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A B S T R A C T   

Electroactive microorganisms and electrochemical technologies have been separately used for environmental 
remediation such as antibiotics removal, yet the efficiency of coupling these two methods for chlorinated anti-
biotics removal is poorly known. Here we tested the synergy of Geobacter sulfurreducens PCA, an electroactive 
bacteria, and an electrical field, on chloramphenicol removal. Removal is increased two-fold by increasing the 
temperature from 30◦C to 37◦C. The cyclic voltammograms and chronoamperometry tests demonstrated that 
G. sulfurreducens PCA catalyzed chloramphenicol chemical reduction with electrode as excusive electron donor. A 
critical voltage, − 0.6 to − 0.5 V vs. Ag/AgCl, was discovered for chloramphenicol degradation with an increase of 
removal rate about 2.62-folds, from 31.06% to 81.41%. Combined removal with both G. sulfurreducens PCA and 
an electrical field increased the apparent rate constant and reached 82.77% removal at − 0.5 V. Specially, the 
combined removal at − 0.5 V even presented more robust removal efficiency compared to − 0.6 V (78.64%) 
without G. sulfurreducens PCA. Mass spectrometry of degradation products indicates the reduction of nitro into 
amine groups, and dechlorination into less toxic compounds. Overall, combined biocatalysis and an electrical 
field is a promising method to remove antibiotics from polluted environments.   

1. Introduction 

Antibiotics have been frequently detected in soil, surface water, 
groundwater and anaerobic engineering systems (Huang et al., 2019; 
Pan and Chu, 2016; Xiao et al., 2021; Yin et al., 2018). The extensive use 
of antibiotics poses a threat to the environment and human health by 
inducing the emergence of antibiotic resistant bacteria and genes (Aydin 
et al., 2015; Biancullo et al., 2019; Li et al., 2020). Chloramphenicol is a 
broad spectrum antibiotic intensively used in clinical practice, it is as an 
effective bacteriostatic antimicrobial for diverse bacteria (Liang et al., 
2013; Zhang et al., 2020). The intensive use of chloramphenicol is of 
increasing concern due to its mutagenic, carcinogenic and toxic effects, 
notably for hematopoietic and digestive system in humans and animals 

(Deng et al., 2017; Yang et al., 2020a). Nonetheless, chloramphenicol is 
still widely used in many developed countries due to its low 
manufacturing cost and extensive availability (Boeckx and Brett; 2019). 

Chloramphenicol and some other antibiotic removal have been 
tested using physicochemical approaches such as adsorption (Zhao 
et al., 2016), advanced oxidation (Karaolia et al., 2018; Wang and 
Zhuan, 2020), nanoparticles treatment (Guo et al., 2019; Xu et al., 
2020), UV/chlorine treatment (Dong et al., 2017), photocatalysis (Dou 
et al., 2020; Wei et al., 2020) and electrochemical oxidation/reduction 
(Garcia-Segura et al., 2014). Yet, these technologies are limited by high 
energy needs, chemical cost or secondary pollution. Alternatively, mi-
crobial degradation of chlorinated compound appears as a more sus-
tainable method for chloramphenicol removal because some 
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microorganisms tolerate chlorinated contaminants and perform 
dechlorination, thus decreasing toxicity (Boyd et al., 1983; Zhao et al., 
2015). 

Electroactive bacteria (EAB) have been recently used for bioreme-
diation (Aulenta et al., 2010; Chen et al., 2018; Palma et al., 2018). For 
instance, Geobacter spp. are electroactive bacteria that are able to 
degrade monoaromatic hydrocarbons and tetracycline hydrochloride 
(Kunapuli et al., 2010; Liu et al., 2017a; Zhang et al., 2013). Further 
revealed that Geobacter spp. are involved in the dehalogenation of pol-
ychlorinated biphenyls in anaerobic sediments. Biochar-assisted 
dechlorination of pentachlorophenol by Geobacter sulfurreducens (Yu 
et al., 2015), has suggested the benefit of adding a conductive material 
because biochar conductivity has been later shown to improve perfor-
mances (Xiao et al., 2019a, 2020a). This is explained by the fact that 
Geobacter spp. grow well on electrodes by harvesting electricity from 
wastewater or sediments, due to their excellent ability of extracellular 
electron transfer (Wang et al., 2018; Yang et al., 2017). Therefore, both 
electromicrobiology and electrochemical technology appear promising 
for pollutant removal. 

