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diverse patterns of vegetation trends in
China karst.
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The karst area in Yunnan-Guangxi-Guizhou region in southwest China is known for widespread rocky desertifi-
cation but several studies report a greening trend since the year 2000.While the start of the greening trend seems
to match with the implementation of ecological conservation projects, no statistical evidence on a relationship
between vegetation greening and eco-engineering exists.Moreover, dominant factors influencing the spatial pat-
terns of vegetation trends have rarely been investigated. Herewe use six comprehensive factors representing the
natural conditions and human activities of the study area, and several statistical models consistently show that
eco-engineering explains large parts of the positive vegetation trends in the karst areas, while negative vegeta-
tion trends in non-karst areas of Yunnanwere relatedwith a decrease in rainfall. We further show that the inter-
action of eco-engineering with other factors leads to a heterogeneous pattern of different vegetation trends.
Knowing and understanding these patterns is crucial when planning ecological restoration, especially in diverse
landscapes like China karst and the methods can be reused in other restoration areas.

© 2021 Published by Elsevier B.V.
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1. Introduction

Vegetation is an important part of terrestrial ecosystems and plays a
critical role in regulating the carbon balance (Piao et al., 2009, Li et al.,
2012, Hu et al., 2018a, 2018b), but is highly sensitive to climate change
and human activities (Zhao et al., 2019a). Remote sensing can provide
repeated observations to gain insights into the dynamics of vegetation
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at large scales (Guo et al., 2017). Numerous studies have reported
greening trends, interpreted as increases in vegetation cover (Piao
et al., 2015; Brandt et al., 2018; Song et al., 2018; Zhao et al., 2020a;
Hong et al., 2020). Especially in southwest Chinese karst area, character-
ized by a highly heterogeneous landscape (Guo et al., 2020), a general
greening trend was reported based on time series of satellite observa-
tions and model predictions (Hou et al., 2015; Tong et al., 2016; Tong
et al., 2017; Brandt et al., 2018; Tong et al., 2018; Xu et al., 2019; Liu
et al., 2020). The reliable detection and attribution of factors impacting
on vegetation trends are a prerequisite for the development of strate-
gies for the sustainable management of ecosystems (Piao et al., 2015),
and therefore the main drivers of large scale increases in vegetation
cover have been in the scientific spotlight over the past decades (Peng
et al., 2011; Tian et al., 2013; Piao et al., 2015; Sun et al., 2015; Tong
et al., 2018; Piao et al., 2020).

Several studies have revealed that global warming stimulates vege-
tation growth by extending the growing season and promoting summer
photosynthesis, particularly in regionswherewater is not a limiting fac-
tor (Piao et al., 2007; Piao et al., 2008), but also precipitation can play a
crucial role on vegetation change (Zhao et al., 2020a). Therefore, it is
critical to quantify the impact of different climate factors on vegetation
trends in different regions, especially in karst and non-karst areas. The
impact of soil, topography and geological factors on vegetation changes
in karst areas has been studied (Liu et al., 2020; Qiao et al., 2020), but
the factors are usually treated as single factors, and their combined ef-
fects are rarely considered. Furthermore, most studies focus on small
sample size (Hu et al., 2018a, 2018b, Wang et al., 2018, Zhang et al.,
2019b) without large-scale application.

The rapid expansion of human population and increasing demand
for natural resources, such as agricultural land and forest products
(Brandt et al., 2017; Qiu et al., 2020), threatens the eco-environment
(Li et al., 2017). Many studies have discussed that human disturbances
are threatening biodiversity and lead to land degradation (Martínez-
Ramos et al., 2016; Nguyen and Liou, 2019). However, several studies
have also emphasized the potential role of increased carbon sequestra-
tion from adequate forest management (Tong et al., 2020) and vegeta-
tion recovery in rural areas arising from agricultural abandonment
and the movement of the rural population to cities (Piao et al., 2015,
Hu et al., 2018a, 2018b).

Recently, large parts of the greening trend are attributed to ecologi-
cal conservation projects like theGrain for Green program (Brandt et al.,
2018; Tong et al., 2018; Zhao et al., 2019b) aiming at recovering ecosys-
tems, alleviate poverty (Zhang et al., 2017a; Wang et al., 2019b; Zhou
et al., 2020b) and improving ecosystem services (Qiu et al., 2020;
Zhou et al., 2020a; Liu et al., 2008; Wang et al., 2020). Methods looking
into land use change (Liao et al., 2018; Liu et al., 2020), rocky desertifi-
cation control (Jiang et al., 2014) and vegetation improvement (Qi et al.,
2013) were used to indicate the effectiveness of ecological engineering.
However, although the impact of eco-engineering on vegetation trends
seems to be visually clear (Tong et al., 2017; Brandt et al., 2018), the in-
dividual and interacting contributions of climate conditions and human
activities to vegetation trends need to be quantified in a statistical way.

Complex environmental processes interact with each other and fac-
tors are typically not independent (Zhao et al., 2017, Wang et al.,
2019a). Previous studies mainly focused on a single factor, but it is im-
portant to study a variety of factors and the interaction between them.
The combined impact of poverty transition and other factors on vegeta-
tion change in South China karst studied by Zhao et al. (2020b) has in-
dicated that a synergetic impact on vegetation recovery between
ecological engineering and poverty alleviation exists. However, the
combined impact of ecological engineering and soil, socio-economical
factors and interference of human activities on vegetation change in dif-
ferent project regions has not yet been studied, which is crucial when
planning ecological restoration.

