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Graphical abstract
Public summary
- “Can machines think?” The goal of artificial intelligence (AI) is to enable machines to mimic human thoughts and

behaviors, including learning, reasoning, predicting, and so on.

- “Can AI do fundamental research?” AI coupled with machine learning techniques is impacting a wide range of
fundamental sciences, including mathematics, medical science, physics, etc.
- “HowdoesAI accelerate fundamental research?”New research and applications are emerging rapidly with the support by
AI infrastructure, including data storage, computing power, AI algorithms, and frameworks.
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Artificial intelligence (AI) coupled with promising machine learning (ML)
techniqueswell known from computer science is broadly affectingmany
aspects of various fields including science and technology, industry, and
even our day-to-day life. The ML techniques have been developed to
analyze high-throughput data with a view to obtaining useful insights,
categorizing, predicting, and making evidence-based decisions in novel
ways, which will promote the growth of novel applications and fuel the
sustainable booming of AI. This paper undertakes a comprehensive sur-
vey on the development and application of AI in different aspects of
fundamental sciences, including information science, mathematics,
medical science, materials science, geoscience, life science, physics,
and chemistry. The challenges that each discipline of science meets,
and the potentials of AI techniques to handle these challenges, are dis-
cussed in detail. Moreover, we shed light on new research trends entail-
ing the integration of AI into each scientific discipline. The aim of this pa-
per is to provide a broad research guideline on fundamental sciences
with potential infusion of AI, to help motivate researchers to deeply un-
derstand the state-of-the-art applications of AI-based fundamental sci-
ences, and thereby to help promote the continuous development of
these fundamental sciences.
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INTRODUCTION
“Can machines think?” Alan Turing posed this question in his famous pa-

per “ComputingMachinery and Intelligence.”1 He believes that to answer this
question, we need to define what thinking is. However, it is difficult to define
thinking clearly, because thinking is a subjective behavior. Turing then intro-
duced an indirect method to verify whether a machine can think, the Turing
test, which examines a machine’s ability to show intelligence indistinguish-
able from that of human beings. A machine that succeeds in the test is qual-
ified to be labeled as artificial intelligence (AI).

AI refers to the simulation of human intelligence by a systemor amachine.
The goal of AI is to develop amachine that can think like humans andmimic
human behaviors, including perceiving, reasoning, learning, planning, predict-
ing, and so on. Intelligence is one of the main characteristics that distin-
guishes human beings from animals. With the interminable occurrence of in-
dustrial revolutions, an increasing number of types of machine types
continuously replace human labor from all walks of life, and the imminent
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replacement of human resources bymachine intelligence is the next big chal-
lenge to be overcome. Numerous scientists are focusing on the field of AI,
and this makes the research in the field of AI rich and diverse. AI research
fields include search algorithms, knowledge graphs, natural languages pro-
cessing, expert systems, evolution algorithms, machine learning (ML), deep
learning (DL), and so on.

The general framework of AI is illustrated in Figure 1. The development
process of AI includes perceptual intelligence, cognitive intelligence, and de-
cision-making intelligence. Perceptual intelligencemeans that amachine has
the basic abilities of vision, hearing, touch, etc., which are familiar to humans.
Cognitive intelligence is a higher-level ability of induction, reasoning and
acquisition of knowledge. It is inspired by cognitive science, brain science,
and brain-like intelligence to endow machines with thinking logic and cogni-
tive ability similar to human beings. Once a machine has the abilities of
perception and cognition, it is often expected to make optimal decisions as
human beings, to improve the lives of people, industrial manufacturing, etc.
Decision intelligence requires the use of applied data science, social science,
decision theory, and managerial science to expand data science, so as to
make optimal decisions. To achieve the goal of perceptual intelligence, cogni-
tive intelligence, and decision-making intelligence, the infrastructure layer of
AI, supported by data, storage and computing power, ML algorithms, and
AI frameworks is required. Then by training models, it is able to learn the in-
ternal laws of data for supporting and realizing AI applications. The applica-
tion layer of AI is becoming more and more extensive, and deeply integrated
with fundamental sciences, industrial manufacturing, human life, social
governance, and cyberspace, which has a profound impact on our work
and lifestyle.