So far, either electroactive microorganisms or electric fields have 
been used separately for the removal of pollutants such as phenanthrene 
tetracycline hydrochloride (Peng et al., 2020; Sharma et al., 2020). Yet 
the feasibility, efficiency and mechanism of combining these two 
methods is poorly known, notably for chlorinated antibiotics. Here we 
studied: (1) the capability of Geobacter on chloramphenicol removal at 
diverse chloramphenicol concentrations and temperatures; (2) the 
reinforcing role of exogenous electric field for chloramphenicol 
removal; (3) a co-augmentation strategy, the combination of microbes 
and electric field, for chloramphenicol removal; and (4) the metabolic 
pathway of chloramphenicol at above co-augmentation strategy. This 
study proposes a promising strategy for removing antibiotics from 
wastewater. 

2. Materials and methods 

2.1. Bacteria strain and growth conditions 

G. sulfurreducens PCA (ATCC 51573) was donated by Professor Lov-
ley (Coppi et al., 2001), and was cultured with NBF medium containing 
10 mM acetate and 40 mM fumarate as the electron donor and electron 
acceptor. Basic medium composition is (g/L): CaCl2⋅2H2O 0.4, 
MgSO4⋅7H2O 0.1, NaHCO3 1.8, Na2CO3⋅H2O 0.5, Na2SeO4 0.0002, 
K2HPO4 0.22, KH2PO4⋅H2O 0.42, NH4Cl 0.2, NaCl 0.36, KCl 0.38. The 
mineral and vitamin medium elements are: Free Acid Non-Trisodium 
Salt (NTA) 21.4, MnCl2⋅4H2O 1, FeSO4⋅7H2O 3, CoCl2⋅6H2O 1.7, 
ZnSO4⋅7H2O 2, CuCl2⋅2H2O 0.3, AlK(SO4)2⋅12H2O 0.05, H3BO3 0.05, 
Na2MnO4⋅2H2O 0.9, NiSO4⋅6H2O 1.1, Na2WO4⋅2H2O 0.2, biotin 0.03, 
pantothenic acid 0.07, B-12 0.002, p-aminobenzoic acid 0.07, thioctic 
acid 0.07, nicotinic Acid 0.07, thiamine 0.07, riboflavin 0.07, pyridox-
ine HCl 0.15, folic acid 0.03. All incubations and experiments were 
performed at 30 ◦C in the dark under strict anaerobic conditions unless 
indicated otherwise. 

2.2. Removal of chloramphenicol by G. sulfurreducens PCA without 
electrical field 

Chloramphenicol removal was studied using the following procedure 
at two temperature: 25 ◦C (experiment 1) and 37 ◦C (experiment 2). 
Incubations were carried out in 100 mL serum bottles with 40 mL NBF 
medium using chloramphenicol (>98% purity) purchased from Aladdin 
(Shanghai, China). Bottles were sealed with thick butyl rubber and 
aluminium caps. About 5% (v/v) of G. sulfurreducens PCA at stationary 
phase was added into serum bottles under the condition of nitrogen- 
saturated atmosphere. Chloramphenicol was tested at 5, 10, 20, 30 
and 50 mg/L. Liquid samples were collected after 0, 24, 48, 72 and 96 h 
with a syringe in an anaerobic glovebox (Coy Laboratory Products), 

similarly as previous investigations (Li et al., 2018; Xiao et al., 2019b; 
Xiao et al., 2019c). All the incubation experiments were carried out in 
triplicate. After sampling, the samples were filtered through 0.22 µm 
filters. Chloramphenicol concentrations were monitored using a 1260 
Infinity high-performance liquid chromatography (HPLC) for Agilent 
Technologies, USA, equipped with a photodiode array detector. Analysis 
was performed using a 5 µm; 5 × 250 mm C18 column from Agilent, 
eluting methanol/water 55/45, v/v 1 mL/min with ultraviolet detection 
at 275 nm. Cell density was measured using a TU-1810 ultraviolet 
spectrophotometer at wavelength of 600 nm. 

