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Abstract
The progressively restoration of degraded vegetation in semiarid and arid desertified 
areas undoubtedly formed different habitat types. The most plants regulate their 
growth by fixing carbon with their energy deriving from photosynthesis; carbon (C) 
and nitrogen (N) play the crucial role in regulating plant growth, community struc-
ture, and function in the vegetation restoration progress. However, it is still unclear 
how habitat types affect the dynamic changes in allocation in C and N storage of 
vegetation– soil system in sandy grasslands. Here, we investigated plant commu-
nity characteristics and soil properties across three successional stages of habitat 
types: semi- fixed dunes (SFD), fixed dunes (FD), and grasslands (G) in 2011, 2013, 
and 2015. We also examined the C and N concentrations of vegetation– soil system 
and estimated their C and N storage. The C and N storage of vegetation system, soil, 
and vegetation– soil system remarkably increased from SFD to G. The litter C and 
N storage in SFD, N storage of vegetation system in SFD, and N storage of soil and 
vegetation– soil system in FD increased from 2011 to 2015, while aboveground plant 
C and N storage of FD were higher in 2011 than in 2013 and 2015. Most of C and N 
were sequestered in soil in the vegetation restoration progress. These results suggest 
that the dynamic changes in allocation in C and N storage in vegetation– soil systems 
varied with habitat types. Our study highlights that SFD has higher N sequestration 
rate in vegetation, while FD has the considerably N sequestration rate in the soil.
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1  | INTRODUC TION

As one of the largest vegetation types in terrestrial ecosystem, 
grassland occupies about 40% of earth's land surface (Kemp 
et al., 2013; Liu & Zhang, 2018). Grassland has a great effect main-
taining the function of terrestrial ecosystem, such as biodiversity, 
livestock productivity, and ecosystem services (Chen et al., 2017; 
Ding et al., 2017; Fu et al., 2018). However, the anthropogenic 
disturbances cause the changes in plant community structure 
and function, then further leading to extensive degradation of 
grassland (Guo et al., 2019). Livestock grazing is the most widely 
measure or management practice for grassland utilization, which 
strongly affects plant community structure and function (Bai 
et al., 2012; He et al., 2020; Yang et al., 2013; Zhou et al., 2017). 
Long- term grazing or overgrazing can decrease the plant biomass 
and the cycling of carbon (C) and nitrogen (N) in grassland ecosys-
tems (He et al., 2020; Moinardeau et al., 2019; Wu et al., 2012; 
Yang et al., 2019), which is regarded as the main reason for the 
extensive degradation of grassland in drylands (Bai et al., 2012). 
Thus, to reduce grazing pressure or exclude grazing disturbance 
is crucial to restore the degraded grassland and the sustainable 
management of grassland ecosystem.

The enclosure or livestock exclusion has become an important 
or effective measure, which has been widely used for the resto-
ration of degraded grassland ecosystems (Deng et al., 2017; Zhao 
et al., 2019). As a result, habitat conversions were occurred in the 
restoration progress of degraded grassland. The C and N are essen-
tial elements for the development of all organisms on earth, which 
are important to regulate the terrestrial ecosystems' structure and 
function (Elser et al., 2010; Wang et al., 2016). Some studies have 
shown that the enclosure could increase the soil organic C and avail-
able N, the biomass and total soil C and N with light fraction C and N 
responding more rapidly than total soil C and N to grazing exclusion 
and vegetation recovering faster than soil (Abdalla et al., 2018; Chen 
et al., 2012; Hu et al., 2016), while other studies have demonstrated 
that there is negative or no effects of grazing exclusion on plant– soil 
C and N dynamics (Aynekulu et al., 2017; Shrestha & Stahl, 2008; Wu 
et al., 2017). Thus, there are no consistent effects of the enclosure 
on C and N storage at different grassland types, owing to the differ-
ent soil texture, vegetation types, climate conditions, and historical 
grazing practices (Hu et al., 2016; Shang et al., 2017; Wu et al., 2017). 
In addition, there are few studies to show how habitat types affect 
the allocation of C and N storage in vegetation– soil system in differ-
ent grassland ecosystems (Bi et al., 2018; Hu et al., 2016). To assess 
how habitat types affect the dynamic changes in C and N storage 
in vegetation and soil at degraded grassland is crucial to guide the 
reasonable and suitable measures for the ecosystem restoration and 
management.