HISTORY OF AI
The beginning of modern AI research can be traced back to John

McCarthy, who coined the term “artificial intelligence (AI),” during at a con-
ference at Dartmouth College in 1956. This symbolized the birth of the AI
scientific field. Progress in the following years was astonishing. Many sci-
entists and researchers focused on automated reasoning and applied AI
for proving of mathematical theorems and solving of algebraic problems.
One of the famous examples is Logic Theorist, a computer program written
by Allen Newell, Herbert A. Simon, and Cliff Shaw, which proves 38 of the
first 52 theorems in “Principia Mathematica” and provides more elegant
proofs for some.2 These successes made many AI pioneers wildly opti-
mistic, and underpinned the belief that fully intelligent machines would be
built in the near future. However, they soon realized that there was still a
long way to go before the end goals of human-equivalent intelligence in ma-
chines could come true. Many nontrivial problems could not be handled by
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the logic-based programs. Another challenge was the lack of computational
resources to compute more and more complicated problems. As a result,
organizations and funders stopped supporting these under-delivering AI
projects.

AI came back to popularity in the 1980s, as several research institutions
and universities invented a type of AI systems that summarizes a series of
basic rules from expert knowledge to help non-experts make specific deci-
sions. These systems are “expert systems.” Examples are the XCON de-
signed by Carnegie Mellon University and the MYCIN designed by Stanford
University. The expert system derived logic rules from expert knowledge to
solve problems in the real world for the first time. The core of AI research dur-
ing this period is the knowledge thatmademachines “smarter.”However, the
expert system gradually revealed several disadvantages, such as privacy
technologies, lack of flexibility, poor versatility, expensive maintenance cost,
and so on. At the same time, the Fifth Generation Computer Project, heavily
funded by the Japanese government, failed tomeetmost of its original goals.
Once again, the funding for AI research ceased, and AI was at the second
lowest point of its life.

In 2006, Geoffrey Hinton and coworkers3,4 made a breakthrough in AI by
proposing an approach of building deeper neural networks, as well as a
way to avoid gradient vanishing during training. This reignited AI research,
and DL algorithms have become one of the most active fields of AI research.
DL is a subset of ML based on multiple layers of neural networks with repre-
sentation learning,5 whileML is a part of AI that a computer or a program can
use to learn and acquire intelligencewithout human intervention. Thus, “learn”
is the keyword of this era of AI research. Big data technologies, and the
improvement of computing power havemade deriving features and informa-
tion frommassive data samplesmore efficient. An increasing number of new
neural network structures and training methods have been proposed to
improve the representative learning ability of DL, and to further expand it
into general applications. Current DL algorithms match and exceed human
capabilities on specific datasets in the areas of computer vision (CV) and nat-
ural language processing (NLP). AI technologies have achieved remarkable
successes in all walks of life, and continued to show their value as backbones
in scientific research and real-world applications.

Within AI, ML is having a substantial broad effect across many aspects of
technology and science: from computer science to geoscience to materials
science, from life science to medical science to chemistry to mathematics
and to physics, from management science to economics to psychology,
andother data-intensive empirical sciences, asMLmethods have been devel-
oped to analyze high-throughput data to obtain useful insights, categorize,
predict, andmake evidence-based decisions in novel ways. To train a system
by presenting it with examples of desired input-output behavior, could be far
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Figure 1. The general framework of AI
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easier than to program it manually by predicting the desired response for all
potential inputs. The following sections survey eight fundamental sciences,
including information science (informatics), mathematics, medical science,
materials science, geoscience, life science, physics, and chemistry, which
develop or exploit AI techniques to promote the development of sciences
and accelerate their applications to benefit human beings, society, and
the world.

AI IN INFORMATION SCIENCE
AI aims to provide the abilities of perception, cognition, and decision-mak-

ing for machines. At present, new research and applications in information
science are emerging at an unprecedented rate, which is inseparable from
the support by the AI infrastructure. As shown in Figure 2, the AI infrastructure
layer includes data, storage and computing power, ML algorithms, and the AI
framework. The perception layer enables machines have the basic ability of
vision, hearing, etc. For instance, CV enables machines to “see” and identify
objects, while speech recognition and synthesis helps machines to “hear”
and recognize speech elements. The cognitive layer provides higher ability
levels of induction, reasoning, and acquiring knowledge with the help of
NLP,6 knowledge graphs,7 and continual learning.8 In the decision-making
layer, AI is capable of making optimal decisions, such as automatic planning,
expert systems, and decision-supporting systems. Numerous applications of
AI have had a profound impact on fundamental sciences, industrial
manufacturing, human life, social governance, and cyberspace. The following
subsections provide an overview of the AI framework, automatic machine
learning (AutoML) technology, and several state-of-the-art AI/ML applications
in the information field.