In this study, the impact of natural (climatic conditions, soil proper-
ties, geological factors and river density) and human factors (road
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density, GDP, land use types, population density, capital investment
and afforestation area reflecting eco-engineering) on vegetation trends
in China karst was study. Geo-detector model (GDM) (Xu and Zhang,
2014, Wang and Xu, 2017)was used to detect the contributions of the
factors on vegetation trends, and to quantify the interactions between
ecological engineering and the other factors. Moreover, Geographical
Weighted Regression model (GWR) was used to investigate the spatial
relationships between the factors and vegetation trends (Hou and Gao,
2020).

We studied vegetation trends in different project regions, reflecting
different geological settings. The objectives of this study are to identify
the dominant factors impacting vegetation trends in different project
regions of southwest China and to study which factors can enhance
the impact of eco-engineering on vegetation trends. This work is impor-
tant for decision-makers and stakeholders for planning, adjusting and
assessing ecological engineering projects.

2. Materials and methods

2.1. Study area

The study area covers the Yunnan, Guangxi and Guizhou provinces
of which 35% are karst, dominated by pure carbonate bedrock (Tong
et al., 2017). The area is one of the largest contiguous karst areas in
the world, with more than 30 million people largely living under pov-
erty (Zhang et al., 2017a). A mild and humid subtropical monsoon cli-
mate dominates the region while the mean annual rainfall is
1021 mm. Subtropical evergreen and deciduous broad-leaved forests
are the major vegetation types, while farmlands cover only 10%
(Wang et al., 2007; Tong et al., 2017). The terrain is high on the Yunnan
Plateau and low in the southeast coastal area of Guangxi. Topography,
lithology and geological conditions can be used to group the study
area into eight regions, which are important to consider when planning
eco-engineering projects (Yuan, 2014) (Fig. 1).

The study area includes 294 counties with an average size of
2709 km2. The population is relatively poor, and the density of 126 per-
sons per km2 is above the theoretical carrying capacity (100 persons per
km2) in this karst area (SFAB, 2018). Due to prolonged human activities,
the karst area has experienced severe rocky desertification (Tong et al.,
2016). Since the late 1990s, ecological engineering projects like the
Grain for Green project required most sloping farmlands to be con-
verted to forests or grasslands (Liu et al., 2008; Tong et al., 2017; SFAB,
2018; Hu et al., 2018a; Hu et al., 2018b; Yue et al., 2020). Furthermore,
the Karst Rocky Desertification Comprehensive Control Project running
from 2005 to 2016, has decreased rocky desertification area on
289.2 km2 (SFAB, 2012, 2018).

2.2. Datasets

We use the GIMMS-3 g Normalized Difference Vegetation Index
(NDVI) time series derived from Advanced Very High Resolution Radi-
ometer (AVHRR) covering the period from 1982 to 2016, available at
8 km spatial resolution (Pinzon and Tucker, 2014). The dataset provides
two images per month, andwe selected the pixels with highest value to
form a monthly time series. We then aggregated values from April to
November to estimate the vegetation production over the growing sea-
son, also termed growing season NDVI (GSN) for each year (Tong et al.,
2016). Eco-engineering projects started in 2000, andwe use this year to
split the time series into two periods (1982–2000 and 2001–2016). In
spite of low spatial resolution, the long time series of the dataset is cru-
cial to compare spatial and temporal vegetation changes before and
after the implementation of ecological engineering (Hou et al., 2015;
Tong et al., 2017).

The factors that impact vegetation growth during the conservation
period (2001–2016) include natural and human factors, all factors are
related to water, soil, heat, geological background and human activities.



Fig. 1. Location and classification of the different project regions. I: Peak Forest Plain; II: Peak-Cluster Depression; III: Karst Trough Valley; IV: Middle-High Mountains; V: Karst Gorge; VI:
Karst Plateau; VII: Karst Fault Basin.
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Natural factors include annually accumulated temperature > 10 °C,
mean annual temperature (2001–2015), annually accumulated
temperature > 0 °C, mean annual precipitation (2001–2015), aridity,
sand content (%), silt content (%) and clay content (%), soil nutrients,
geological settings (DEM) (Fig. 1) and hydrologic condition. Human fac-
tors include land use types, population density, GDP, road density, and
ecological engineering (capita investment and afforestation area)
(Table 1). All raster datasets were downloaded from the Research
Table 1
List of datasets used in this study.

Attribute Environmental Indexes Description a

Climate factors (Zhang et al., 2017a; Lv et al.,
2019)

>0 °C accumulated
temperature

Meteorologic

>10 °C accumulated
temperature

Meteorologic

Aridity Meteorologic
Annual mean
temperature

Annual mean
2001 to 2015

Annual mean
precipitation

Soil properties (Zhang et al., 2017a) Clay content Soil texture (
Silt content Soil texture (
Sand content Soil texture (
Soil nitrogen storage Nitrogen stor
SOC on soil type 1:1 M scale C
SOC on vegetation type 1:1 M scale C

Geological background (Tong et al., 2016) DEM
Slope

Digital elevat
Derived from

Hydrologic condition (Lv et al., 2019) River density 1:100 M nati
Ecological engineering (Tong et al., 2017, (Han
et al., 2019)