2.3. Analysis of chloramphenicol removal by electrochemistry 

Experiment 3: chloramphenicol removal were done by cyclic vol-
tammetry and chronoamperometry in a three-electrode system using 
CHI660 electrochemical workstation form ChenHua, China, as Xiao 
et al. (2020b). A 3 mm-diameter glassy carbon electrode, and a 1.5 cm ×
1.5 cm platinum sheet electrode served respectively as working elec-
trode and auxiliary electrode. Reference electrode was Ag/AgCl elec-
trode. The working electrode was polished using successively 0.3 µm 
and 0.05 µm alumina slurries for 5 min, rinsed with distilled water and 
ethanol 3 times, then dried in clean bench. The working electrode was 
then activated by cyclic voltammetry in a 0.1 M H2SO4 and examined in 
10 mM potassium ferricyanide until the peak potential difference was 
below 80 mV; sweep between − 1 V and 1 V at scan rate of 25 mV/s. 

G. sulfurreducens PCA solution of 0.5 OD600 was harvested, 8000 rpm 
centrifugated at 4 ◦C then and resuspended in 10 mM phosphate buffer 
solution (PBS, pH = 7) for further analysis by cyclic voltammetry and 
chronoamperometry. Cyclic voltammetry was done in 30 mL oxygen- 
free PBS with centrifuged G. sulfurreducens PCA and 5 mg/L chloram-
phenicol. The voltage were between − 1 V and 1 V with a scanning rate 
of 10 mV/s. PCA suspension was replaced with PBS solution in the 
control group. Chronoamperometry test was performed at a constant 
potential of − 0.6 V with and without G. sulfurreducens PCA of 0.5 OD600. 
About 20 μL chloramphenicol was added into the electrolyte every 100 s 
after the baseline reached steady state. All the experiments were con-
ducted under strict anaerobic environment at 30 ◦C. 

2.4. Effect of electric field on chloramphenicol removal alone 

Experiment 4: The effect of electric field on chloramphenicol 
removal was carried out in a 100 mL single compartment electrolytic 
cell made of organic glass under galvanostatic conditions, after addition 
of 40 mL oxygen-free NBF medium containing 30 mg/L chloramphen-
icol. The electrolyte was acetate-free. Carbon cloths (20 ×20 ×1 mm) 
served as electrodes and were twisted by titanium wire of 0.8 mm 
diameter. Reference electrode was Ag/AgCl. Cathode potentials of − 0.4, 
− 0.5, − 0.6 and − 1.0 V vs. Ag/AgCl were applied using a CHI660 elec-
trochemical workstation. An open circuit experiment was used as the 
control. Solution was sampled at different time intervals then 0.22 µm- 
filtered. All operations were conducted under strict anaerobic condition 
at 30 ◦C. 