The AI framework provides basic tools for AI algorithm
implementation

In the past 10 years, applications based onAI algorithmshave playeda sig-
nificant role in various fields and subjects, on the basis ofwhich the prosperity
of the DL framework and platform has been founded. AI frameworks and
platforms reduce the requirement of accessing AI technology by integrating
the overall process of algorithm development, which enables researchers
from different areas to use it across other fields, allowing them to focus on
designing the structure of neural networks, thus providing better solutions
to problems in their fields. At the beginning of the 21st century, only a few
ll
tools, such as MATLAB, OpenNN, and Torch, were capable of describing
and developing neural networks. However, these tools were not originally de-
signed for AImodels, and thus faced problems, such as complicated user API
and lacking GPU support. During this period, using these frameworks de-
manded professional computer science knowledge and tedious work on
model construction. As a solution, early frameworks of DL, such as Caffe,
Chainer, and Theano, emerged, allowing users to conveniently construct
complex deep neural networks (DNNs), such as convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), and LSTM conveniently,
and this significantly reduced the cost of applying AI models. Tech giants
then joined the march in researching AI frameworks.9 Google developed
the famous open-source framework, TensorFlow, while Facebook’s AI
research team released another popular platform, PyTorch, which is based
on Torch; Microsoft Research published CNTK, and Amazon announced
MXNet. Among them, TensorFlow, also the most representative framework,
referred to Theano’s declarative programming style, offering a larger space
for graph-based optimization, while PyTorch inherited the imperative pro-
gramming style of Torch, which is intuitive, user friendly, more flexible, and
easier to be traced. Asmodern AI frameworks and platforms are beingwidely
applied, practitioners can now assemble models swiftly and conveniently by
adopting various building block sets and languages specifically suitable for
given fields. Polished over time, these platforms gradually developed a clearly
defined user API, the ability for multi-GPU training and distributed training, as
well as a variety of model zoos and tool kits for specific tasks.10 Looking for-
ward, there are a few trends that may become the mainstream of next-gen-
eration framework development. (1) Capability of super-scalemodel training.
With the emergence of models derived fromTransformer, such as BERT and
GPT-3, the ability of training largemodels has become an ideal feature of the
DL framework. It requiresAI frameworks to train effectively under the scale of
hundreds or even thousands of devices. (2) Unified API standard. The APIs of
many frameworks are generally similar but slightly different at certain points.
This leads to some difficulties and unnecessary learning efforts, when the
user attempts to shift from one framework to another. The API of some
frameworks, such as JAX, has already become compatible with Numpy stan-
dard, which is familiar tomost practitioners. Therefore, a unified API standard
for AI frameworks may gradually come into being in the future. (3) Universal
operator optimization. At present, kernels of DL operator are implemented
either manually or based on third-party libraries. Most third-party libraries
The Innovation 2, 100179, November 28, 2021 3
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are developed to suit certain hardware platforms, causing large unnecessary
spending when models are trained or deployed on different hardware plat-
forms. The development speed of new DL algorithms is usually much faster
than the update rate of libraries, which often makes new algorithms to be
beyond the range of libraries’ support.11

To improve the implementation speed of AI algorithms,much research fo-
cuses on how to use hardware for acceleration. The DianNao family is one of
the earliest research innovations on AI hardware accelerators.12 It includes
DianNao, DaDianNao, ShiDianNao, and PuDianNao, which can be used to
accelerate the inference speed of neural networks and other ML algorithms.
Of these, the best performance of a 64-chipDaDianNao systemcan achieve a
speed up of 450.653 over a GPU, and reduce the energy by 150.313. Prof.
Chen and his team in the Institute of Computing Technology also designed
an Instruction Set Architecture for a broad range of neural network accelera-
tors, called Cambricon, which developed into a serial DL accelerator. After
Cambricon, many AI-related companies, such as Apple, Google, HUAWEI,
etc., developed their own DL accelerators, and AI accelerators became an
important research field of AI.

AI for AI—AutoML
AutoML aims to study how to use evolutionary computing, reinforcement

learning (RL), and other AI algorithms, to automatically generate specified AI
algorithms. Research on the automatic generation of neural networks has ex-
isted before the emergence of DL, e.g., neural evolution.13 The main purpose
of neural evolution is to allow neural networks to evolve according to the prin-
ciple of survival of the fittest in the biological world. Through selection, cross-
over, mutation, and other evolutionary operators, the individual quality in a
population is continuously improved and, finally, the individual with the great-
est fitness represents the best neural network. The biological inspiration in
4 The Innovation 2, 100179, November 28, 2021
this field lies in the evolutionary process of human brain neurons. The human
brain has such developed learning and memory functions that it cannot do
without the complex neural network system in the brain. The whole neural
network system of the human brain benefits from a long evolutionary pro-
cess rather than gradient descent and back propagation. In the era of DL,
the application of AI algorithms to automatically generate DNN has attracted
more attention and, gradually, developed into an important direction of Au-
toML research: neural architecture search. The implementation methods of
neural architecture search are usually divided into the RL-based method
and the evolutionary algorithm-based method. In the RL-based method, an
RNN is used as a controller to generate a neural network structure layer by
layer, and then the network is trained, and the accuracy of the verification
set is used as the reward signal of the RNN to calculate the strategy gradient.
During the iteration, the controller will give the neural network, with higher ac-
curacy, a higher probability value, so as to ensure that the strategy function
can output the optimal network structure.14 The method of neural architec-
ture search through evolution is similar to the neural evolutionmethod, which
is based on a population and iterates continuously according to the principle
of survival of the fittest, so as to obtain a high-quality neural network.15