Project area
Capital input

Statistical dat
Statistical dat

Human activities (Tong et al., 2016, Lv et al.,
2019, Han et al., 2019)

Population density Population sp
Gross Domestic Product Gross domes
Road density Road length p
Land use types Land use map
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Center for Eco-Environmental Sciences, Chinese Academy of Sciences
(http://www.resdc.cn/). Statistical data on the Grain to Green Program,
which was used to represent the ecological engineering, were available
at county scale and include afforestation areas (e.g. areas for mountain
closure, afforestation, and cropland conversion) and funding (e.g.
money allocated for grain and seeding) from 2001 to 2015, and were
provided by the Forestry Bureau of the Yunnan, Guizhou, and Guangxi
Provinces (Tong et al., 2017). Land use types in 2005, 2010 and 2015
nd resolution Provider

al data (1 km) http://www.resdc.cn

al data (1 km)

al data (1 km)
temperature and precipitation from
(1 km)

1 km) http://www.resdc.cn
1 km)
1 km)
age (5 km) http://westdc.westgis.ac.cn

http://sourcedb.issas.cas.cn/
http://sourcedb.issas.cas.cn/

hina soil database
hina soil database
ion model (30 m)
DEM in ArcGIS 10.2 (30 m)

http://www.radi.cas.cn/

onal fundamental geographic map China Geological Survey
a at county scale
a at county scale

Forestry Bureau of the Yunnan, Guizhou, and
Guangxi Provinces

atial distribution (1 Km) http://www.resdc.cn
tic product (gdp) (1 km)
er unit area at county scale
in 2005, 2010, 2015 (30 m) http://www.radi.cas.cn/

http://www.resdc.cn/
http://www.resdc.cn
http://www.resdc.cn
http://sourcedb.issas.cas.cn/
http://sourcedb.issas.cas.cn/
http://sourcedb.issas.cas.cn/
http://www.radi.cas.cn/
http://www.resdc.cn
http://www.radi.cas.cn/
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were obtained from the Institute of Remote Sensing and Digital Earth,
Chinese Academic of Science (http://www.ceode.cas.cn/sjyhfw/). Land
use typeswere quantified as categorical variables using the Landuse de-
gree comprehensive index (LDCI) (Guo et al., 2018), the equation is
Eq. (1):

LDCIa ¼ 100�∑n
i¼1Ai � Ci ð1Þ

where LDCIa is the land use degree index; Ai is the land use classification
index and the quantitative values are 4, 3, 2, 2, 2, 1 for artificial area,
farmland, woodland, wetland, grassland and unused land; Ci is the area
percentage of different land use types in one unit. We then used the av-
erage LDCI of the three year 2005, 2010 and 2015. All data were aver-
aged per county and then normalized from 0 to 1, to ensure the
comparability of different data sources at different spatial scales and
with different units (Qiu et al., 2020). All used datasets and their sources
are listed in Table 1.

2.3. Research methods

The study uses long time series remote sensing data to infer vegeta-
tion trends (GSN slope) using linear trend analysis. We compared spa-
tial patterns in GSN slope based on spatial autocorrelation analysis
before and after the implementation of eco-engineering. Geographical
Detector Model (GDM) (Wang and Xu, 2017) was used to quantify
the relative importance of drivers and their interactions with GSN
slope. In addition, our study uses the Geographical Weight Regression
model (GWR) (Brunsdon et al., 1996) to explore spatial non-
stationarity correlations between drivers and GSN slope, as well as the
sensitivity of GSN slopes to different drivers (expressed by the regres-
sion slope). The research methods of this study are summarized in
Fig. 2 and consist of threemain steps: (1) the calculation of linear trends
in vegetation cover (GSN slope) for pre- and post- project periods;
(2) the grouping of factors to comprehensive factors using principal
component analysis (PCA); (3) the identification of drivers of GSN
trends using GDM and GWR.
1982-2000 

GSN

Soil 

nutrients

2001-2016 

GSN

Linear 

trend 

analysis

Sp

autoco

an

Environmental 

factors

PCA

GWR

Climate 

factors

Ecological 

engineering
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activities

Soil texture

Social 

economic

2001-2016 

GSN slope

1982-2000 

GSN slope

Fig. 2. Flowchart showing the data and methods used in this study. GWR: Geographical weig
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2.3.1. Spatial pattern of vegetation trends
The slope derived from linear trend analysis shows the annual

change rate of vegetation greenness in GSN units.We used long time se-
ries remote sensing data to infer vegetation trends (GSN slope) from the
linear trend analysis. Eco-engineering projects started in 2000, and we
use this year to split the study period (1982–2016) into a reference pe-
riod (1982–2000) and conservation period (2001–2016) following
Tong et al. (2017). The mean GSN trends were averaged per county to
be comparable with the other datasets. The equation to calculate the
GSN slope is in Eq. S1.We further used the global spatial autocorrelation
Moran's I (Ig) (Anselin et al., 2006) and local spatial autocorrelation
Moran's I (Il) (Anselin, 1995) to find spatial patterns and spatial clusters
of GSN increase/decrease (Supplementary materials).
2.3.2. Extraction of comprehensive factors using principal component
analysis