Horqin Sandy Land was one of the most severe desertification 
areas in northern China before 1970. Mobile dune (MD), with more 
than 90% bare soil, dominated the desertified sandy grasslands. As 
the annual precipitation of 350– 500 mm and abundant seed sources 
is remained in Horqin Sandy Land, grazing exclusions allow pioneer 

plants to establish and survive and then affect the grassland's 
succession. With the long- term implement of grazing exclusion or 
grazing prohibition, most of MD gradually restored to the semi- 
fixed (SFD) or fixed dunes (FD) (Guo et al., 2008; Li et al., 2013; Zuo 
et al., 2015). Many studies have shown that the restoration of de-
graded vegetation in sandy grassland ecosystems can increase plant 
biomass, the C and N storage of vegetation or soil (Chen et al., 2012; 
Li et al., 2012; Zuo et al., 2016). However, it is still unclear that how 
habitat types affect the allocation of C and N storage in vegetation 
and soil. Although the previous study has examined the changes in C 
and N storage in vegetation or soil at different sandy grassland hab-
itats, there is still lack of the dynamic changes in allocation in C and 
N storage of vegetation– soil systems (Zuo et al., 2015). Therefore, to 
explore the effects of habitat types on the dynamic changes in allo-
cation in C and N storage of vegetation– soil system in sandy grass-
land, ecosystems can enhance our understanding of how human 
activity affects the C and N cycling of sandy grassland.

In this study, we investigated a 5- year dynamic changes in plant 
biomass, C and N concentrations, and storage of vegetation– soil 
system in three kinds of sandy grassland habitats. Specifically, we 
tested three hypotheses: (a) plant biomass, C and N storage of veg-
etation and soil increased from SFD to grasslands (G); (b) the alloca-
tion in the C and N storage of vegetation– soil system in three habitat 
type changes with sampling years; and (c) in different sandy grass-
land habitats, soil can potentially sequester considerable C and N.

2  | MATERIAL S AND METHODS

2.1 | Study area

Our study was conducted in a semiarid sandy grassland in the south- 
central part of Horqin Sandy Land (42°55′ N, 120°42′ E; 360 m 
elevation), Northern China. The site falls within a semiarid mon-
soon climate in the moderate temperature zone. The annual mean 
temperature and precipitation are, respectively, 7.1°C and 300 mm 
(2006– 2020). More than eighty percent of the total precipitation oc-
curs from June to August, and monthly mean temperature ranges 
from −12.6°C in January to 24.1°C in July. The annual effective ac-
cumulated temperature ≥10°C is more than 3,000°C. According to 
the different vegetation covers, the landscape is characterized by a 
mosaic of MD, SFD, FD, and G (Zuo et al., 2012). The soil is zonal and 
belongs to the chestnut soils in the Chinese classification or Orthi- 
Sandic Entisols based on the FAO classification (Su et al., 2006). 
Wind blows at a velocity of 1.1 to 3.3 m s−1, with southwest to south 
and northwest directions prevailing. The effects of wind erosion on 
soil are very serious, which then strongly impacts vegetation dis-
tribution (Zuo et al., 2009). The dominant native plant species are 
Corispermum macrocarpum Bge. and Artemisia halodendron Turcz. 
ex Bess. in SFD with 10 ~ 60% vegetation cover, Artemisia scoparia 
Waldst. et Kit. and Cleistogenes squarrosa (Trin.) Keng in FD with more 
than 60% vegetation cover, and finally A. scoparia and Pennisetum 
centrasiaticum Tzvel. in G with more than 60% vegetation cover.
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2.2 | Experimental design and measurements

We selected 18 sampling sites corresponding to the SFD, FD, and 
G habitat types under the condition of long- term enclosure, within 
6 replication sites in each habitat, and the distance among all sites 
was about 0.5– 8 km. A homogeneous 20 × 20 m plot was estab-
lished at each site. Both SFD and FD were naturally restored from 
mobile dunes by erecting fenced enclosures with 2- m- high columns 
and barbed wire in 1995 and 1980, respectively. G was also ex-
cluded livestock by fencing since 1996, which was regarded as a 
better vegetation type than other grassland habitat types in our 
study area.