Through the application of neural architecture search technology, the design
of neural networks is more efficient and automated, and the accuracy of the
network gradually outperforms that of the networks designed by AI experts.
For example, Google’s SOTA network EfficientNet was realized through the
baseline network based on neural architecture search.16

AI enabling networking design adaptive to complex network
conditions

The application of DL in the networking field has received strong interest.
Network design often relies on initial network conditions and/or theoretical
www.cell.com/the-innovation
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assumptions to characterize real network environments. However, traditional
network modeling and design, regulated by mathematical models, are un-
likely to deal with complex scenarios with many imperfect and high dynamic
network environments. Integrating DL into network research allows for a bet-
ter representation of complex network environments. Furthermore, DL could
be combinedwith theMarkov decision process and evolve into the deep rein-
forcement learning (DRL) model, which finds an optimal policy based on the
reward function and the states of the system. Taken together, these tech-
niques could be used to make better decisions to guide proper network
design, thereby improving the network quality of service and quality of expe-
rience. With regard to the aspect of different layers of the network protocol
stack, DL/DRL can be adopted for network feature extraction, decision-mak-
ing, etc. In the physical layer, DL can be used for interference alignment. It can
also be used to classify themodulationmodes, design efficient network cod-
ing17 and error correction codes, etc. In the data link layer, DL can be used for
resource (such as channels) allocation, medium access control, traffic pre-
diction,18 link quality evaluation, and so on. In the network (routing) layer, rout-
ing establishment and routing optimization19 can help to obtain an optimal
routing path. In higher layers (such as the application layer), enhanced data
compression and task allocation is used. Besides the above protocol stack,
one critical area of using DL is network security. DL can be used to classify
the packets into benign/malicious types, and how it can be integrated with
other ML schemes, such as unsupervised clustering, to achieve a better
anomaly detection effect.

AI enabling more powerful and intelligent nanophotonics
Nanophotonic components have recently revolutionized the field of optics

via metamaterials/metasurfaces by enabling the arbitrary manipulation of
light-matter interactions with subwavelength meta-atoms or meta-mole-
cules.20–22 The conventional design of such components involves generally
forward modeling, i.e., solving Maxwell’s equations based on empirical and
intuitive nanostructures to find corresponding optical properties, as well as
the inverse design of nanophotonic devices given an on-demand optical
response. The trans-dimensional feature of macro-optical components con-
sisting of complex nano-antennas makes the design process very time
consuming, computationally expensive, and even numerically prohibitive,
such as device size and complexity increase. DL is an efficient and automatic
platform, enabling novel efficient approaches to designing nanophotonic de-
vices with high-performance and versatile functions. Here, we present briefly
the recent progress of DL-based nanophotonics and itswide-ranging applica-
tions. DL was exploited for forward modeling at first using a DNN.23 The
transmission or reflection coefficients can be well predicted after training
on huge datasets. To improve the prediction accuracy of DNN in case of
small datasets, transfer learning was introduced to migrate knowledge be-
tween different physical scenarios, which greatly reduced the relative error.
Furthermore, a CNN and an RNNwere developed for the prediction of optical
properties fromarbitrary structures using images.24 TheCNN-RNNcombina-
tion successfully predicted the absorption spectra from the given input struc-
tural images. In inverse design of nanophotonic devices, there are three
different paradigms of DL methods, i.e., supervised, unsupervised, and
RL.25 Supervised learning has been utilized to design structural parameters
for the pre-defined geometries, such as tandem DNN and bidirectional
DNNs. Unsupervised learning methods learn by themselves without a spe-
cific target, and thus are more accessible to discovering new and arbitrary
patterns26 in completely new data than supervised learning. A generative ad-
versarial network (GAN)-based approach, combining conditional GANs and
Wasserstein GANs, was proposed to design freeform all-dielectric multifunc-
tional metasurfaces. RL, especially double-deep Q-learning, powers up the in-
verse design of high-performance nanophotonic devices.27 DL has endowed
nanophotonic devices with better performance and more emerging applica-
tions.28,29 For instance, an intelligent microwave cloak driven by DL exhibits
millisecond and self-adaptive response to an ever-changing incident wave
and background.28 Another example is that a DL-augmented infrared nano-
plasmonic metasurface is developed for monitoring dynamics between
fourmajor classes of bio-molecules, which could impact the fields of biology,
ll
bioanalytics, and pharmacology from fundamental research, to disease diag-
nostics, to drug development.29 The potential of DL in thewide arena of nano-
photonics has been unfolding. Even end-users without optics and photonics
background could exploit the DL as a black box toolkit to design powerful
optical devices. Nevertheless, how to interpret/mediate the intermediate DL
process and determine the most dominant factors in the search for optimal
solutions, are worthy of being investigated in depth. We optimistically
envisage that the advancements in DL algorithms and computation/optimi-
zation infrastructures would enable us to realize more efficient and reliable
training approaches, more complex nanostructures with unprecedented
shapes and sizes, and more intelligent and reconfigurable optic/optoelec-
tronic systems.