In order to eliminate multicollinearity between the 20 factors, the
Principal Component Analysis (PCA)was used to extract principal com-
ponents (PCs), which we refer to as comprehensive factors (Gao et al.,
2006, Zhang and Dong, 2012. The cumulative contribution rate of the
first 6 PCs (PC1-PC6) (Huang et al., 2014; Xie et al., 2016; Zhang et al.,
2017b) is 80.01% (Table S3). The PCA results are shown in Table S3, ac-
cording to which the PCs were classified into 6 comprehensive factors
and their detailed description is as follows: The contribution of the
first PC is 24.93% which is mainly from climatic variables; therefore,
PC1 is referred to as climate conditions. The second PC contributes
13.87% mainly from population density and land use degree compre-
hensive index, and is therefore referred to as human activities. The
third PC contributes 12.15% mainly from sand and clay content, and is
therefore referred to as soil texture. The fourth PC contributes 11.51%
mainly fromafforestation area and investment in ecological engineering
funds; therefore, it is referred to as ecological engineering. Thefifth PC is
referred to as soil nutrients, havingmost of its loading from soil organic
carbon content under different soil conditions and organic nitrogen
storage, and it contributes 9.55%. The contribution of the sixth PC is
8.00%, and it has most of its loading from traffic density and GDP, and
is therefore referred to as socio-economic conditions.
atial 

rrelation 

alysis

GDM

Spatial 

pattern trend 

in GSN slope

Spatial 

pattern trend 

in karst 

vegetation 

and drivers

Relative 

effects and 

interactions 

of factors

Spatial 

differentiation 

of factors

hted regression model; GDM: Geographical detector model; GSN: Growing Season NDVI.
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2.3.3. Geographical detector model (GDM)
GDM is a statistic method to detect the relative importance of indi-

vidual factors (and their interactions) to response variables by testing
for spatial correspondence between the variables (Wang and Xu,
2017). We apply GDM to quantify the spatial agreement between envi-
ronmental factors and GSN slopes.

The degree of spatial correspondence between GSN slope and an en-
vironmental factor is measured by the power of determinant (PD),
which is calculated as follows:

PD,H ¼ 1−
∑
L

i¼1
niVari

nVar
ð2Þ

where D represents the environment factors; i=1,2,⋯,L denotes that the
study area is stratified into L strata (Wang and Hu, 2005) according to
the spatial patterns of an environmental determinant; n denotes the
number of counties in the study areas; H refers to the GSN slope; PD,H is
the power of determinant of the environmental factor D on H; Vari and
Var denote the variance of GSN slopes in each stratum and over the entire
study area, respectively. PD ranges from 0 to 1, with higher PD values
reflecting stronger explanatory power of the variables. GDM can also test
if the interaction between two factors impacts on the explanatory power
of GSN slope (in this study interaction is symbolized by ∩).

The study uses the GSN slope during the conservation period
(2001–2016) as the dependent variable and the six PCs (comprehensive
factors) are the explaining variables. All six comprehensive factors are
continuous variables, and thus had to be stratified though discretization
before they could be used in the GDM (Wang and Xu, 2017; Wang and
Xu, 2017;Wang et al., 2010; Ge et al., 2017;Wang et al., 2017a). In order
to avoid subjectivity and randomness in the process of discretization,
this study used the natural break classificationmethod, which performs
an automatic unsupervised segmentation of the comprehensive factors
to receive the breakpoints between the segments (Xu and Zhang, 2014).
Finally, the optimal number of classes for each comprehensive factor
was determined by the PD value, which expresses the degree of spatial
correspondence between the GSN slope and the comprehensive factors
(Cao et al., 2013; Ju et al., 2016). Fig. S1 shows which number of classes
corresponds with the highest PD value of each comprehensive factors,
and the chosen number of classes for each comprehensive factor
(from PC1 to PC6) is 6, 9, 8, 8, 8 and 8 respectively. The discretized fac-
tors were used as input into the GDM, and the spatial consistency be-
tween each comprehensive factor and GSN slope was tested.

2.3.4. Geographically weighted regression model (GWR)
Our study uses the Geographical Weight Regression model (GWR)

(Brunsdon et al., 1996) to explore spatial correlations between compre-
hensive factors and GSN slope (local R square), as well as the sensitivity
of GSN slopes to different drivers (expressed by the regression slope).
Assuming that the drivers of GSN slopes are non-stationary and vary
across the study area, a global model has often limited explaining
power to express the relationship between GSN slopes and the compre-
hensive factors. This is particularly true for the Chinese karst area,
where different climate conditions and geology/project regions
(Fig. 1) provide different settings (expressed by project regions). Here
GWR can assess the local relationships between the non-stationary
comprehensive factors andGSN slopes by allowing the value of local pa-
rameters (βk(μ,ν)) to change with the geographical location (xk), as
shown in Eq. (3) (Peng et al., 2017; Zhang et al., 2017b):

yi ¼ βi0 μ i,νið Þ þ∑
n

k¼1
βik μ i,νið Þxik þ εi ð3Þ

where (μi,νi)(i=1,2,3,⋯,n) is the spatial location of the sample i; yi rep-
resents the dependent variable (it refers to GSN slope in this study); xik
represents the independent variables, which refers to the 6 comprehen-
sive factors (PCs) here; βio(μi,νi) and βik(μi,νi) represent the constant
5

estimates and parametric estimates of the sample i, respectively; εi is
the random error.