2.5. Synergistic effect of electric field and G. sulfurreducens PCA on 
chloramphenicol removal 

Experiment 5: The synergy of an electric field and G. sulfurreducens 
PCA for chloramphenicol removal was tested. That is, chloramphenicol 
removal may be promoted from the cooperation by biocatalysis from 
G. sulfurreducens PCA and physicochemical action from the electrode. In 
previous studies, a synergistic effect for antibiotic degradation occurred 
by coupling electrolysis with persulfate oxidation (Liu et al., 2018). 
Moreover, Liu et al. (2017b) proposed an effective tetracycline degra-
dation attributed to the synergistic effects of direct and indirect elec-
trochemical oxidation. Here, the synergistic action biocatalysis and 
electrochemistry was tested. 40 mL G. sulfurreducens PCA in the 
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exponential phase was centrifuged at 8000 rpm then washed with 
oxygen-free 10 mM PBS at pH 7.0 three times. The collected cells were 
dissolved in 1 mL PBS and transferred into the electrolytic cell. The 
electrolyte was 40 mL oxygen-free sterile NBF medium with or without 
10 mM sodium acetate. The final concentration of chloramphenicol was 
30 mg/L in the electrolyte. The applied cathode potential was − 0.5 and 
− 0.6 V vs. Ag/AgCl, and other operations refer to experiment 4. Ex-
periments were conducted in the dark under strict anaerobic conditions 
at 30 ◦C. 

2.6. Metabolic products analysis 

Experiment 6: chloramphenicol metabolites were studied by HPLC- 
MS/MS (TSQ Quantum Access MAX, Thermo Fisher, USA) according 
to Schymanski et al. (2014). Three types of samples were tested in the 
end of experiment: 1. A sample from experiment 4 at − 0.6 V. 2. A sample 
from experiment 5 at − 0.6 V with G. sulfurreducens PCA excluding so-
dium acetate. 3. A sample from experiment 5 at − 0.6 V with 
G. sulfurreducens PCA and sodium acetate. HPLC-MS/MS was set to 
positive ion mode. After cultivation, the samples were 0.45 µm filtered 
then the supernatants were placed into a separatory funnel with equal 
volume of ethyl acetate with a 15-minute shock. The ethyl acetate layer 
was transferred to a rotary evaporation flask, evaporated to near dryness 
in a 45 ◦C water bath, dilute with 1 mL methanol and 0.22 µm filtered 
prior measurement. The HPLC-MS/MS was equipped with an electro-
spray ionization source and operated in the positive/negative polarity 
mode. The column and detection conditions were consistent with the 
above HPLC detection method. 

2.7. Statistical analysis 

Data are presented as means ±standard deviation of triplicate cul-
tures. All statistical analyses were performed with the Origin 8.5 soft-
ware from Origin Lab Corporation, USA. T-test was used to analyze the 
significance level, and a p value below 0.05 was considered statistically 
significant. 

3. Results and discussion 

3.1. Chloramphenicol removal dynamics by electroactive bacteria 

We tested the performance of G. sulfurreducens PCA for chloram-
phenicol removal at concentrations of 5, 10, 20, 30, 50 mg/L in exper-
iment 1 at 30 ◦C (Fig. 1, Table 1). Results show that chloramphenicol 
removal within 96 h is 100% at 5 mg/L then decrease to 20% at 50 mg/l. 
This removal can be attributed to microbial processes because our pre-
vious study showed that physico-chemical adsorption of chloramphen-
icol by Geobacter is negligible (Xu et al., 2019). Removal can be 
modelled by first order kinetics (Fig. 1b), as follows: 

ln(
C
C0

) = − kappt (1)  

where C and C0 are chloramphenicol current and the initial concentra-
tions, kapp is the apparent rate constant, and t denotes time. kapp at 
different chloramphenicol concentration was achieved through fitting 
curves (Table 1). Chloramphenicol removal dynamics provides 
comprehensive information such as the apparent rate constant (kapp), 
which measures the removal efficiency affected by single biological or 
electrochemical actions. Furthermore, kapp is also a very important 
parameter to characterize the synergistic operation of biocatalysis and 
the electric field. Results show that kapp values decrease from 0.0397 h− 1 

at 5 mg/L to 0.0043 h− 1 at 50 mg/L, in agreement with removal rates. 
This could be explained by chloramphenicol toxicity on G. sulfurreducen 
PCA, as suggested by previous reports showing the antibacterial effect 
on rate constants (Mao et al., 2018a; Pan and Chu, 2016). Therefore, we 
hypothesized that G. sulfurreducen PCA biomass decreased with 
increasing chloramphenicol concentration. This antibacterial effect is 
confirmed by biomass monitoring that shows that the optical density is 
sharply decreasing with chloramphenicol concentration, and that opti-
cal density is correlated with the removal rate (Fig. 1c, d). This is also 
supported by the fact that bioaugmentation should be done to improve 
bioremediation of antibiotics-contaminated soil by bioaugmentation 
(Cycon et al., 2019; Hong et al., 2020). 