AI in other fields of information science
We believe that AI has great potential in the following directions:

d AI-based risk control and management in utilities can prevent costly
or hazardous equipment failures by using sensors that detect and
send information regarding the machine’s health to the manufac-
turer, predicting possible issues that could occur so as to ensure
timely maintenance or automated shutdown.

d AI could be used to produce simulations of real-world objects, called
digital twins. When applied to the field of engineering, digital twins
allow engineers and technicians to analyze the performance of an
equipment virtually, thus avoiding safety and budget issues associ-
ated with traditional testing methods.

d Combined with AI, intelligent robots are playing an important role in
industry and human life. Different from traditional robotsworking ac-
cording to the procedures specified by humans, intelligent robots
have the ability of perception, recognition, and even automatic plan-
ning and decision-making, based on changes in environmental con-
ditions.

d AI of things (AIoT) or AI-empowered IoT applications.30 have
become a promising development trend. AI can empower the con-
nected IoT devices, embedded in various physical infrastructures,
to perceive, recognize, learn, and act. For instance, smart cities
constantly collect data regarding quality-of-life factors, such as the
status of power supply, public transportation, air pollution, andwater
use, to manage and optimize systems in cities. Due to these data,
especially personal data being collected from informed or unin-
formed participants, data security, and privacy31 require protection.
AI IN MATHEMATICS
Mathematics always plays a crucial and indispensable role in AI. Decades

ago, quite a few classical AI-related approaches, such as k-nearest
neighbor,32 support vector machine,33 and AdaBoost,34 were proposed and
developed after their rigorous mathematical formulations had been estab-
lished. In recent years, with the rapid development of DL,35 AI has been gain-
ingmore andmore attention in themathematical community. Equipped with
the Markov process, minimax optimization, and Bayesian statistics, RL,36

GANs,37 and Bayesian learning38 became the most favorable tools in many
AI applications. Nevertheless, there still exist plenty of open problems in
mathematics forML, including the interpretability of neural networks, the opti-
mization problems of parameter estimation, and the generalization ability of
learning models. In the rest of this section, we discuss these three questions
in turn.

The interpretability of neural networks
From a mathematical perspective, ML usually constructs nonlinear

models, with neural networks as a typical case, to approximate certain func-
tions. The well-known Universal Approximation Theorem suggests that, un-
der very mild conditions, any continuous function can be uniformly approxi-
mated on compact domains by neural networks,39 which serves a vital
function in the interpretability of neural networks. However, in real
The Innovation 2, 100179, November 28, 2021 5
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applications, ML models seem to admit accurate approximations of many
extremely complicated functions, sometimes even black boxes, which are
far beyond the scope of continuous functions. To understand the effective-
ness of MLmodels, many researchers have investigated the function spaces
that can be well approximated by them, and the corresponding quantitative
measures. This issue is closely related to the classical approximation theory,
but the approximation scheme is distinct. For example, Bach40 finds that the
random feature model is naturally associated with the corresponding repro-
ducing kernel Hilbert space. In the sameway, the Barron space is identified as
the natural function space associatedwith two-layer neural networks, and the
approximation error is measured using the Barron norm.41 The correspond-
ing quantities of residual networks (ResNets) are defined for the flow-induced
spaces. For multi-layer networks, the natural function spaces for the pur-
poses of approximation theory are the tree-like function spaces introduced
inWojtowytsch.42 There are several works revealing the relationship between
neural networks and numerical algorithms for solving partial differential
equations. For example, He and Xu43 discovered that CNNs for image clas-
sification have a strong connection with multi-grid (MG) methods. In fact,
the pooling operation and feature extraction in CNNs correspond directly to
restriction operation and iterative smoothers in MG, respectively. Hence,
various convolution and pooling operations used in CNNs can be better
understood.

