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The terrestrial ecosystemgross primary productivity (GPP) plays an important role in the global carbon cycle and
ecosystem functions. However, the estimates of GPP still have large uncertainties due to insufficient understand-
ing of the photosynthesis-temperature relationship and maximum light use efficiency (LUEmax). We used
satellite-derived proxies of GPP to derive optimum, minimum, and maximum temperature for photosynthesis
at the ecosystem scale, which was then used to construct a new temperature stress expression. This study im-
proves the MODIS-based light use efficiency model through coupling the optimized LUEmax with the new pro-
posed temperature stress expression. The new model (R2 = 0.81, RMSE = 17.8 gC m−2 (16 d)−1) performed
better than theMODIS GPP products (R2=0.67, RMSE=30.4 gCm−2 (16 d)−1), especially for evergreen broad-
leaf forests and croplands. Themean annual GPP over China is 5.7± 0.27 PgC, and the GPP significantly increased
by 0.046± 0.006 PgC year−1 during 2001–2018. This study provides a potential method for future projections of
terrestrial ecosystem functioning.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Terrestrial ecosystem gross primary productivity (GPP) is widely
known as the first step for terrestrial plants to absorb carbon from the
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atmosphere through photosynthesis. It describes the assimilation effect
of vegetation on photosynthetic carbon (Monteith, 1972) and also rep-
resents the largest carbon dioxide (CO2) flux between the terrestrial
biosphere and atmosphere (Beer et al., 2010). The change in GPP
would significantly alter global carbon cycling and ecosystem functions,
and thus feedback to the climate (Fernández-Martínez et al., 2014; Piao
et al., 2009; Yao et al., 2018). As a result, understanding GPP and its spa-
tiotemporal variation will reveal the response of ecosystems to climate
change and improve our understanding of the terrestrial carbon cycle.

To date, various models have been developed to estimate GPP,
amongwhich remote sensing data-drivenmodels have provided an un-
precedented opportunity for better regional/global GPP estimations (Li
and Xiao, 2019). Remote sensing data-driven models are commonly
based on the light-use-efficiency (LUE) theory, which states that GPP
canbe formulated as the product of the LUE and the absorbed photosyn-
thetically active radiation (APAR) (Monteith, 1972).

GPP ¼ LUE � APAR ¼ LUEmax � f stress � FPAR� PAR ð1Þ

where LUEmax is the maximum LUE, which is either a constant (Potter
et al., 1993) or changes in different ecosystems (Running et al., 2000);
fstress refers to the maximum LUE reduction under environmental
stresses; PAR is the incident photosynthetically active radiation; FPAR
is the fraction of incident PAR absorbed by the surface, usually derived
from remote sensing data. Although these models have unclear ecolog-
ical mechanisms, they have been widely globally due to simplicity of
their theory and the availability of relatively long-term and large-scale
remote sensing data (Ogutu et al., 2013). The Moderate Resolution Im-
aging Spectroradiometer (MODIS) GPP model (MOD17) is the most
widely used GPP model based on the LUE theory (Running et al.,
2004). It offers a global-scale GPP product at high spatial (500 m) and
temporal (8-days) resolutions, useful for monitoring and simulating
the global carbon cycle (Running et al., 2004). However, large uncer-
tainties still exist in the MOD17 algorithm arising from the parameteri-
zation of the biome-specific lookup table, the inputs of data, and the
algorithm itself (Heinsch et al., 2006; Turner et al., 2006; Wang et al.,
2017; Yuan et al., 2014).

Similar tomanyGPP estimationmodels, temperature is considered a
primary environmental stress affecting LUEmax in MOD17 algorithm.
These models usually use a biome-specific look-up table, in which
fixed air temperature parameters are defined for each vegetation type
(Running et al., 2004; Xiao et al., 2004a; Yan et al., 2015; Yuan et al.,
2007). However, the temperature effect on ecosystem photosynthesis
is spatially heterogeneous (Liu et al., 2017) because of scaling differ-
ences among single species, plant communities, or ecosystems. Several
studies reported that the biome-specific parameters for each vegetation
type do not vary with time or space might lead to high uncertainties in
quantifying GPP (White et al., 2000). Moreover, MOD17 only considers
the minimum temperature to limit plant growth and ignores the effect
of high temperature on ecosystem photosynthesis. When theminimum
temperature of different vegetation types exceeds 8–12 °C, the MOD17
algorithm considers that the vegetation is no longer subject to temper-
ature restrictions. However, appropriate temperature increases the ac-
tivity of enzymes and accelerates plant growth (Kattge and Knorr,
2007), while inappropriate temperatures tend to inhibit the carbon fix-
ation process of vegetation photosynthesis (Smith et al., 2016). High
temperatures are thought to influence plant physiological processes
(e.g., reducing stomatal conductance, enzyme activity, and promoting
photosynthetic carbon metabolism) and vegetation canopy (e.g., leaf
withering and senecence) (Bjorkman and Demmig, 1987; Hunt et al.,
2004; Zhang et al., 2016), thereby severely affecting vegetation
photosynthesis. In addition, these models generally simplify the mech-
anism of temperature requirements for vegetation growth and use the
knowledge from leaf-scale or provide simplified definitions of the
photosynthesis-temperature relationship (Liu, 2020). A recent research
by Huang et al. (2019) showed that the ecosystem-scale optimum
2

temperature (Tecoopt) is consistently lower than the leaf-scale optimum

temperature (Tleafopt ) and reported the first global distribution of the

Tecoopt. However, they did not study and discuss other ecosystem-scale
photosynthesis-temperature further (minimum and maximum tem-
perature). An understanding of the temperature lower and upper limits
helps to promote the estimation of GPP. In addition to using a limited
number of eddy covariance flux towers, it is also possible to use vegeta-
tion indices (e.g., EVI) as satellite proxies for photosynthesis to quantify
the related photosynthesis-temperature parameters at the ecosystem
scale (Chang et al., 2021; Chang et al., 2020).

