the variance of the model 
parameter was much larger than that caused by the meas-
urement error and the residual variability. This is consist-
ent with other studies (Breidenbach et al. 2014). There-
fore, the greatest potential to improve the accuracy of 
biomass models is to improve the accuracy of the model 
parameters. These are affected by the sample size, dis-
tribution of the calibration data, and regression meth-
ods (Muller-Landau et al. 2006). Increasing the sample 
size can improve the accuracy of biomass models. Chen 
et al. (2015) reduced the sample size from 4004 to 400, 
and to 40, and found that the relative above-ground bio-
mass prediction error increased from 0.7 to 2.5 and 5.7%, 
respectively. However, single-tree above-ground biomass 
measurements are difficult to obtained resulting in the 
limitation of the size of the calibration data set. Jenkins 
et al. (2004) determined the mean sample size of 2642 bio-
mass models and found that sample sizes for nearly half of 

the studies did not exceed 20 trees. Therefore, increasing 
the sample size appears to be a challenge in most stud-
ies. In this study, 363 sample trees were used to establish 
AGB models to predict subtropical forest AGB in China. 
In addition, different regression methods may also provide 
widely different estimates of the allometric parameters 
from the same dataset (Sileshi 2014). This aspect was not 
covered in this study.

As shown in Table 2, the uncertainty associated with the 
sampling variability of NFI data was the largest source of 
uncertainty. This is consistent with Berger et al. (2014) and 
Breidenbach et al. (2014). One approach to reducing this 
type of uncertainty is to increase the sample size of the plot 
or to increase the size of the plot (Peter and Tom 2011). 
Studies have found that the coefficient of variation of bio-
mass decreased with an increase in size of plot (Chave et al. 
2003). However, an increase in the number of plots or plot 
size may result in different spatial patterns of the biomass. 
A random plot distribution is more easily achieved for small 
plots than for a few large plots, whereas the opposite is true 
for a systematic distribution (Picard et al. 2015). In addi-
tion, uncertainty associated with residual variability and 
plot-model interaction decrease with an increase in the plot 
size (Picard et al. 2015). Another method to reduce sam-
pling-related uncertainty may be the inclusion of ancillary 
information for stratification, such as forest characteristics or 
the forest structure. This method has been proved to be more 
accurate and efficient than systematic or random sampling 

Fig. 9   Frequency histogram of the estimated mean AGB per unit area of the 5 models after 2000 bootstraps; the 5 models were described by 
Eqs. (1)–(5)
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(Gharun et al. 2017), especially when remotely sensed data 
are used (Wallner et al. 2018).

The balance between accuracy and cost is a problem in 
forest above-ground biomass estimations. One method to 
improve the precision is to add other variables to the models, 
but this increases the costs of model development and field 
inventory. For example, accurate height measurements are 
time-consuming and expensive, and increase the overall cost 
of the forest inventory. In this study, we found that model 
1 had the least uncertainties, especially when sampling 
variability was not considered. Our results suggest trade-
off between accuracy and cost. However, different models 
provide different results, as shown in Table 2. One of the 
problems to address is how to balance the results between 
different models.

Conclusion

This study estimated four types of uncertainties in five for-
est above-ground biomass models. The results suggested 
that the model M = �1D

�2 was the best to estimate above-
ground biomass. This finding can be used to achieve a trade-
off between accuracy and cost in biomass estimation. The 
results also indicate that uncertainty associated with sam-
pling variability in national forest inventory data contrib-
uted most to overall uncertainty, followed by the uncertainty 
associated with the variance of the parameter estimates and 
the residual variability. Thus, the emphasis is on reducing 
the sampling-related variability if the objective is the reduc-
tion in overall uncertainty of above-ground biomass estima-
tion. If the model-related uncertainty is to be decreased, the 
focus should be on reducing the uncertainty associated with 
the variance of the parameter estimates.
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