As multicollinearity between environmental factors has been elimi-
nated by the PCA, we built multiple regression models using ordinary
least squares (OLS) and GWR by taking the six PCs as independent
and GSN slope as dependent variable. The statistical results of the OLS
model are compared with those of GWR in Table S4. We use the Akaike
Information Criterion (AICc), Cross Validation (CV) and Bandwidth Pa-
rameter (PAR) to determine the extent of the kernel (Table S4), show-
ing that the GWR model is superior to OLS.

3. Results

3.1. Temporal and spatial variation of vegetation trends

Over 1982–2016, southwest China karst has seen a general greening
trend, which is stronger during the conservation period (2001–2016),
as compared to the reference period (1982–2000) (Table S1). In the
karst area, trends changed from negative to positive between the pe-
riods, which was not the case for non-karst areas (Fig. 3a, b).

Most greening areas are found in Guangxi and Guizhou, while vege-
tation cover in Yunnan shows a decreasing trend in the conservation pe-
riod (Fig. 3b). Spatial differences of GSN slopes also exists in different
karst landforms during the conservation period. The GSN slope in the
Karst Peak-Cluster Depression (II) shows the largest share of significant
increase (9.43%), followed by the Karst Peak Forest Plain (I) (3.88%),
Karst Plateau (VI) (3.39%), Karst Gorge (V) (3.38%) and Karst Trough
Valley (III) (3.11%). Only a small percentage of the pixels are found to
have a significant decreasing trend in karst areas (less than 5%). The
GSN slope in the conservation period is overall positive in most parts
of the karst region except the Middle-High Hill region (IV) and the
Karst Fault Basin (VII) with only 3.60% and 13.91% showing a significant
increase (Fig. 3c, d). More than half part of the areas in the Karst Trough
Valley (III) (50.32%) was increased significantly, and the Karst Plateau
(VI) (48.19%), Karst Peak Forest Plain (I) (46.48%) and Karst Peak-
Cluster Depression (II) (45.13%) were dominated by significantly
increase.

GSN slopes show significant (p < 0.05) spatial autocorrelation for
both periods butwith amuch stronger spatial clustering during the con-
servation period. The global Moran's I and Z(I) values before the imple-
mentation of eco-engineering are 0.60 and 17.73, respectively, while
global Moran's I and Z(I) during the conservation period are 0.85 and
25.04, respectively. Furthermore, the increase in GSN slope is spatially
not homogeneous. Areas with strongly positive GSN slope clusters are
found in non-karst areas in Yunnan and Karst Peak Forest Plain during
the reference period and Karst Trough Valley, Plateau, Gorge, Karst
Peak Forest Plain and Peak-Cluster Depression during the conservation
period. Decreasing slopes are mainly concentrated in the Karst Fault
Basin and Middle-High Mountains (Fig. 3e.f). The following sections
will further analyze different natural and anthropogenic factors causing
these spatial variations in GSN slopes.

3.2. Climatic conditions and trends in the study area

Over 2001–2015, mean annual temperature increased significantly
(p < 0.05) and mean annual precipitation decreased significantly
(p<0.05) in thewestern part of the study area (Fig. 4c, d),which is con-
sistent with the spatial distribution of vegetation decrease shown in
Fig. 3f. Areas with no significant changes in climate variables are domi-
nated by vegetation increase. There are three climate types with signif-
icant hydrothermal differences in the study area. The Middle-High
Mountains and Karst Fault Basin belong to the plateau climate and
Southwest monsoon climate zone, respectively, with a relatively arid
and cold climate, both the mean annual precipitation (MAP) and
mean annual temperature (MAT) are significantly (p < 0.05) lower
than in other karst areas. GSN slopes in these two areas are significantly



Fig. 3. Spatial distributions of GSN slopes. a. GSN slopes for 1982–2000. b. Same for 2001–2016. c. The area ratio (percentage cover) of GSN slopes during the conservation period
(2001–2016) in different project regions. d. Boxplots showing the distribution of GSN slopes over the different project regions. e. Spatial aggregation (via autocorrelation analysis) of
positive and negative trends in GSN slope for 1982–2000. f. Same for 2001–2016. The project regions are Peak Forest Plain (I), Peak-Cluster Depression (II), Karst Trough Valley (III),
Middle-High Mountains (IV), Karst Gorge (V), Karst Plateau (VI), Karst Fault Basin (VII) and Non-karst area (the shadow area).
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lower than in other karst areas belonging to the East Asia monsoon cli-
mate zone with relatively abundant hydrothermal resources, such as in
the Karst Peak Forest Plain, Karst Peak-Cluster Depression, Karst Gorge,
Karst Trough Valley and Karst Plateau. However, in spite of annual pre-
cipitation and temperature vary greatly over the karst area belonging to
6

East Asia monsoon climate zone (Fig. 4a, b), GSN slopes are relatively
similar between these project regions (Fig. 3d). Consequently, climate
can have a significant impact on the vegetation trends but are not the
main reasons for vegetation change in karst areas with relatively favor-
able climate conditions.