TheMOD17 algorithmassumes that the LUEmax remains constant for
each vegetation type, and the APAR is the energy absorbed by the entire
canopy (Running et al., 2004). However, some researchers have sug-
gested that the photosynthetic capacity is mainly affected by leaf chlo-
rophyll content in the canopy (Houborg et al., 2013; Wu et al., 2016).
Compared with FPAR derived from the whole canopy, the fraction of
PAR absorbed by chlorophyll (FPARchl) can better capture the seasonal
variation of vegetation photosynthetic capacity (Ogutu and Dash,
2013; Zhang et al., 2009; Zhang et al., 2014; Zhou et al., 2017). Consid-
ering the superiority of FPARchl in GPP estimation,many GPP estimation
models based on FPARchl have been developed (Gao et al., 2014;
Gitelson et al., 2006; Sims et al., 2008; Xiao et al., 2004a). Moreover,
some studies have suggested that LUEmax is underestimated in many
areas (Kattge et al., 2009; Liu et al., 2014). These problems led to rela-
tively low temporal and spatial representations of MOD17 at site-level
validation and large-scale underestimation, especially for evergreen
broadleaf forests and croplands (Turner et al., 2006; Wang et al., 2017;
Zhang et al., 2012). Therefore, improving the MODIS GPP algorithm for
these shortcomings is of great importance to the study of the terrestrial
carbon cycle.

As a large country with almost all ecosystem types andwith the ter-
restrial ecosystems having great carbon sequestration potential in the
global carbon budget (Piao et al., 2009; Wang et al., 2020), China is an
ideal study region. Here, we examine the potential of using satellite-
derived proxies of GPP (Enhanced Vegetation Index [EVI]) to estimate
spatially explicit ecosystem-scale temperature parameters of vegetation
productivity. To achieve this, a new temperature stress factor was
established in this study, which was compared with the temperature
stress factor in MODIS GPP products. Furthermore, we developed a
novel MODIS-based light use efficiency model coupled with the opti-
mized LUEmax andnew temperature stress factor. The ability of GPP sim-
ulationwas examined and comparedwith theMODISGPP products, and
the GPP of China was further estimated.

2. Materials and methods

2.1. Materials

2.1.1. Eddy covariance flux data
A total of 11 typical flux-tower sites with 70 site years of flux data

across China were used in this study (Fig. 1). Detailed information can
be found in Table 1. Quality-controlled half-hourly observations (in-
cluding GPP and climate data) were obtained from ChinaFLUX (www.
chinaflux.org) and global FLUXNET data network (www.fluxnet.org)
(Papale et al., 2006; Pastorello et al., 2020; Yu et al., 2013). All the
half-hourly observed flux data were transformed into a daily and 16-
day resolution for further analysis. All flux-tower verified measure-
ments were divided into two groups for model calibration and
validation.

2.1.2. Meteorological data
Meteorological data (including daily mean temperature and relative

humidity and daily sunshine hour data) at approximately 2474weather
stations were collected by the China Meteorological Administration
(CMA) (http://data.cma.cn/) from 2000 to 2018. Radiation data were

http://www.chinaflux.org
http://www.chinaflux.org
http://www.fluxnet.org
http://data.cma.cn/


Fig. 1. Distribution of flux-tower sites in China used in this study. Different symbols in the figure indicate flux-tower sites of different vegetation types with a similar color to the same
vegetation type. EBF: Evergreen Broadleaf Forest; ENF: Evergreen Needleleaf Forest; DNF: Deciduous Needleleaf Forest; DBF: Deciduous Broadleaf Forest; MF: Mixed forests; Crop: Crop-
lands; Grass: Grasslands; Shrub: Closed Shrublands and Open Shrublands; Savanna: Woody Savannas and Savannas; Other types: Water, Snow, Urban, and Barren.
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also obtained from the CMA, based on sunshine hour, air temperature,
humidity, and other data and derived from the comprehensive solar ra-
diation estimation model. Based on the MODIS GPP algorithm, PAR is
calculated to be 45% of the total shortwave radiation (Running et al.,
2004). The vapor pressure deficit (VPD) was derived using the World
Meteorological Organization Commission for Instruments and Methods
of ObservationGuide conversion equation based on air temperature and
relative humidity data (Chiang et al., 2018). Themeteorology data were
calculated within the same 16-day periods to be consistent with the
time scale of the MODIS data.