Five 1 × 1 m quadrats were established at the center and four 
corners of each plot at each site. On each quadrat, we conducted 
the plant and soil sampling in Mid- August of 2011, 2013, and 2015. 
Within each quadrat, we collected the aboveground plant biomass 
of each species by the method of mowing and litter mass. Roots in 
four layers (0– 10, 10– 20, 20– 40, and 40– 60 cm) were also sampled 
by using a soil auger (10 cm- diameter) in each quadrat. We used a soil 
auger equipped with a stainless- steel cylinder and collected three 
samples in 5 cm increments (down to 60 cm) to determine the bulk 
densities of four layers (0– 10, 10– 20, 20– 40, and 40– 60 cm), and 
calculated the average of the three samples as a measure of bulk 
density in each site (Li et al., 2013).

We washed the roots to remove soil and other debris. We 
dried the aboveground biomass, litter mass, and root biomass at 
60°C for 48 hr, and soil used for examining bulk density was dried 
at 105°C for 24 hr. The plant and soil samples were ground by a 
mill, and after that we measured the C and N concentrations in 
aboveground plant, litter, root, and soil by an elemental analyzer 
(Costech ECS 4010). We calculated aboveground plant, litter and 
root biomass, bulk density, C, and N concentrations as the mean 
from five quadrats in each plot. We converted % C and % N into 
g C m−2 and g N/m2 of C and N storage in aboveground plant, lit-
ter, and root by using the biomass on a per area unit basis, and 
transformed % C and % N into g C m−2 and g N/m2 of soil C and 
N storage by using soil bulk density and soil depth. We calculated 
the storage of C and N in the vegetation (aboveground plant, litter, 
and root)– soil system in each plot by averaging the data from five 
quadrats.

2.3 | Data analysis

The two- way analysis of variance (ANOVA) was used to examine 
the effects of habitat types, sampling years, and their interaction on 
aboveground biomass, litter mass, root biomass, soil bulk density, C 
and N concentrations, and storage in aboveground plant, litter, root, 
and soil at each depth, vegetation system, and vegetation– soil sys-
tem. Least significant differences (LSD) test was used to compare 
the different habitat types or sampling years if the ANOVA was sig-
nificant (p < .05). All statistical analyses were performed by SPSS 
(version 19.0).

3  | RESULTS

3.1 | Dynamic changes in plant biomass, C and N 
concentrations in vegetation system

Habitat types significantly affected plant biomass, C and N concen-
trations of aboveground plant and root, and C concentrations of lit-
ter (Table 1, p < .05). The mean aboveground plant biomass, litter 
mass, and total root biomass (0– 60 cm) increased by 1.57, 2.85, and 
1.72% from SFD to G, respectively (Table 2, p < .05). However, the 
5- year short- term changes for plant biomass varied with the habitat 
types. The effects of sampling years were significant on litter mass, 
C and N concentrations in aboveground plant and litter, and root 
N concentrations (Table 1, p < .05). Aboveground plant biomass in 
SFD and G did not significantly change from 2011 to 2015, while lit-
ter mass in SFD significantly increased from 2011 to 2015 (Table 2, 
p < .05). The root biomass did not differ among SFD, FD, and G from 
2011 to 2015 in the layers of 0– 10, 10– 20, and 20– 40 cm (Table 3, 
p < .05). The total root biomass (0– 60 cm) in SFD was higher in 2013 
than in 2011 and 2015, while it was higher in 2015 than in 2011 
and 2013 in FD (Table 3, p < .05). The interaction between habitat 
types and sampling years significantly affected aboveground plant 
biomass and its N concentrations (Table 1, p < .05).