Fig. 1. Time course of the removal of chloramphenicol by G. sulfurreducens PCA under different initial concentrations (a) and kinetic fitting (b) at 30 ℃. The OD600 
values of G. sulfurreducens PCA at five initial chloramphenicol concentrations (c) and the relevance to ln (C/C0) (d). Values are the mean of three biological replicates. 
Error bars represent the SD. 
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Overall, results of chloramphenicol removal with G. sulfurreducens 
PCA alone at 30 ◦C show that the removal rate decreases with increasing 
chloramphenicol levels, and that removal is likely due to microbial 
processes, versus physicochemical adsorption. In the next section we 
tested the effect of temperature to try to improve the removal. 

3.2. Effect of temperature on chloramphenicol removal by electroactive 
bacteria 

The biodegradation rate of antibiotics should improve with tem-
perature (Wen et al., 2010). Therefore we tested the effect of elevation 
from 30 ◦C to 37 ◦C on chloramphenicol removal. Results show that 

bacterial biomass measured by optical density is much higher at 37 ◦C 
than at 30 ◦C (Figs. 1c and 2a, Table 1). Chloramphenicol was 
completely removed after a cultivation of 72 h when chloramphenicol 
concentration was less than 20 mg/L (Fig. 2b). Compared with 30 ◦C, 
the removal rates of 30 mg/L chloramphenicol (74.06%) and 50 mg/L 
chloramphenicol (59.93%) presented a twofold increase (Table 1). The 
values of kapp of 5 and 10 mg/L chloramphenicol were 0.0658 and 
0.0498 h− 1, which were about 1.66 and 1.63 times compared to 30 ◦C. It 
indicated that low concentration of chloramphenicol (<10 mg/L) could 
be eliminated completely by a small amount of G. sulfurreducens PCA. 
While, more biomass was necessary for efficient removal along with the 
increasing of chloramphenicol contents. In the same vein, the removal 
rate is much higher at 37 ◦C, yielding for example a threefold increase at 
50 mg/L, from about 20% removal at 30 ◦C to 60% removal at 37 ◦C. 
Beside biomass, other biological factors, such as specific enzyme activ-
ities, might also been impacted with the increase of temperature. Hence, 
the promotion of chloramphenicol degradation could be the conse-
quence of coaction of biomass and biological factors with a higher 
temperature, 37 ◦C. 

3.3. Electrical responses during chloramphenicol removal 

In experiment 3 we used cyclic voltametry and chronoamperometry 
to characterize the catalytic ability of G. sulfurreducens PCA to degrade 
chloramphenicol without exogenous organic carbon. This experiment 
was aimed at optimizing conditions of removal. Results show a weak 
reduction peak, at 10.1 nA/cm2, in the control group at − 0.6 V (Fig. 3a), 
which is the chloramphenicol reduction potential as previous reported 
(Alizadeh et al., 2012; Mao et al., 2018b). Therefore chloramphenicol 
probably undergoes weak reductive degradation with the electric field. 
In the presence of G. sulfurreducens PCA, the peak current density of 
27.5 nA/cm2 was 2.3-fold higher compared to the control group, which 
implies that G. sulfurreducens PCA directly induced chloramphenicol 
reduction using the electrode as electron donor. This enhancement of 
peak current by electroactive microorganisms and degradation rate is in 
line with previous reports (Liang et al., 2013; Xu et al., 2019). The 
catalytic activity of G. sulfurreducens PCA was further investigated by 
chronoamperometry at a fixed potential of − 0.6 V (Fig. 3b). With each 
chloramphenicol addition, some small reduction peaks appeared, sug-
gesting that weak abiotic degradation of chloramphenicol existed. Re-
sults show almost no variation without bacteria, and the very small 
peaks are probably due to abiotic degradation, as suggested also by a 
weaker redox peak in cyclic voltametry. By contrast, the current density 
increased sharply with bacteria with the involvement of 
G. sulfurreducens PCA, reaching 12.38 nA/cm2, which is three times that 
of the control, of 4.03 nA/cm2. Comprehensive results verified that 
chloramphenicol degradation occurred directly in the electric field and 
was further catalyzed by G. sulfurreducens PCA. 