Then, we used thin plate-smoothing spline-fitting techniques in
ANUSPLIN 4.4 (Hutchinson and Xu, 2013) to interpolate the meteoro-
logical data into a 1 km spatial resolution over entire China with lati-
tude, longitude and elevation as covariates. Elevation data were
obtained from the Shuttle Radar Topographic Mission product (Jarvis
A et al., 2008). All observed meteorological data series were quality
Table 1
Site characteristics in this study.

Site ID Site name Latitude (°N) Longitude (°E) Data r

QYZ Qianyanzhou 115.05 26.73 2003–
DHS Dinghushan 112.5 23.15 2003–
XSBN Xishuangbanna 101.267 21.9 2003–
YYc Yueyang

(CN-Hny)
112.93 29.53 2005–

HNc Huaining
(CN-Anh)

116.98 30.48 2005–

CBS Changbaishan 128.0958 42.4025 2003–
HB Haibei 101.33 37.6652 2003–
DX Dangxiong 91.066 30.497 2004–
NMG Neimenggu 116.667 43.53 2004–
CLc Changling

(CN-Cng)
123.5092 44.5934 2007–

YC Yucheng 116.567 36.83 2003–

a Tecoopt: The ecosystem-scale optimal temperature for vegetation productivity.
b Tecomin: The ecosystem-scale minimum temperature for vegetation productivity.
c Data from sites were obtained from www.fluxnet.org, other were www.chinaflux.org.
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controlled and observed flux-tower climate data were applied as inde-
pendent observations to evaluate the interpolated products. The results
showed that the meteorological interpolation data interpolated were
useful, and its accuracy was high (Fig. S1).

2.1.3. MODIS data
MODIS products (MOD13Q1, MOD17A2H, MOD15A2H, and

MCD12Q1) in the period to 2001–2018 were archived at the National
Aeronautics and Space Administration (NASA) Distributed Active Archive
Center (DAAC). EVI is a vegetation index that has minimized canopy–soil
variations and improved sensitivity over high biomass regions (Didan,
2015). We used a 16-day EVI dataset with a spatial resolution of 250 m
from the MOD13Q1 vegetation index product. FPAR is the fraction of
photosynthetically active radiation absorbed by vegetation and is ac-
quired from the 500 m spatial resolution, 8-day products (MOD15A2H)
(Myneni et al., 2015). All lowquality data of EVI/FPAR datawere checked,
ange Vegetation type Climate Tecoopt(°C)
a Tecomin(°C)

b

2010 ENF Subtropical 26.8 –
2010 EBF Subtropical 27.8 –
2010 EBF Tropical 25.1 –
2006 DBF Subtropical 31.4 –

2006 DBF Subtropical 27.5 –

2010 MF Temperate 22 −5.2
2010 Shrub Alpine 12.3 −8.1
2010 Grass Alpine 10.1 2.8
2010 Grass Temperate 17.7 –
2010 Grass Temperate 23.2 −13.7

2010 Crop Temperate 25.9 –

http://www.chinaflux.org
http://www.chinaflux.org


Fig. 2. The definition of ecosystem-scale optimum, minimum andmaximum temperature
for photosynthesis (Tecoopt , T

eco
min and Tecomax) with an example of a pixel. Gray dots indicate the

observed MODIS EVI and the corresponding 16-day-averaged air temperature from 2001
to 2018, and black dots are the 90% quantile for each 1 °C temperature bin.
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and data gaps were filled using linear temporal interpolation (Zhao et al.,
2005). The Savitsky–Golay smoothing filter was used to remove the noise
of EVI and FPAR data induced by cloudy, snow and atmospheric contam-
ination (Jonsson and Eklundh, 2004). MOD17A2H GPP products
(MOD17) (Running and Zhao, 2019)were used to evaluate the improved
GPP model. Furthermore, 8-day FPAR and GPP data were transformed to
16-day for conforming to EVI data in this study. For each flux-tower site,
MOD17, EVI, and FPAR were extracted from 3 × 3 km around the center
pixel of the flux-tower sites (Liu et al., 2014).

We used MODIS land cover with the classification scheme of the In-
ternational Geosphere-Biosphere Program (IGBP). The MODIS IGBP
land cover data were derived from the MCD12Q1 Land Cover Science
Data Product at a spatial resolution of 1 km (Friedl and Sulla-Menashe,
2019). The 17 land cover types were reclassified into nine vegetation
types: evergreen broadleaf forest (EBF), evergreen needle-leaf forest
(ENF), deciduous needle-leaf forest (DNF), deciduous broadleaf forest
(DBF), mixed forests (MF), woody savannas, savannas (Savanna), crop-
lands (Crop), grasslands (Grass), and closed shrublands and open
shrublands (Shrub). Land cover types of water, snow, urban, and barren
are treated as non-vegetated areas (other types). The spatial distribu-
tion of the nine vegetation types is also shown in Fig. 1 with a lighter
color than flux-tower sites in the same class.

2.2. Methods

2.2.1. Determinations of the temperature parameters for photosynthesis
Similar to previous research (Huang et al., 2019; Niu et al., 2012;

Zhou et al., 2015), we used productivity observations (flux GPP data)
and proxies (satellite-derived EVI) to calculate and map the
ecosystem-scale optimal air temperature (Tecoopt) for vegetation produc-
tivity. Furthermore, we estimated the local ecosystem-scale minimum
(Tecomin) and maximum air temperature (Tecomax) of vegetation productivity
by examining the temperature response curve of GPP and EVI.