Fig. 4. Climate conditions and their trends for 2001–2015 in different project regions. a. Mean annual precipitation (MAP), b. Mean annual temperature (MAT). c. Significant (p < 0.05)
slopes of mean annual temperature for 2001–2015. d. Significant (p < 0.05) slopes of mean annual precipitation for 2001–2015. The project regions are Peak Forest Plain (I), Peak-
Cluster Depression (II), Karst Trough Valley (III), Middle-High Mountains (IV), Karst Gorge (V), Karst Plateau (VI), Karst Fault Basin (VII) and Non-karst area (the shadow area).
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3.3. Impact of environmental factors on vegetation trends

UsingGDM,we estimated themagnitude of the impact of the six com-
prehensive factors on GSN slopes at the 95% confidence level. The PD
values show the importance of the comprehensive factors in different
project regions (Table 2). The influences of human and natural factors
on GSN slopes vary greatly in different project regions: Values reflecting
human activities are higher in the Karst Peak Forest Plain (0.80), Karst
Middle-High Mountains (0.79) and Karst Gorge (0.74). Similarly, PD
values reflecting socio-economical conditions are highest in the Karst Pla-
teau (0.70) and lowest in the Karst Peak-Cluster Depression (0.06). GSN
slopes in Middle-HighMountains were greatly influenced by human fac-
tors: eco-engineering (0.81) > interference of human activities
(0.79) > socio-economic (0.76). The order of the influence of each factor
on GSN slopes in the Karst Peak-Cluster Depression is: soil texture
(0.34)> soil nutrients (0.33)>human activities (0.25)> ecological engi-
neering (0.18) > socio-economic (0.06). Climate conditions have little in-
fluence on vegetation trends in karst areas (most PD values are less than
0.10), but are the dominant factor affecting vegetation trends in non-karst
areas (PD=0.68). Eco-engineering plays an important role for vegetation
trends in the KarstMiddle-HighMountains (0.81), Karst Peak Forest Plain
(0.42), Karst Gorge (0.29) and Karst Peak-Cluster Depression (0.18), and
it is the dominant factor in the Karst Trough Valley (0.75), Karst Fault
Basin (0.54) and Karst Plateau (0.32), but not in the non-karst areas
(PD = 0.05).
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The contrasting influences of climate condition and eco-
engineering on vegetation trends in karst and non-karst areas was
further confirmed by GWR models. The strength of correlations be-
tween comprehensive factors and GSN slopes varies through space,
expressed by the range of values shown as boxplots in Fig. 5. The in-
fluence of eco-engineering on GSN slopes in karst areas is signifi-
cantly (p < 0.05) greater than that of climate conditions, and the
average local R2 values are 0.16 and 0.09, respectively. However,
the opposite is the case in non-karst areas, where the average local
R2 for eco-engineering is 0.11, and for climate condition it is 0.17.
High correlations (local R2 > 0.5) between eco-engineering and
GSN slopes are found in the Karst Trough Valley, while correlations
with climate condition are higher in non-karst areas, both is consis-
tent with the GDM based analyses (Table 2).

Both the regression slopes of the six PCs and the strength of the cor-
relations (local R2) are spatially heterogeneous, in other words, the sen-
sitivity of GSN slopes to the comprehensive factors is not spatially
homogeneous. The regression slopes of the natural factors expressed
by climate condition (PC1) and soil nutrients (PC5) show greater
variations than the anthropogenic factors (PC2,4,6), both for karst and
non-karst areas (Fig. 5d, e, f). In addition, GSN increases together with
eco-engineering. All regression slopes related to eco-engineering are
positive while half of the slopes of climate condition are negative in
the karst areas (Fig. 5e). A total of 85.39%of the regression slopes related
to climate condition are positive in non-karst areas (Fig. 5f), which



Table 2
PD values in different project regions.

PC4 PC1 PC2 PC3 PC5 PC6 PC4 PC1 PC4 PC2 PC4 PC3 PC4 PC5 PC4 PC6

I 0.42 0.08 0.80 0.25 0.46 0.20 0.50 0.92 0.98 ↑↑ 0.70 0.72 ↑↑

II 0.18 0.09 0.25 0.34 0.33 0.06 0.36 ↑↑ 0.75 ↑↑ 0.70 ↑↑ 0.74 ↑↑ 0.68 ↑↑

III 0.75 0.04 0.44 0.30 0.07 0.35 0.82 ↑↑ 0.89 0.84 0.86 ↑↑ 0.94

IV 0.81 0.17 0.79 0.18 0.82 0.70 0.94 1.00 1.00 0.96 1.00

V 0.29 0.34 0.74 0.61 0.47 0.26 0.85 ↑↑ 0.96 0.94 ↑↑ 0.80 ↑↑ 0.74 ↑↑

VI 0.32 0.15 0.07 0.12 0.28 0.21 0.60 ↑↑ 0.57 ↑↑ 0.80 ↑↑ 0.69 ↑↑ 0.71 ↑↑

VII 0.54 0.08 0.07 0.25 0.38 0.23 0.60 0.67 ↑↑ 0.77 0.75 0.90 ↑↑

Non-karst 0.05 0.68 0.45 0.10 0.20 0.30 0.79 ↑↑ 0.59 ↑↑ 0.45 ↑↑ 0.61 ↑↑ 0.53 ↑↑

Note: ↑↑means non-linear enhancement; ↑means bi-enhancement. I: Peak Forest Plain; II: Peak-Cluster Depression; III: Karst Trough Valley; IV:Middle-
High Mountains; V: Karst Gorge; VI: Karst Plateau; VII: Karst Fault Basin. PC1: Climate condition. PC2: Human activities. PC3: Soil texture. PC4: Eco-en-
gineering. PC5: Soil nutrients. PC6: Socio-economic.
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confirms that decreases in rainfall coincide with negative vegetation
trends (Fig. 3f, Fig. 4c, d).