Detoxification of chloramphenicol using a biocathode with an 
external power source has been shown in various media (Cotillas et al., 
2018; Guo et al., 2018; Liang et al., 2013). Although it was demonstrated 
that electrochemical reduction decreases the antibacterial activity of 
chloramphenicol (Kong et al., 2015), the critical voltage for chloram-
phenicol degradation is unknown. Therefore we tested cathode poten-
tials of − 0.4, − 0.5, − 0.6 and − 0.1 V to provide electrons in experiment 

Table 1 
Removal rate (%), optical density OD600 and removal rate constant (kapp) at different initial concentrations of chloramphenicol.  

Concentration (mg/L) 30 ◦C 37 ◦C 

Removal rate (%) OD600 kapp Removal rate (%) OD600 kapp  

5 100 0.249 ± 0.029  0.0397 100 0.401 ± 0.009  0.0658  
10 76.51 ± 0.234 0.169 ± 0.014  0.0305 100 0.362 ± 0.010  0.0498  
20 43.02 ± 0.169 0.059 ± 0.007  0.0144 85.28 ± 4.28 0.196 ± 0.006  0.0433  
30 28.01 ± 0.289 0.04 ± 0.006  0.0054 74.06 ± 2.62 0.121 ± 0.001  0.0136  
50 20.10 ± 0.24 0.03 ± 0.006  0.0043 59.93 ± 0.22 0.119 ± 0.005  0.0096  

Fig. 2. Time course of the removal of chloramphenicol by G. sulfurreducens PCA 
at 37 ℃ with increasing biomass. The OD600 values of G. sulfurreducens PCA at 
five initial concentrations (a) and the degradation kinetics (b) and kinetic fitting 
(c). Values are the mean of three biological replicates. Error bars represent 
the SD. 
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4. Results show that removal increases from 11.11% at − 0.4 V to 
81.41% at − 1.0 V (Fig. 3c). In details, about 11.11% of chloramphenicol 
was reduced at − 0.4 V. In contrast, there was no decrease of chloram-
phenicol content under the condition of open circuit. As the potential 
was lowered to − 0.5 V, the removal rate of chloramphenicol was 
increased to about 31.06%. The decrease of the potential from − 0.5 V to 
− 0.6 V significantly accelerated the removal rate of chloramphenicol, 
from 31.06% to 81.41%, an increase of about 2.62 times without bac-
teria. Robust decrease of the potential to − 1.0 V further increased the 
degradation rate of chloramphenicol, but the benefit was slight. 
Therefore, the optimum potential for chloramphenicol degradation 
should be between − 0.5 V and − 0.6 V. 

Overall, our results show the effective catalysis of chloramphenicol 
degradation by G. sulfurreducens PCA in an electric field, and that 
degradation should be critical between − 0.5 V and − 0.6 V. The next 
section explores the synergy of electroactive bacteria and an electrical 
field. 