First, EVI and weather-station-data-derived temperature time series
from 2000 to 2018 were grouped into different 1 °C temperature bins
for each vegetated pixel. The influence of other environmental constraints
was reduced by using the 90% quantile of the EVI data as the EVI response
in each temperature bin and calculating the moving average of every
three temperature bins. The temperature response curve of photosynthe-
sis is generally bell-shaped and the Tecoopt was determined from the temper-

ature response curve at which EVI was maximized (Fig. 2). The Tecomin and
Tecomax were determined from the temperature response curve at which
EVI was less than 0.1 (Fig. 2). Sims et al. (2006) pointed out GPP is almost
0when EVI is approximately 0.1 (Sims et al., 2006), whichwas proved by
our results (Fig. S2). Note that the Tecoopt cannot be attained at either end of

the response curve.Moreover, the Tecomin must be less than the Tecoopt , and the

Tecomax must be greater than the Tecoopt . These pixels that cannot detect Tecoopt ,

Tecomin, and Tecomax and unvegetated pixels (multi-annual EVI values less
than 0.1) (Seddon et al., 2016) were set to be NODATA. NODATA was
replaced with the average values of Tecoopt and Tecomin in the same ecotype re-

gion, respectively. Regarding Tecomax, it is difficult to detect. Its values refer to
the settings of the Terrestrial Ecosystem Model (Aber et al., 1996;
McGuire et al., 1992) on different vegetation types, as shown in Table 2.
The reasons for this are discussed in Section 4.

The samemethod used for the EVI-derived Tecoopt and Tecomin was used to

estimate the Flux-derived Tecoopt and Tecomin for each site year with time
series of daily GPP data and corresponding temperature data derived
from flux-tower observations. The Tecoopt was determined from the tem-

perature response curve at which GPP was maximized and the Tecomin
were determined from the temperature response curve at which GPP
was almost 0. The EVI-derived Tecoopt and Tecomin were compared with

Flux-derived Tecoopt and Tecomin using a least-square linear regression at all
11 flux-tower sites. We calculated the mean and standard deviation of
4

each temperature parameter based on each site year with daily GPP
and corresponding temperature data for each flux-tower site. We then
extracted and calculated the mean and standard deviation of each tem-
perature parameterwithin 3 × 3 pixels around eachflux-tower site cen-
ter from the EVI-derived Tecoopt and Tecomin map.

2.2.2. Model descriptions
The MODIS GPP algorithm is based on the Monteith LUE theory

(1972),

GPP ¼ LUEmax � f TMINð Þ � f VPDð Þ � FPAR� PAR ð2Þ

where LUEmax is themaximumconversion efficiency in different vegeta-
tion types, PAR is the incident photosynthetically active radiation, and
FPAR is the fraction of PAR absorbed by the canopy. f(VPD) and f(TMIN)
represent the limitations of vapor pressure deficit and minimum air
temperature on GPP and can be calculated as follows:

f VPDð Þ ¼ VPDmax−VPDð Þ
VPDmax−VPDminð Þ ð3Þ

f TMINð Þ ¼ TMIN−TMINminð Þ
TMINmax−TMINminð Þ ð4Þ

where VPD is the vapor pressure deficit (Pa), TMIN is the minimum air
temperature (°C), and VPDmax, VPDmin, TMINmax, and TMINmin are
parameters dependent on vegetation types. f(VPD) and f(TMIN) are
simple linear ramp functions of TMIN and VPD, respectively, with both
ranging from 0 to 1, as illustrated in Fig. S2a and b. A more detailed de-
scription of the MODIS GPP model can be found in the literature
(Running et al., 2004).

This study developed an improved model to estimate GPP based on
the MODIS GPP model algorithm. One improvement is to improve the
limitation that the f(TMIN) expression ignores the influence of high
temperature and spatial heterogeneity. We integrate the ecosystem-
scale temperature parameters into a new temperature stress expression
and define f(T) with the following equation, showing that photosynthe-
sis is suppressed at lower and higher air temperature thresholds. The f
(T) also ranges from 0 to 1, as illustrated in Fig. S2c.



Table 2
Parameters of ecosystem-scale maximum temperature for photosynthesis (Tecomax) and calibrated maximum light use efficiency (LUEmax) for different vegetation types.

Vegetation type EBF ENF DNF DBF MF Shrub Savanna Crop Grass

LUEmax (gC/m2) 2.4634 2.8348 2.1962 1.5005 2.4829 1.6422 2.1962 3.2551 1.1948
Tecomax (°C) 48 40 40 40 48 48 48 48 48
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f Tð Þ ¼ min
Ta−Teco

min

Teco
opt−Teco

min
,
Teco
max−Ta

Teco
max−Teco

opt

 !
ð5Þ

where Ta is the air temperature (°C), and Teco
opt , T

eco
max, and Teco

min are the
ecosystem-scale optimum, maximum and minimum temperatures for
photosynthesis activities, respectively. Teco

opt , T
eco
min, and Teco

max are estimated
by themethod in Section 2.2.1. The value of Teco

max is based on the vegeta-
tion type and can be found in Table 2.