The mean C concentration in aboveground plant and litter was 
lower in FD than that in other two habitats, and the mean N concen-
tration in aboveground plant was lower in SFD than that in other two 
habitats, while the mean root C concentration (0– 60 cm) was higher 
in SFD than that in other two habitats (Tables 2 and 3, p < .05). The 
short- term changes in C and N concentrations in aboveground plant, 
litter, and root (0– 60 cm) varied with the habitat types. The abo-
veground plant C concentration in G was lower in 2015, and the 
aboveground plant N concentrations in SFD and FD, as well as litter 
N concentration in SFD, significantly increased from 2011 to 2015 
(Table 2, p < .05). The root C concentration in SFD increased from 
2011 to 2015 in the layer of 0– 10 cm, while it showed a reversed 
trend in the layer of 20– 40 cm. The root C concentrations in FD 
decreased from 2011 to 2015 in the layers of 10– 20 and 40– 60 cm. 
The root N concentrations in SFD significantly increased from 2011 
to 2015 in the layers of 0– 10, 10– 20, and 20– 40 cm, while root N 
concentration at each layer was not differed among sampling years 
in FD and it was much lower in 2013 in G (Table 2).

3.2 | Dynamic changes in soil bulk density, C and N 
concentrations in soil

Habitat types and sampling years significantly affected soil bulk den-
sity, soil C and N concentrations, while their interaction only signifi-
cantly affected soil N concentration (Table 1, p < .01). The soil bulk 
densities (layers of 0– 10 cm, 20– 40 cm, and 40– 60 cm) in 2013 and 
2015 significantly decreased from SFD to G, as well as the soil bulk 
density in the layer of 40– 60 cm in 2011 (Table 4, p < .05). The soil 
C and N concentration in each layer (0– 10 cm, 10– 20 cm, 20– 40 cm, 
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and 40– 60 cm) significantly increased from SFD to G. In addition, 
the 5- year's short- term changes in soil bulk density, soil C and N 
concentration varied with the habitat types. The soil bulk density of 
SFD in each layer, soil bulk density of FD in the layer of 0– 10 and 10– 
20 cm, and soil bulk density of G at 0– 10 cm significantly decreased 
from 2011 to 2015. There were no significantly changes in soil C 
concentrations in SFD and FD at each layer in a 5 year's short- term 
period (Table 4, p > .05), while the topsoil N concentration (layer 
of 0– 10 cm) in SFD and soil N concentrations (layers of 0– 10 and 
10– 20 cm) in FD and G significantly increased from 2011 to 2015 
(Table 4, p < .05).

3.3 | Dynamic changes in C and N storage in 
vegetation– soil system

Habitat types and sampling years significantly affected the C and 
N storage in aboveground plant, litter, soil, and vegetation– soil sys-
tem, while their interaction showed an obvious influence only on C 

and N storage in aboveground plant and vegetation system (Table 1; 
Figures 1 and 2, p <.05). The C and N storage in aboveground plant, 
litter, root and soil (0– 60 cm), vegetation system, and vegetation– 
soil system significantly increased from SFD to G (Figures 1a– h and 
2a– d, p < .05). The C and N storage of aboveground plant in FD was 
higher in 2011 than in 2013 and 2015 (Figure 1a,b, p < .001). The 
litter C and N storage and vegetation system N storage in SFD re-
markably increased from 2011 to 2015 (Figures 1c,d and 2b, p < .05). 
The root C and N storage did not differ in each habitat among 2011, 
2013, and 2015 (Figure 1e,f, p > .05). In addition, the N storage of soil 
and vegetation– soil system in FD increased significantly from 2011 
to 2015, as well as the N storage of vegetation– soil system in SFD 
(Figures 1h and 2d, p < .05). The annual increasing rate of C storage 
in soil and vegetation– soil system in G was significantly higher than 
the other two habitat types (Figure 3a, p < .05). Additionally, the 
annual increasing rate of vegetation system C and N storage in SFD 
was higher than FD, while the annual increasing rate of N storage in 
soil and vegetation– soil system in FD was significantly higher than 
the other two habitat types (Figure 3).