We then studied the interaction between the comprehensive factors
to test how the effects of eco-engineering are enhanced by other factors.
The 5 interacting factor pairs that supported eco-engineering to increase
GSN are listed in Table 2. Enhancements were detected in all project re-
gions and for all factors. The impact of eco-engineering on vegetation
trends was nonlinearly enhanced in Karst Peak-Cluster Depression and
Karst Plateau, while a double-synergy effect (bi-enhanced) occurred in
Karst Middle-High Mountains. Enhancements vary greatly between the
different landforms and it is clear from Table 2 that decision-makers
should pay attention on the natural and social conditions in different pro-
ject regions to determine the measures of eco-engineering management.

4. Discussion

4.1. Dominant factors in different karst project regions

We studied long-term changes and spatial patterns in vegetation
cover during 1982 to 2016 and confirm the greening trend in the karst
region of south China (Zhu et al., 2016; Tong et al., 2017; Brandt et al.,
2018; Tong et al., 2018). After the implementation of ecological engi-
neering projects starting in the year 2000, vegetation growth acceler-
ated, which is in line with previous studies (Tong et al., 2016; Brandt
et al., 2018; Tong et al., 2018; Tong et al., 2020). Furthermore, we
show that areas of vegetation increase clustermainly in the karst region
of Guangxi and Guizhou (Tong et al., 2016), while a decline in vegeta-
tion growth was observed in the Karst Middle-High Mountains, Karst
Fault Basin and the non-karst areas of Yunnan.

Many studies have suggested that the spatio-temporal patterns of re-
gional vegetation trends are the consequence of climate change and land
use conversions (Piao et al., 2015; Qian et al., 2019; Zhuge et al., 2019).
Here we use six comprehensive factors reflecting climate conditions and
human activities and give statistical evidence on the importance of the
factors on vegetation trends. We show that climate conditions and a de-
crease in rainfall and increase in temperature alignwith the negative veg-
etation trends in thenon-karst areas of Yunnan (Brandt et al., 2018;Wang
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et al., 2020; Zhao et al., 2020a). However, in most karst areas, such as the
Peak Forest Plain, Peak-Cluster Depression, Karst Gorge, Karst Trough Val-
ley and the Karst Plateau, there was no significant change in rainfall and
temperature (Fig. 4c,d), and climate conditions were found to be irrele-
vant for the patterns of recent vegetation trends. We further showed
that most of the karst area is located in the East Asia monsoon climate
zone, having a stable and favorable climate over the study period, which
benefits eco-engineering. We further provide statistical evidence that
eco-engineering is indeed the dominant factor for vegetation increase in
fragile karst areas, such as the Karst Fault Basin and the Middle-High
Mountains, where hydrothermal conditions are rough and the environ-
ment is sensitive to human activities (Tao et al., 2020).

Human activities determine the vegetation trends in the Karst Peak
Forest Plain and Karst Gorge. Paddy soils in the Karst Peak Forest Plain
cover 12%, which is the highest percentage compared to other project
regions. In spite of the high degree of land use, high effectiveness of
eco-engineering was found in the Karst Peak Forest Plain (Tong et al.,
2017). Population concentrates in flat terrain and desertification in the
Karst Peak Forest Plain mainly occurs on sloping hills, making these
areas a hot-spot for recovery measures. The degree of land use was
lower in the Karst Gorge, but high altitude and steep slopes make the
landscape vulnerable and difficult to recover (Zhao et al., 2020a), re-
quiring reasonable measures.

Soil properties dominate vegetation trends in the Karst Plateau and
Peak-Cluster Depression, which are areas where severe rocky desertifi-
cation is reported (Jiang et al., 2014; Zhao et al., 2020b). Karst Plateaus
have a high coverage with paddy soils (10%), making farmers indepen-
dent of sloping lands and supporting vegetation growth. However, Karst
Peak-Cluster Depressions have little arable land (paddy soils cover only
5%) and most farmland is located on sloping hills, making rocky desert-
ification a serious issue in these areas (Wang et al., 2016). Zhang and
Wang (2009) showed that a shortage of mineral nutrients in shallow
soil causes a low vegetation productivity in karst mountain areas.
Here, vegetation restoration assisted by mineral fertilizers may be
more effective in soil fissures (Zhang and Wang, 2009; Peng et al.,
2020). Furthermore, the calcareous soils are fertile and support vegeta-
tion growth if human interference is kept low, making to reduction of



Fig. 5. Local R squares and slopes of GWR in different regions. PC1: Climate condition. PC2: Soil texture. PC3: Eco-engineering. PC4: Human activities. PC5: Soil nutrients. PC6: Socio-
economic.
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farmlands on sloping land an effective tool to restore vegetation (Gao
and Wang, 2019).

Ecological engineeringwas thedominant factor inKarst TroughValleys
and Fault Basins. In spite of a moderate project effectiveness detected by
Tonget al. (2017),we foundecological conservation causing vegetation in-
creases in these areas, consistent with Xu et al. (2019). Soil degradation in
the Karst Fault Basin hinders vegetation growth if human interference is
high (Xu et al., 2019; Shen et al., 2020). Increasing vegetation cover, re-
duced human disturbance and measures to increase soil nutrients may
help soils to recover (Shen et al., 2020). The ecological environment of
Karst Middle-High Mountains is fragile and difficult to recover (Xiong
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et al., 2014). While the transformation of farmland into grassland and for-
ests helps to accumulate soil organic matter (Liu and Huang, 2005) Tong
et al., 2017), the establishing of natural reserves and mountain closures
(Zhang et al., 2017a)would bemost effective in KarstMiddle-HighMoun-
tains, where population is low (Liu and Huang 2005, Jiang et al., 2014,
Xiong et al., 2014, Zhao et al., 2020a, Zhao et al., 2020b).