The optimization problems of parameter estimation
In general, the optimization problem of estimating parameters of certain

DNNs is in practice highly nonconvex and often nonsmooth. Can the global
minimizers be expected? What is the landscape of local minimizers? How
does one handle the nonsmoothness? All these questions are nontrivial
from an optimization perspective. Indeed, numerous works and experiments
demonstrate that the optimization for parameter estimation in DL is itself a
much nicer problem than once thought; see, e.g., Goodfellow et al. 44 As a
consequence, the study on the solution landscape (Figure 3), also known
as loss surface of neural networks, is no longer supposed to be inaccessible
and can even in turn provide guidance for global optimization. Interested
6 The Innovation 2, 100179, November 28, 2021
readers can refer to the survey paper (Sun et al.45) for recent progress in
this aspect.

Recent studies indicate that nonsmooth activation functions, e.g., rectified
linear units, arebetter than smooth ones in finding sparse solutions. However,
the chain rule does not work in the case that the activation functions are non-
smooth, which then makes the widely used stochastic gradient (SG)-based
approaches not feasible in theory. Taking approximated gradients at non-
smooth iterates as a remedy ensures that SG-typemethods are still in exten-
sive use, but that the numerical evidence has also exposed their limitations.
Also, the penalty-based approaches proposed by Cui et al.46 and Liu et al.47

provide a new direction to solve the nonsmooth optimization problems
efficiently.

The generalization ability of learning models
A small training error does not always lead to a small test error. This gap is

caused by the generalization ability of learning models. A key finding in sta-
tistical learning theory states that the generalization error is bounded by a
quantity that grows with the increase of the model capacity, but shrinks as
the number of training examples increases.48 A common conjecture relating
generalization to solution landscape is that flat and wide minima generalize
better than sharp ones. Thus, regularization techniques, including the dropout
approach,49 have emerged to force the algorithms to bypass the sharp
minima. However, the mechanism behind this has not been fully explored.
Recently, some researchers have focused on the ResNet-type architecture,
with dropout being inserted after the last convolutional layer of eachmodular
building. They thus managed to explain the stochastic dropout training pro-
cess and the ensuing dropout regularization effect from the perspective of
optimal control.50

AI IN MEDICAL SCIENCE
There is a great trend for AI technology to growmore andmore significant

in daily operations, includingmedical fields.With the growing needs of health-
care for patients, hospital needs are evolving from informationization
networking to the Internet Hospital and eventually to the Smart Hospital. At
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the same time, AI tools and hardware performance are also growing rapidly
with each passing day. Eventually, common AI algorithms, such as CV, NLP,
and datamining, will begin to be embedded in themedical equipmentmarket
(Figure 4).

AI doctor based on electronic medical records
For medical history data, it is inevitable to mention Doctor Watson, devel-

oped by theWatson platform of IBM, andModernizing Medicine, which aims
to solve oncology, and is now adopted by CVS & Walgreens in the US and
various medical organizations in China as well. Doctor Watson takes advan-
tage of the NLP performance of the IBM Watson platform, which already
collected vast data of medical history, as well as prior knowledge in the liter-
ature for reference. After inputting the patients’ case, Doctor Watson
searches themedical history reserve and formsan elementary treatment pro-
posal, whichwill be further ranked by prior knowledge reserves. With themul-
tiple models stored, Doctor Watson gives the final proposal as well as the
confidence of the proposal. However, there are still problems for such AI doc-
tors because,51 as they rely on prior experience from US hospitals, the pro-
posal may not be suitable for other regions with different medical insurance
policies. Besides, the knowledge updating of the Watson platform also relies
highly on the updating of the knowledge reserve, which still needs
manual work.

AI for public health: Outbreak detection and health QR code for
COVID-19

AI can be used for public health purposes in many ways. One classical us-
age is to detect disease outbreaks using search engine query data or social
media data, asGoogle did for prediction of influenza epidemics52 and theChi-
nese Academy of Sciences did for modeling the COVID-19 outbreak through
ll
multi-source information fusion.53 After the COVID-19 outbreak, a digital
health Quick Response (QR) code system has been developed by China, first
to detect potential contact with confirmed COVID-19 cases and, secondly, to
indicate the person’s health status using mobile big data.54 Different colors
indicate different health status: green means healthy and is OK for daily life,
orange means risky and requires quarantine, and red means confirmed
COVID-19patient. It iseasy touse for thegeneral public, andhasbeenadopted
bymany other countries. The healthQRcodehasmade great contributions to
the worldwide prevention and control of the COVID-19 pandemic.