Habitat 
types

Sampling 
years

Habitat 
types * Sampling years

Aboveground biomass 11.86*** 2.79 6.71***

Aboveground plant C concentration 9.70*** 5.68** 2.58

Aboveground plant N concentration 11.95*** 6.31** 6.56***

Aboveground plant C storage 10.16*** 3.55* 8.09***

Aboveground plant N storage 13.35*** 3.54* 4.99**

Litter mass 21.53*** 5.56** 0.02

Litter C concentration 16.11*** 5.56** 1.55

Litter N concentration 1.77 5.95** 0.19

Litter C storage 18.79*** 4.79* 0.08

Litter N storage 22.06*** 9.92*** 0.01

Root biomass 3.25* 0.17 1.03

Root C concentration 8.04** 2.60 0.97

Root N concentration 23.89*** 5.34** 2.54

Root C storage 2.46 0.24 1.05

Root N storage 5.29** 1.13 0.64

Soil bulk density 19.28*** 10.43*** 1.76

Soil C concentration 56.83*** 5.74** 1.33

Soil N concentration 158.11*** 32.89*** 5.87**

Soil C storage 66.16*** 4.59* 0.83

Soil N storage 108.96*** 8.64** 2.21

Vegetation system C storage 14.68*** 0.55 2.80*

Vegetation system N storage 28.07*** 6.17** 2.92*

Vegetation– soil system C storage 67.63*** 4.15* 0.68

Vegetation– soil system N storage 112.96*** 9.09** 2.08

Note: Different asterisk indicates the significant differences in the effects of habitat types, 
sampling years, and their interaction on plant biomass, C and N concentrations and storage in 
vegetation– soil ecosystem.
*p < .05. **p < .01. ***p < .001.

TA B L E  1   Effects of habitat types, 
sampling years, and their interaction on 
the plant biomass, C and N concentrations 
and storage in vegetation– soil ecosystem
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4  | DISCUSSION

4.1 | Vegetation restoration enhances plant biomass 
and alters the C and N concentrations of vegetation 
system

Our findings illustrated that the mean plant biomass (aboveground 
plant, litter, and root) consistently increased from SFD to G, and 

the result was in agreement with previous study which demon-
strated that plant, litter biomass increased with advancing sandy 
grassland restoration in semiarid sandy grassland (Zuo et al., 2015, 
2017). However, the changing trend of aboveground plant biomass 
from SFD to G was not consistent in each year, possibly because 
the annual herbs are dominated in sandy grassland and sensitive 
to precipitation changes (Sun et al., 2019; Zuo et al., 2012). The 
lower rate of litter decomposition in desertified sandy grassland 

F I G U R E  1   The allocation of C and 
N storage in vegetation– soil system 
among three habitat types. Different 
lowercase letters indicate the significant 
difference in same year among different 
habitat types. The significant differences 
in same habitat type among different 
years are indicated by asterisk, **p < .01, 
***p < .001. SFD, semi- fixed dunes; FD, 
fixed dunes; G, grasslands
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ecosystem promotes the accumulation of litter mass from 2011 
to 2015 (Li et al., 2016). In addition, no significant difference was 
found in root biomass either in habitat type or in sampling year at 
the four layers, and the result was similar to the previous study, 
which demonstrated that the root biomass is very stable and not 
sensitive to environmental changes (Fortier et al., 2013). Moreover, 
we found the aboveground plant biomass in SFD was lower than 
that in the other two habitats, whereas the root biomass did not 
significantly change among habitat types, which possibly because 
that the plants in SFD had to allocated more biomass to the be-
lowground to absorb the limited soil water then maintaining their 
growth and development due to the low soil water content in SFD 
(Zuo et al., 2015).