The f(TMIN) indicated temperature stress was used in the MODIS
GPP model while the f(T) applied in this study. We evaluated their
potential in representing the temperature stress effect in two ways.
First, the Pearson's correlation analysis was applied to explore the
relationship between the 16-day observed GPP vs. f(T) and f(TMIN)
at the 11 flux-tower sites. Because there is no minimum air temper-
ature observation data at most flux-tower sites, we calculated f
(TMIN) using the minimum temperature data extracted from inter-
polated meteorological data around each site center. Second, we
calculated a new GPP (MOD_T) for flux-tower sites on a 16-day
scale with f(T) to substitute for f(TMIN) in the original MODIS GPP
algorithm.

Another improvement is to replace FPAR with FPARchl and opti-
mize the corresponding LUEmax. FPARchl is often represented by EVI
according to previous studies (Wu et al., 2010; Xiao et al., 2004b).
Pearson's correlation analysis was also conducted for the 16-day
observed GPP vs. FPAR (EVI) at 11 flux-tower sites. The correspond-
ing LUEmax of the improved model was calibrated based on flux-
tower GPP data by using the evolutionary algorithm in this study.
The evolutionary algorithms are robust and powerful tools for
solving the global optimization problem and the GEATbx (Genetic
and Evolutionary Algorithm Toolbox) in MATLAB was implemented
in our analysis (Pohlheim, 2006). Then, we calculated a new GPP
(MOD_F) for flux-tower sites on a 16-day scale with f(T), EVI, and op-
timized LUEmax to substitute for the corresponding expression and
parameters in the original MODIS GPP algorithm.

2.2.3. Model validation and comparisons
To distinguish the impacts of meteorological data on GPP, we calcu-

lated a new GPP (MODIS_Me) for flux-tower sites on a 16-day scale.
MODIS_Me was based on the MODIS GPP algorithm and was driven
by meteorology data extracted from interpolated meteorological data
around each site center. Finally, the performance of the MOD_Me,
MOD_T, MOD_F, and MODIS GPP product (MOD17) were evaluated by
comparingGPP valuesmeasured by flux-tower sites. The statistical indi-
ces used for evaluation were the coefficient of determination (R2), and
root-mean-square-error (RMSE). It is commonly accepted that the
smaller the RMSE and the closer the R2 value is to 1, the better the
model performance (Moriasi et al., 2007; Xu et al., 2020).

2.2.4. Trend analysis of GPP
We quantified the long-term trend in annual GPP for each grid cell

between 2001 and 2018 using the non-parametric Mann-Kendall
(MK) test (Kendall, 1975; Mann, 1945). This method is frequently
used for the significance of trend analysis of vegetation variables (Xie
et al., 2019). The trends with P ≤ 0.05 were considered statistically sig-
nificant in this study.
5

3. Results

3.1. Temperature parameters for photosynthesis

Flux-derived Tecoopt and Tecomin values ranged from 10.1–31.4 °C and

−5.8–2.1 °C, respectively (Table 1). Generally, Tecomin cannot be detected
in tropical and subtropical sites (XSBN, DHS, QYZ, YY, and HN) and
Tecoopt in tropical and subtropical sites is higher than that in temperate

and alpine sites (Table 1), implying a dependency of Tecoopt and Tecomin on
the background climate. The satellite observations of EVI are also used
to estimate and map the spatial distribution of Tecoopt and Tecomin in China

(Fig. 3e and f). EVI-derived Tecoopt and Tecomin are comparable to those from
measurements of flux-tower sites (Fig. 3b and d), which support using
the EVI proxy to map Tecoopt and Tecomin.

The average EVI-derived Tecoopt and Tecomin over the vegetated areas of
China was 22.5 ± 5 °C and−7.7 ± 5.3 °C with a high spatial heteroge-
neity, respectively. Fig. 3e shows that Tecoopt in most areas varies within

the range of 15–30 °C, and Tecoopt in the eastern region is generally larger

than that in the western region (Fig. 3e). Maximum values of Tecoopt near
30 °C prevail at southeastern China and subtropical regions, while min-
imum values close to 10 °C mainly appear in high altitudes and Tibetan
Plateau regions. As shown in Fig. 3f, over 70% of the Tecomin varies within
−15 to−5°. Maximum values of Tecomin close to 0 °C mainly appear in ev-
ergreen broad-leaved forests, while minimum values near−15 °C pre-
vail at high latitudes and cold regions. Vegetation-specific Tecoopt and Tecomin

were investigated for the nine vegetation types in China (Fig. 3a and c).
Among thenine vegetation types, the largestmeanTecoopt was found in the
evergreen broad-leaved forest (26 ± 4.7 °C), while the smallest mean
Tecoopt (18.9 ± 5.1 °C) was found in grasslands (Fig. 3a). Evergreen

broad-leaved forest also has the largest Tecomin, with a value of 3.3 ±
2.9 °C, while deciduous broad-leaved forest has the smallest Tecomin with
a value of −20.4 ± 9.1 °C (Fig. 3c).
3.2. Parameters of the improved model

Correlation analysis showed that observed GPP had a better correla-
tionwith f(T) than that with f(TMIN) atmost sites (Fig. 4a), especially in
all forest flux-tower sites. There was almost no correlation between the
observed GPP and f(TMIN) in the two EBF sites (XSBN and DHS); how-
ever, the correlation coefficients of observed GPP and f(T) at XSBN and
DHS flux-tower sites were 0.87 and 0.68, respectively. The correlations
between observed GPP and EVI are also better than those between
GPPand FPAR in forestflux-tower sites (Fig. 4b). The lowest correlations
between observed GPP and FPAR were in the two EBF sites (XSBN and
DHS) at 0.22 and 0.49, while the correlations between observed GPP
and EVI are as high as 0.57 and 0.68, respectively.