4.2. Interacting effects on vegetation trend in karst areas

The karst area is characterized by steep slopes, shallow soils, dense
population and severe poverty (Wang et al., 2008, Zhang et al., 2017a)
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Hu et al., 2018a, 2018b). Therefore, afforestation should consider the
local conditions and ecological and economic benefits of the areas
(Cao, 2011). The implementation of eco-engineering should focus on
areas with limited land resources, as the economic and ecological
value of these areas could be considerably increased by appropriate
measures (Wang et al., 2017b; Qiu et al., 2020). A variety of different
vegetation trends between project regions results from different inter-
actions between natural factors and human activities. Quantifying
these interactions is helpful for policymakers and stakeholders to
adopt ecological restoration measures to local settings (Shinn, 2016,
Zhang et al., 2020b). For example, because of unfavorable natural condi-
tions, GSN slope has shown a decrease trend inMiddle-HighMountains
and the Karst Fault Basin. Cold temperatures limit vegetation growth in
the protected areas along the rivers in Yunnan, and a decrease in precip-
itation causes a negative trend in vegetation cover. Strengthening land
use management and reducing human disturbance are effective mea-
sures to prevent ecological degradation in Middle-High Mountains
(Tong et al., 2020), which illustrates the synergic influence of eco-
engineering and natural factors on vegetation trends. Affected by the
dry-hot valley climate and global warming, unpredictable rainfall and
extreme solar radiation results in water-shortage in the Karst Fault
Basin and Gorge, leading to patches of vegetation surrounded by bare
soil (Yuan et al., 2020). However, human factors such as urbanization
and large-scale hydropower development along the Jinsha River (Wu
et al., 2020b) explain the non-linearly enhanced influence of eco-
engineering and human activities on vegetation trends. In addition,
the restoration of vegetation in areas with more cultivated land re-
sources (like the Karst Peak Forest Plain) should focus on supporting
the growth of new and precious plant species like the slow-growing
Dalbergia odrifera instead of planting fast growing forests (Jiang et al.,
2014, Wang et al., 2016, Zhang et al., 2020b). In areas of high human
pressure (like the Karst Plateau, Trough Valley and most parts of the
Peak-Cluster Depression) natural regeneration on slopes should be
combined with plantations on mountain foots (Wang et al., 2016, Qiu
et al., 2020).

4.3. Improvement and uncertainty of this study

Many studies have studied the drivers of vegetation change in China
karst (Tong et al., 2017, Tao et al., 2018, Li et al., 2019, Xu et al., 2019,
Zhang et al., 2019a, 2019b, Hou and Gao, 2020, Liu et al., 2020, Qiu
et al., 2020, Wu et al., 2020a, Zhang et al., 2020a, 2020b, Zhao et al.,
2020a). Our study contributes to the field using comprehensive factors
without multicollinearity (using PCA) and simplified models which
are easy to replicate. Moreover, we applied both GDM and GWRmodels
which work differently but lead to similar results, showing that climate
conditions dominant vegetation trends in non-karst areas, while it was
eco-engineering inmost karst areas.While bothmodels consider spatial
heterogeneity, GDM includes the interacting effects between environ-
mental factors on vegetation trends, and the GWR model quantifies
the sensitivity of vegetation trends to the factors.

We identified drivers affecting vegetation trends at a regional scale,
highlighting the role of large scale ecological conservation projects.
There are still several aspects that can be improved in future research.
First, the scale and zoning (or aggregation) problems are part of spatial
analysis (Ju et al., 2016) and can lead to different results due to different
aggregation sizes, methods or spatial arrangements (Jelinski and Wu,
1996). For the scale, ecological engineering data are only available in ad-
ministrative units (Tong et al., 2017), which limits all analyses to the
scale of counties. For the zoning effect, using the most appropriate
discretization method to stratify continuous variables into several cate-
gories is challenging, because these methods do not have standardized
rules (Cao et al., 2013; Zhao et al., 2017). Second, there is a loss of infor-
mation when performing PCA for dimension reduction, and the quality
of the data sources representing the comprehensive factors varies
greatly.
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5. Conclusion

This study analyzed temporal vegetation trends and their driving
forces in the Guangxi-Yunnan-Guizhou region in southern China. The
results show that vegetation growth in the karst areas increased
strongly after the implementation of conservation projects after the
year 2000, which was not the case for non-karst areas. Climate condi-
tions and a decrease in rainfall were responsible for low vegetation
growth in non-karst areas, while eco-engineering was the main cause
for vegetation increase in karst areas. Our study gives quantitative and
statistical evidence that large scale ecological conservation projects are
the main reason for the greening trend in south China karst, while cli-
mate is the dominant driver of negative vegetation trends in non-karst
areas. Furthermore, interactions between natural factors and human ac-
tivities enhance vegetation trends in all project regions, indicating the
importance of considering climate and geological settings when plan-
ning and evaluating eco-engineering measures.
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