Our study found that the C concentrations in aboveground plant, 
litter, and root (0– 60 cm) reduced from SFD to G, while their N con-
centrations increased from SFD to G mainly due to the shrub of 
Artemisia halodendrom growing only in SFD, which has the higher C 
concentration but lower N concentration. In addition, we also found 
that the short- term changes in C and N concentrations in vegeta-
tion system depended on habitat types; concomitantly, there are 
higher C concentration and relatively lower N concentration of abo-
veground plant, litter, and root in SFD, mainly due to different plant 
community composition with habitat restoration in semiarid sandy 
grassland. Plant community composition changes (from Artemisia 
halodendrom dominated in SFD eventually to annual and perennial 
herbs dominated in FD and G) will be able to alter plant photosynthe-
sis and soil nutrient utilization, which consequently cause the varia-
tions in nutrient allocation of plant community (Hbirkou et al., 2011; 
Houghton, 1995; Zhang et al., 2018; Zuo et al., 2015). The plants in 
three habitats (such as Artemisia halodendrom) have formed certain 

characteristics and chemical composition to adapt to the environ-
mental condition changes (He et al., 2015). The fragile environments 
such as infertile soil, semiarid climate, and strong wind erosion in 
this region also contribute to the changes in C and N concentra-
tions in vegetation system in different sandy grassland habitats (Li 
et al., 2019).

4.2 | Vegetation restoration decreases soil bulk 
density and increases soil C and N concentrations

The soil bulk density significantly decreased from SFD to G. 
Enclosure of sandy grassland eliminates the livestock's trample and 
decreases soil compaction that closely related to soil bulk density 
(Oduor et al., 2018; Su et al., 2005), consequently increasing the 
soil porosity and infiltration and finally leading to the accumulation 
of C and N in soil (Bach et al., 2012). The restoration of degraded 
vegetation enhances the above/belowground biomass and the ac-
cumulation of litter mass, further affecting the inputs of soil or-
ganic matters which plays a crucial role in the soil structure (Bach 
et al., 2012; Ren et al., 2018). Our study showed that more than 
60% of root biomass was allocated in the layer of 0– 10 cm, which 
also caused the decrease in soil bulk density in sandy grassland (Su 
et al., 2005). We also found that the 5- year short- term changes in 
soil bulk density depend on habitat type changes. The restoration 
of degraded vegetation decreased the soil bulk density of SFD (the 
mid- term stage of dune fixation) in each layer, while the restora-
tion of degraded vegetation only affects the soil bulk density of FD 
(the late- term stage of dune fixation) and G in the 0– 10 cm of the 
surface soil.

F I G U R E  2   Changes in C and N storage 
in vegetation system and vegetation– 
soil system among three habitat types. 
Different lowercase letters indicate the 
significant difference in same year among 
different habitat types. The significant 
differences in same habitat type among 
different years are indicated by asterisk, 
*p < .05, **p < .01. SFD, semi- fixed dunes; 
FD, fixed dunes; G, grasslands
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Our study also displayed that the soil (depth in 0– 60 cm) C and 
N concentrations increased significantly from SFD to G, the soil or-
ganic matter concentration increased with vegetation restoration, 
which consequently amplified the soil C and N concentrations in 
semiarid sandy grassland. The result is in general agreement with 
previous studies, which demonstrated that the C and N concentra-
tions positively related to the plant biomass (Fornara & Tilman, 2008; 
Zuo et al., 2015). We also found that soil C concentrations in three 
habitats did not significantly change from 2011 to 2015, while the N 
concentration of SFD in the layer of 0– 10 cm and that of FD and G 
in the layer of 0– 20 cm significantly increased from 2011 to 2015. 
These results suggest that soil C concentrations in sandy grassland 
are relative stable in a short- term period, while continuous resto-
ration of vegetation enhances the N accumulation in soil, even 
though the improvement of soil is only limited in the shallow soil 
(Wang et al., 2020; Zuo et al., 2018).