Table 2 shows the optimized LUEmax for the improved GPP model
(MOD_F). The optimized LUEmax of all vegetation types was higher
than that of the original MOD17 and exhibited extensive variability
across vegetation types. The optimized LUEmax of cropland was higher
than those of the other flux-tower sites, while grassland was the lowest
among all vegetation types. Due to the lack of DNF and Savanna flux-
tower sites, the average LUEmax from all other tower sites was used for
these two vegetation types.



Fig. 3. (a, c) Box plot of ecosystem-scale optimum andminimum temperature for photosynthesis (Tecoopt and Tecomin) for different vegetation types across China; (b, d) relationships between flux

and EVI-derived Tecoopt and Tecomin; (e, f) spatial distribution of Tecoopt and Tecomin. Horizontal lines in the box indicate the average Tecoopt and Tecomin, and the shaded area with different colors refers to the

distribution of Tecoopt and Tecomin values (a, c); Black spot and error bars indicate means ± standard deviation (b, d); The inset in panel (e, f) denotes the frequency distribution of Tecoopt and Tecomin.
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3.3. Performance of the improved model

The improving GPP estimates (MOD_T andMOD_F) were compared
with the original MOD17, MOD_Me, and observed GPP data in the
6

validation period (Fig. 5). MOD_F had the highest R2 and lowest RMSE
at the site level of all models. The R2 value of MOD_F against observed
GPP ranged from 0.56 (XSBN) to 0.98 (HB), and RMSE ranges from
5.04 gC m−2 (16 d)−1 (DX) to 49.24 gC m−2 (16 d)−1 (YC). The



Fig. 4. Correlation coefficients of observed GPP vs. f(T) and f(TMIN) (a), and observed GPP vs. FPAR and EVI (b) at 11 flux-tower sites, respectively. DHS, DX, NMG, CL, DL, HB, YC, QYZ, YY,
HN, CBS, and XSBN are the flux-tower site ID. Detailed information can be found in Table 1.
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performance of MOD_T (site-mean R2, and RMSE are 0.74, and 26.86 gC
m−2 (16 d)−1, respectively) is also better than that ofMOD17. Overall, it
can be seen that f(T), as a temperature stress factor in the improved GPP
model, had a better capacity to represent the temperature stress effect.
The performance of the XSBN site is worse than that of other sites, espe-
cially in MOD17 andMOD_Me. Although there are some improvements
in MOD_T, the R2 value at the XSBN site is still small. However, the per-
formance of the XSBN site in MOD_F was greatly improved, and R2 was
0.56, and RMSE was 23.36 gC m−2 (16 d)−1.

The MOD_Me and MOD17 had almost identical performance
(site-mean R2 was 0.67, and RMSE was 29.4, and 30.4 gC m−2

(16 d)−1, respectively). This performance suggests that the different
input meteorological data sources do not significantly impact the
GPP simulation results. MOD17 and MOD_Me are both lower than
observed GPP at all flux-tower sites, except for the DHS sites
(Fig. 6). They show an apparent underestimation, especially in the
grass (DX, CL) and crop (YC) sites, which is consistent with previous
studies (Yan et al., 2015; Zhang et al., 2008). Such findings may be
due to the lower default LUEmax values used to produce the MODIS
GPP product. The MOD_F is consistent with the observed GPP in the
validation years at each site. Therefore, the improved MOD_F is the
best when considering performance and seasonal variations among
all models.
Fig. 5.Validations of fourGPPmodels. The boxplot shows the R2, and RMSE between 16-day obs
model, andMOD_Me is theMODIS GPPmodel driven by situmeteorological data. TheMOD_T a
flux sites of different vegetation types, as shown in Fig. 1.
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3.4. Spatiotemporal patterns of GPP over China

The spatial pattern of themean annual GPP estimated by theMOD_F
model is shown in Fig. 7a. The magnitude of the mean annual GPP in
more than 40% of the regions ranged from 1000 to 2000 gC m−2. The
highest mean annual GPP is distributed in northern China and tropical
regions such as Hainan and the southern Yunnan Province, the interme-
diate values in the regions of central and southeast China, and the low-
est values in northwest China, Qinghai-Tibet, and barren regions.
ComparedwithMOD17, theMOD_Fmodel produces similar spatial pat-
terns of mean annual GPP (Fig. 7b); however, MOD17 shows lower GPP
estimates than MOD_F in the northeast and north China and Qinghai-
Tibet regions. These regions are mostly dominated by deciduous broad-
leaf forest, cropland, and grassland (Fig. 1).