3.4. Synergistic operation of biocatalysis and electric field for 
chloramphenicol removal 

Since we found a sharp drop of removal efficiency from − 0.6 V to 
− 0.5 V in the electric field alone, in experiment 5 we added 
G. sulfurreducens PCA into the system to test a possible improvement of 
degradation efficiency (Fig. 4). At − 0.6 V, the addition of 
G. sulfurreducens PCA slightly improved the degradation ability (Fig. 4a). 
In sharp contrast, the degradation is highly enhanced at − 0.5 V 
(p < 0.05). The corresponding kapp is 0.0157 h− 1, which is close to the 
efficiency of the cathode potential at − 0.6 V, 0.0184 h− 1, and more than 
four-fold that of the control group, of 0.0038 h− 1. These results 
demonstrate the synergy of electroactive bacteria and the electrical field 
for chloramphenicol degradation. Previous work showed that 17α- 
ethinylestradiol removal was improved by coupling electrochemical 
methods with anaerobic bacteria (He et al., 2017), yet critical potentials 
are still unknown which is important for energy costs. G. sulfurreducens 
PCA could make up for the required potential difference, namely it was 
feasible to achieve the same degradation efficiency even at a higher 
potential (from − 0.6 to − 0.5 V). Our results thus imply on the applied 
side that combining electroactive bacteria and an electric field requires 
higher voltage, and thus less energy. 

Acetate is an important substrate and electron donor for Geobacter 
spp (Caccavo et al., 1994; Xiao et al., 2018, 2019a). Therefore, we 
investigated the effect of adding sodium acetate to enhance the exoe-
lectrogenic degradation of chloramphenicol. Results show that adding 
sodium acetate stimulated the capability of G. sulfurreducens PCA with a 
high removal rate at both − 0.5 and − 0.6 V (Fig. 4b, Table 2). A such 
improvement is in agreement with the fact that Geobacter-affiliated 
phylotypes accounted to more than 40% of total bacteria following ac-
etate feeding in microbial fuel cells (Zhang et al., 2014). Our data show 
that chloramphenicol degradation follows a first-order reaction kinetics 

Fig. 3. The electrical signal during chloramphenicol degradation. Cyclic vol-
tammograms (a), chronoamperometry (b) and external electric field (c) were 
used. The red arrows in (b) represented the intermittent addition of chloram-
phenicol. Values are the mean of three biological replicates. Error bars repre-
sent the SD.(For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 4. Time course of removal of chloramphenicol under different cathode 
potentials with and without G. sulfurreducens PCA. Chloramphenicol degrada-
tion under potentials of − 0.5 and − 0.6 V with and without G. sulfurreducens 
PCA (a). The strengthening of chloramphenicol degradation by G. sulfurreducens 
PCA with extra acetate addition. Values are the mean of three biological rep-
licates (b). Error bars represent the SD. 
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with a removal efficiency reaching 98.95% at − 0.6 V by combining 
biocatalysis and electric field, which is 11.51% higher than that of the 
negative group without sodium acetate (p < 0.05). Moreover, the pres-
ence of electroactive bacteria raised kapp 1.34-fold versus the control 
without bacteria. Noteworthy, the degradation rate at − 0.5 V was even 
higher with bacteria than that of the electric field alone at − 0.6 V, with 
rate constants of 0.0201 h− 1 versus 0.0184 h− 1, and removal of 94.40% 
versus 81.81%, respectively (p < 0.05). Overall our findings demon-
strate the synergy of electroactive bacteria and an electrical field to 
remove chloramphenicol, and that addition of sodium acetate further 
increases the degradation efficiency. 

3.5. Analysis of degradation products 

Chloramphenicol metabolites were analysed after degradation using 
both G. sulfurreducens PCA and an electric field in experiment 6 (Fig. 5). 
Chloramphenicol, which show typical m/z ratios at 321, 323 and 325 by 
HPLC-MS/MS (Xu et al., 2019), was not detected at the end of our ex-
periments, suggesting complete removal. We detected small amounts of 
an aromatic amine (AMCl2) at m/z 295 (Fig. 5a), suggesting that nitro 
groups of chloramphenicol was reduced to amino substituents. This is in 
line with nitro reduction and dechlorination observed previously for 
chloramphenicol (Kong et al., 2015, Lin et al., 2019; Yang et al., 2020b). 
Noteworthy, it is reported that AMCl2 induces 1/500 of the toxicity of 
the corresponding nitroaromatic precursor (Donlon et al., 1995; Xu 
et al., 2019). In our experiment, AMCl2 was probably further dechlori-
nated to produce inactive antibacterial products AMCl at the m/z of 279 
[M+Na+] (Fig. 5a). This suggests that combining electroactive bacteria 
and an electric field has the potential to markedly reduce the biotoxicity 
of some antibiotics in the environments. 