4.3 | Habitat types significantly affected the 
dynamic changes in C and N storage allocation of 
vegetation– soil system

Our findings illustrated that the C and N storage of aboveground 
plant, litter, root (depth in 0– 60 cm), soil (depth in 0– 60 cm), veg-
etation system, and vegetation– soil system increased gradually from 
SFD to G (Zuo et al., 2015). The plant biomass increases amplified 
the plant C and N storage with vegetation restoration, and the input 
of soil organic matter increases stimulated the soil C and N concen-
trations, consequently increasing the soil C and N storage from SFD 
to G with vegetation restoration. Consistent with the changing trend 
of aboveground biomass and vegetation system biomass, we also 
found that the C and N storage of aboveground plant and vegeta-
tion system fluctuated with years, while the litter C and N storage 
increased from 2011 to 2015. These results demonstrate the hy-
pothesis that C and N sequestration potential of ecosystem is highly 
correlated with C and N biomass production of vegetation system 
(De Deyn et al., 2009; Wu et al., 2008). Changes in plant community 
composition of vegetation system also enhance the C and N storage 
in vegetation system with the restoration of degraded sandy grass-
land (Zuo et al., 2015).

Larger plant biomass enhances aboveground litter and below-
ground root inputs, with consequently effects on the C and N se-
questration potential of soil under litter decomposition (Knops 
et al., 2007). Herbaceous litter and dead roots play an important role 
in soil C and N storage (Wolkovich et al., 2010). Our result illustrated 
that the N storage of soil and vegetation– soil system apparently in-
creased in a 5 year's short- term period due to the accumulation of 
litter mass in 5 years. In semiarid sandy grassland, more than 81.90%– 
98.03% of C and N were sequestered in soil, suggesting that soil has 
the considerable C and N sequestration potential in the restoration 
of degraded sandy grassland (Guo et al., 2008; Sartori et al., 2007; 
Wu et al., 2010). The C and N storage in vegetation system of SFD 
and the soil N storage in FD increased from 2011 to 2015, suggest-
ing that more C and N are sequestered in vegetation system in the 
mid- stage of dune fixation, while more N is sequestered in soil in the 
late- stage of dune fixation. The main reason for the annual increas-
ing rate of soil C storage in G was higher than other two habitat types 
was soil texture, especially the proportion of silt and clay (Frasier 
et al., 2019). As the last stage of dune fixation, FD has the higher spe-
cies richness and the existence of sand- fixation Leguminosae shrub 
(Caragana microphylla Lam.) may cause the higher annual increasing 
rate of soil N storage (Brantley & Young, 2010; Chen & Stark, 2000).

5  | CONCLUSIONS

We found that the C and N storage of vegetation system (above-
ground plant, litter, root), soil, and vegetation– soil system increased 
from SFD to G, while the 5- year short- term changes in C and N stor-
age in vegetation– soil system varied with the habitat types. In the 
restoration of degraded sandy grassland, the N storage of vegetation 
system in SFD, as well as the N storage of soil and vegetation– soil 
system in FD, increased from 2011 to 2015, while the C storage in 
vegetation– soil system did not change in a short period of 5 years 
with vegetation restoration. Similar to the C storage changes in dune 
habitats, the C and N storage in grassland habitat kept the relative 
stability in 5 years. These results highlight the crucial differences 
in C and N storage of vegetation– soil system responding to habitat 
variation. We also found that the most of C and N were stored in soil 
at three different habitats, suggesting that the soil has the larger C 

F I G U R E  3   The annual increase rates 
of C and N storage in vegetation– soil 
system from 2011 to 2015 among three 
habitat types. Different lowercase letters 
indicate the significant difference in 
same variable among different habitat 
types. Vs, vegetation system; S, soil; V- Ss, 
vegetation– soil system. SFD, semi- fixed 
dunes; FD, fixed dunes; G, grasslands
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and N sequestration potential in sandy grassland ecosystems. To our 
knowledge, this study has illustrated that how habitat type varia-
tions affect the dynamic changes in allocation in C and N storage of 
vegetation– soil system in a sandy grassland, which has an important 
application for degraded vegetation restoration and management in 
sandy grassland ecosystems. To exclude livestock grazing or imple-
ment, long- term enclosure can promote the degraded vegetation 
restoration and its N storage in semi- fixed dune, as well as N storage 
of soil and vegetation– soil system in fixed dune.
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