The temporal trends of annual GPP estimated by MOD_F and MOD17
are shown in Fig. 7c and d, respectively. During the period of 2001 to
2018, almost 39.2% of the vegetated area in China showed a statistically
significant trend in GPP (P < 0.05). The areas with a positive trend (90%)
are more widespread than those with negative trends (Fig. 7c). Only a
few decreases in GPP occurred in some eastern and northernmost parts
of China. MOD17 shows similar spatial patterns of annual GPP temporal,
and positive trends are also more widespread (97%, Fig. 7d). The magni-
tude of the trend in most areas varies from 0 to 20 gC m−2 year−1, and
erved GPP and themodel estimatedGPP for flux-tower sites. TheMOD17 is theMODIS GPP
ndMOD_F are the improved GPPmodel. The different color symbols in the box indicate the



Fig. 6. Comparisons of seasonal variations of observed GPP versus estimated GPPMOD17,MOD_Me, MOD_T andMOD_F at 11 flux tower sites in the validation years (TheMOD17was the
MODIS GPPmodel andMOD_Mewas MODIS GPPmodel driven by in situ meteorological data. TheMOD_T andMOD_F are the improved GPPmodel). DHS, DX, NMG, CL, DL, HB, YC, QYZ,
YY, HN, CBS, and XSBN are the flux-tower site ID, and detailed information can be found in Table 1.
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the larger increase in GPP is mainly in central China. According to
estimates by MOD_F and MOD17, the average annual total GPP
over China is 5.7 ± 0.27 and 5± 0.24 PgC during 2001–2018, respec-
tively. The GPP estimated by MOD_F in China significantly increases
for the 18-year period by 0.046 ± 0.006 PgC year−1 (Fig. 7e). The
MOD17 also significantly increased during 2001–2018 (0.04 ±
0.006 PgC year−1, P < 0.001).

4. Discussion

An understanding of the photosynthesis-temperature relationship is
important for improving the estimation of terrestrial ecosystem gross
primary productivity. Our results on Tecoopt are similar to those of a recent
study (Huang et al., 2019), suggesting that the global terrestrial average
value of Tecoopt is estimated to be 23± 6 °C. Evergreen broad-leaved forest
also has the largest Tecoopt , with a value of 29 ± 3 °C, and the smallest Tecoopt
(13 ± 3 °C) is in cold grasslands on the Tibetan Plateau. The study by
Huang et al. (2019) defines the concept of Tecoopt and provides the first
global distribution of Tecoopt . However, they did not further study the
ecosystem-scale minimum and maximum temperature for photosyn-
thesis. We specifically define Tecomin and Tecomax as “the minimum and max-
imum air temperature at which gross primary productivity is close to
zero within a few years.” However, it is harder to detect Tecomin than Tecoopt.
It was found that a robust estimate of Tecoopt can be derived at all 11
sites, while there were only four sites for Tecomin. T

eco
min was not detected
Fig. 7. Comparisons of mean annual GPP (a, b), annual GPP temporal trend (c, d) and interannual
MODIS GPPmodel (MOD17) (b, d) in China during the period 2001–2018. The inset in panel (a, b
GPP, respectively. The white-colored areas on land are non-vegetated pixels (a, b). Only grid cell
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in any of the tropical and subtropical sites or most regions. This finding
may be related to the influence of the background climate. Generally,
when the temperature drops in autumn and winter, especially in the
temperate regions of northern China, most of the deciduous plants
and trees begin to shed leaves and enter a dormant state to stop grow-
ing. The tropical regions have high temperatures throughout the year,
with an average annual temperature above 18 °C (Kottek et al., 2006).
For example, the average annual temperature at XSBN flux-tower sta-
tion in the tropical region is about 20 °C, EVI is generally higher than
0.3, and GPP is generally higher than 3 gC m−2 d−1. Generally, it is suit-
able for vegetation growth throughout the year, and vegetation is rarely
affected by low-temperature stress; therefore, Tecomin cannot be detected.
This minimal detection suggests that if Tecomin does not reach a lower tem-
perature or experience a long period of low temperature but without
impacts on vegetation growth, it will not be detected. In general, the
specific definition of Tecomin will help promote the study of Tecomin, which
means that the large-scale spatiotemporal characterization of Tecomin can
be quantitatively investigated.

Tecomax was similar to Tecomin; however, it wasmore challenging to detect
than Tecomin. T

eco
max was not detected at all sites and in most areas of China.