Biomarker discovery with AI
High-dimensional data, includingmulti-omics data, patient characteristics,

medical laboratory test data, etc., are often used for generating various pre-
dictive or prognosticmodels through DL or statistical modelingmethods. For
instance, the COVID-19 severity evaluationmodel was built throughML using
proteomic andmetabolomicprofiling dataof sera55; using integrated genetic,
clinical, and demographic data, Taliaz et al. built an ML model to predict pa-
tient response to antidepressant medications56; prognostic models for mul-
tiple cancer types (such as liver cancer, lung cancer, breast cancer, gastric
cancer, colorectal cancer, pancreatic cancer, prostate cancer, ovarian cancer,
lymphoma, leukemia, sarcoma,melanoma, bladder cancer, renal cancer, thy-
roid cancer, head and neck cancer, etc.) were constructed through DL or sta-
tistical methods, such as least absolute shrinkage and selection operator
（LASSO）, combined with Cox proportional hazards regression model us-
ing genomic data.57

Image-based medical AI
Medical image AI is one of the most developedmature areas as there are

numerousmodels for classification, detection, and segmentation tasks inCV.
The Innovation 2, 100179, November 28, 2021 7
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For the clinical area, CValgorithms can also be used for computer-aided diag-
nosis and treatment with ECG, CT, eye fundus imaging, etc. As human doc-
tors may be tired and prone to make mistakes after viewing hundreds and
hundreds of images for diagnosis, AI doctors can outperform a humanmed-
ical image viewer due to their specialty at repeated work without fatigue. The
first medical AI product approved by FDA is IDx-DR, which uses an AI model
to make predictions of diabetic retinopathy. The smartphone app SkinVision
can accurately detect melanomas.58 It uses “fractal analysis” to identify
moles and their surrounding skin, based on size, diameter, and many other
parameters, and to detect abnormal growth trends. AI-ECG of LEPU Medical
can automatically detect heart disease with ECG images. Lianying Medical
takes advantage of their hardware equipment to produce real-time high-defi-
nition image-guided all-round radiotherapy technology, which successfully
achieves precise treatment.

Wearable devices for surveillance and early warning
For wearable devices, AliveCor has developed an algorithm to automati-

cally predict the presence of atrial fibrillation, which is an early warning
sign of stroke and heart failure. The 23andMe company can also test saliva
samples at a small cost, and a customer can be provided with information
based on their genes, including who their ancestors were or potential dis-
eases they may be prone to later in life. It provides accurate health manage-
ment solutions based on individual and family genetic data. In the 20–30
years of the near feature, we believe there are several directions for further
research: (1) causal inference for real-time in-hospital risk prediction. Clinical
doctors usually acquire reasonable explanations for certain medical deci-
sions, but the current AI models nowadays are usually black box models.
The casual inference will help doctors to explain certain AI decisions and
even discover novel ground truths. (2) Devices, including wearable instru-
ments for multi-dimensional health monitoring. The multi-modality model
is now a trend for AI research. With various devices to collect multi-modality
data and a central processor to fuse all these data, themodel canmonitor the
user’s overall real-time health condition and give precautions more precisely.
(3) Automatic discovery of clinical markers for diseases that are difficult to
diagnose. Diseases, such as ALS, are still difficult for clinical doctors to diag-
nose because they lack any effective generalmarker. Itmay be possible for AI
to discover common phenomena for these patients and find an effective
marker for early diagnosis.

AI-aided drug discovery
Todaywehave come into the precisionmedicine era, and the new targeted

drugs are the cornerstones for precision therapy. However, over the past de-
cades, it takes an average of over one billion dollars and 10 years to bring a
newdrug into themarket. How to accelerate the drug discovery process, and
avoid late-stage failure, are key concerns for all the big and fiercely compet-
itive pharmaceutical companies. The highlighted emerging role of AI,
including ML, DL, expert systems, and artificial neural networks (ANNs),
has brought new insights and high efficiency into the newdrug discovery pro-
cesses. AI has been adopted inmany aspects of drug discovery, including de
novo molecule design, structure-based modeling for proteins and ligands,
quantitative structure-activity relationship research, and druggable property
judgments. DL-based AI appliances demonstrate superior merits in address-
ing some challenging problems in drug discovery. Of course, prediction of
chemical synthesis routes and chemical process optimization are also valu-
able in accelerating newdrug discovery, aswell as lowering production costs.