In brief, the degradation process of chloramphenicol by synergistic 
operation of biocatalysis and electric field is proposed (Fig. 5b). Chlor-
amphenicol was firstly converted to AMCl2, i.e. the nitro group of 
chloramphenicol was replaced by amino group. Then, AMCl2 was 
translated to AMCl by dechlorination. These findings showed that 
cathode served an electron donor to promote effective chloramphenicol 
reduction. Under abiotic cathode condition, electrons directly reduce 
chloramphenicol to finish the nitro reduction or dechlorination process. 
By comparing the degradation progress of chloramphenicol under 
electric field alone at − 0.6 V (Experiment 4, Fig. S1), degradation 
products were similar with treatments in the presence of 
G. sulfurreducens PCA but lacking sodium acetate (Fig. 5a). After 
augmentation of G. sulfurreducens PCA by providing extra sodium ace-
tate, the degradation products did not show significant difference 
(Fig. 5a and Fig. S2), suggesting that biocatalysis and abiotic reduction 
may follow the similar route for chloramphenicol degradation in this 
study (Fig. 5b). There are mainly two strategies for the degradation 
process: (1) G. sulfurreducens PCA could act as biocatalyst to realize nitro 
reduction or dechlorination reaction; (2) G. sulfurreducens PCA, as 
typical electroactive microorganism, could facilitate electron flow from 
cathode to chloramphenicol. 

4. Conclusion 

Chloramphenicol, a recalcitrant endocrine-disrupting contaminant, 
was efficiently removed by coupling G. sulfurreducens PCA with electric 
field. An obvious inhibitory effect on the dechlorination activity and 
growth of G. sulfurreducens PCA appeared when the dosages exceeded 
20 mg/L. Individual G. sulfurreducens PCA demonstrated relatively poor 
removal capability at 30 ◦C, such as 20% at 50 mg/l. More effective 
removal was achieved with the increase of temperature to 37 ◦C with the 
value of about 60% at 50 mg/l. This study showed that single electro-
chemical method was with the capability of catalyzing chloramphenicol 
reduction, which could be impacted greatly by cathode potential. 
Notably, synergistic operation of biocatalysis by G. sulfurreducens PCA 
and electric field maximized chloramphenicol removal efficiency. The 
apparent rate constant at − 0.5 V was more than fourfold improvement 
with the addition of G. sulfurreducens PCA. Very interestingly, bio-
catalysis compensated or even stimulated the more robust chloram-
phenicol removal at a higher potential (from − 0.6 to − 0.5 V). The work 
proposes a feasible strategy for pollutant poisoning treatment by the 
synergistic operation of electroactive microorganisms and electric field. 
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Table 2 
Removal rate and removal rate constant (kapp) under electric field. (chloram-
phenicol concentration was 30 mg/L).  

Cathode 
alone 

Removal rate 
(100%) 

kapp Cathode- 
G.s. PCA 

Removal rate 
(100%) 

kapp 

-0.4 V 10.62 ± 0.12  0.0012 -0.5 V 82.77 ± 0.75  0.0157 
-0.5 V 40.46 ± 1.32  0.0038 -0.6 V 87.44 ± 2.88  0.0285 
-0.6 V 78.64 ± 2.13  0.0184 -0.5 V- 

NaAC 
94.40 ± 1.57  0.0201 

-1.0 V 97.11 ± 1.94  0.0373 -0.6 V- 
NaAC 

98.95 ± 1.49  0.0417  

Fig. 5. The potential reduction products of chloramphenicol (a) and degrada-
tion pathway (b). 
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