The main reason may be that it still does not reach the continuous high
temperature that will cause vegetation to wither in the study period.
This may also be due to the relatively large spatiotemporal scale
(16-day, 250 m) of satellite observations, resulting in the information
not being captured in time. Additionally, some studies show that it is
variations in anomalies of annual total GPP (e)with the improvedmodel (MOD_F) (a, c) and
) and (c, d) denotes the frequency distribution of the average and temporal trend for annual
s with a significant trend determined by the MK test (P < 0.05) are shown in (c, d).
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difficult to capture the responses of GPP to short-term high tempera-
tures by modeling methods in a realistic way (Otkin et al., 2018;
Zhang et al., 2016). Future climate scenarios unanimously predict global
warming, and extremehigh-temperature eventswill gradually intensify
(Wu et al., 2019). Thus, it is necessary to usemore refined spatiotempo-
ral scale satellite observations and find better methods to detect Tecomax in
future research. To restore the true relationship between vegetation and
temperature in areas where Tecoopt and Tecomin were not detected, the mean
values of Tecoopt and Tecomin in the regions with the same vegetation type
were replaced by NODATA. Here, we assumed that the adaptability of
vegetation to temperature conditions was similar within the same veg-
etation type. Of course, this may also cause a difference in the Tecoopt and
Tecomin due to different climate, latitude, and geographical space (Cui,
2013). Further studies are necessary to gain insights regarding particu-
lar eco-geographic regions and obtain more refined eco-geographic re-
gions consistent with a specific climate and ecosystem. Clarifying how
terrestrial ecosystem gross primary productivity varies with air temper-
ature is important for understanding and projecting carbon cycle-
climate feedbacks.

In addition to the MODIS GPP model, numerous GPP models con-
sider temperature stress, such as the TEC, VPM, EC-LUE, CI-LUE, TL-
LUE, and TEM GPP models (He et al., 2013; Raich et al., 1991; Wang
et al., 2015; Xiao et al., 2004a; Yan et al., 2015; Yuan et al., 2007).
However, these models generally incorporate the photosynthesis-
temperature response functions to use the knowledge from the leaf-
scale (not ecosystem-scale) to project the GPP response to air tempera-
ture at the ecosystem scale (Rogers et al., 2017). These models also
usually adopt the constant temperature parameters related to vegeta-
tion types to calculate the temperature scalars, without considering
the spatial heterogeneity of temperature parameters. Therefore, we
studied the ecosystem-scale photosynthesis-temperature response
functions and estimated the distribution of Tecoopt and Tecomin in China. Our
improvedmodel was prior to thesemodels in defining the temperature
stress factor as f(T) incorporates the photosynthesis-temperature rela-
tionship at ecosystem scale. Fig. 4 shows that this improvement had a
great performance in expressing the temperature stress effect. The
high R2 and low RMSE between the observed GPP and the improved
model estimated GPP (MOD_T) in the flux-tower sites demonstrated
the effectiveness of the improved model in GPP estimation (Fig. 5).
Most importantly, the original MOD17 neglects the influence of maxi-
mum temperature on vegetation photosynthesis and the spatial hetero-
geneity of these temperature parameters. The improved model
considers these and enhances the relevant physiological and ecological
mechanisms.

The further addition of FPAR and corresponding LUEmax improve-
ments in the MOD_F model produces the best overall statistics for all
data (Fig. 5). Moreover, EVI showed a more significant correlation
with observed GPP than FPAR (Figs. 4b, S2), especially forest sites.
FPAR showed no significant correlations with GPP in evergreen broad-
leaf forests (DHS, XSBN); this may cause MOD17 to estimate the GPP
of evergreen broad-leaved forests the worst. The MODIS FPAR product
algorithm employs a 3D canopy radiative transfer model (Knyazikhin
et al., 1998) and a back-up algorithm that uses empirical relationships
between the leaf area index (LAI), FPAR, and normalized difference veg-
etation index (NDVI). One factor may be the saturation of NDVI over
dense vegetation and large sensitivity to canopy background brightness
(Qi et al., 2019), leading to underestimation of FPAR. However, EVI uses
the surface bidirectional reflectance of red and near-infrared spectral
bands that are sensitive to leaf chlorophyll content and employs blue
spectral reflectance to reduce the impact of atmospheric conditions
(Huete et al., 2002). This process improves EVI performance over
dense vegetation, makes EVI more sensitive to changes in the crown
structure, and provides a reasonably accurate estimation of GPP (Ma
et al., 2014; Shi et al., 2017). FPAR has a good correlation with GPP for
grassland, shrubland, and farmland, but the model using FPAR still
underestimated GPP (Fig. 6). This underestimation may be caused by
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the uncertainty of LUEmax, which is also mentioned in other studies
(Marshall et al., 2018; Wang et al., 2015; Yuan et al., 2007). Based on
the flux-tower data and genetic algorithm, the LUEmax parameters of
various vegetation types are re-optimized, and the simulated GPP
(MOD_F) then showed good capabilities. In follow-up research, it is
still necessary to explore new logic that considers both geospatial and
seasonal variations in LUEmax parameters.

In short, the two innovations independently played a positive effect
in improving GPP estimation. ComparedwithMOD17, the product from
this study (MOD_F) has higher estimates of average annual total GPP
over China during 2001–2018, approximately 5.7 ± 0.27 PgC. The re-
sults show that Chinese vegetation has great carbon sequestration po-
tential and plays an important role in the global carbon cycle.
Although the distribution of the interannual trend of GPP is heteroge-
neous among different regions from 2001 to 2018, it shows a significant
increasing trend at the national scale (Fig. 7). Such results are consistent
with previous studies using different GPP models (Li et al., 2013; Ma
et al., 2019). Overall, the improved GPPmodel (MOD_F) provides a reli-
able GPP estimation for China's terrestrial vegetation and global carbon
cycle research.
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