There has been notable progress in the AI-aided new drug discovery in
recent years, for bothnewchemical entity discovery and the relating business
area. Based on DNNs, DeepMind built the AlphaFold platform to predict 3D
protein structures that outperformed other algorithms. As an illustration of
great achievement, AlphaFold successfully and accurately predicted 25
scratch protein structures from a 43 protein panel without using previously
built proteins models. Accordingly, AlphaFold won the CASP13 protein-
folding competition in December 2018.59 Based on the GANs and other
ML methods, Insilico constructed a modular drug design platform GENTRL
system. In September 2019, they reported the discovery of the first de
8 The Innovation 2, 100179, November 28, 2021
novo active DDR1 kinase inhibitor developed by the GENTRL system. It
took the team only 46 days from target selection to get an active drug candi-
date using in vivo data.60 Exscientia and Sumitomo Dainippon Pharma devel-
oped a new drug candidate, DSP-1181, for the treatment of obsessive-
compulsive disorder on the Centaur Chemist AI platform. In January 2020,
DSP-1181 started its phase I clinical trials, which means that, from program
initiation to phase I study, the comprehensive exploration took less than
12months. In contrast, comparable drug discovery using traditionalmethods
usually needs 4–5 years with traditional methods.

How AI transforms medical practice: A case study of cervical cancer
As themost commonmalignant tumor in women, cervical cancer is a dis-

ease that has a clear cause and can be prevented, and even treated, if de-
tected early. Conventionally, the screening strategy for cervical cancermainly
adopts the “three-step”model of “cervical cytology-colposcopy-histopatholo-
gy.”61 However, limited by the level of testing methods, the efficiency of cer-
vical cancer screening is not high. In addition, owing to the lack of knowledge
by doctors in some primary hospitals, patients cannot be provided with the
best diagnosis and treatment decisions. In recent years, with the advent of
the era of computer science and big data, AI has gradually begun to extend
and blend into various fields. In particular, AI has beenwidely used in a variety
of cancers as a new tool for data mining. For cervical cancer, a clinical data-
base with millions of medical records and pathological data has been built,
and an AI medical tool set has been developed.62 Such an AI analysis algo-
rithm supports doctors to access the ability of rapid iterative AI model
training. In addition, a prognostic prediction model established by ML and
a web-based prognostic result calculator have been developed, which can
accurately predict the risk of postoperative recurrence and death in cervical
cancer patients, and thereby better guide decision-making in postoperative
adjuvant treatment.63

AI IN MATERIALS SCIENCE
As the cornerstone ofmodern industry,materials have playeda crucial role

in the design of revolutionary forms of matter, with targeted properties for
broad applications in energy, information, biomedicine, construction, trans-
portation, national security, spaceflight, and so forth. Traditional strategies
rely on the empirical trial and error experimental approaches as well as the
theoretical simulation methods, e.g., density functional theory, thermody-
namics, or molecular dynamics, to discover novel materials.64 These
methods often face the challenges of long research cycles, high costs, and
low success rates, and thus cannot meet the increasingly growing demands
of currentmaterials science. Accelerating the speed of discovery and deploy-
ment of advanced materials will therefore be essential in the coming era.

With the rapid development of data processing and powerful algorithms,
AI-based methods, such as ML and DL, are emerging with good potentials
in the search for and design of newmaterials prior to actually manufacturing
them.65,66 By integrating material property data, such as the constituent
element, lattice symmetry, atomic radius, valence, binding energy, electroneg-
ativity, magnetism, polarization, energy band, structure-property relation, and
functionalities, the machine can be trained to “think” about how to improve
material design and even predict the properties of new materials in a cost-
effective manner (Figure 5).

AI in discovery and design of new materials
Recently, AI techniques havemade significant advances in rational design

and accelerated discovery of various materials, such as piezoelectric mate-
rials with large electrostrains,67 organic-inorganic perovskites for photovol-
taics,68molecular emitters for efficient light-emitting diodes,69 inorganic solid
materials for thermoelectrics,70 and organic electronic materials for renew-
able-energy applications.66,71 The power of data-driven computing and algo-
rithmic optimization can promote comprehensive applications of simulation
and ML (i.e., high-throughput virtual screening, inverse molecular design,
Bayesian optimization, and supervised learning, etc.), in material discovery
and property prediction in various fields.72 For instance, using a DL
Bayesian framework, the attribute-driven inverse materials design has been
www.cell.com/the-innovation
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Figure 5. AI is expected to power the development of materials science
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demonstrated for efficient and accurate prediction of functional molecular
materials, with desired semiconducting properties or redox stability for appli-
cations in organic thin-film transistors, organic solar cells, or lithium-ion bat-
teries.73 It is meaningful to adopt automation tools for quick experimental
testing of potential materials and utilize high-performance computing to
calculate their bulk, interface, and defect-related properties.74 The effective
convergenceof automation, computing, andML can greatly speed up the dis-
covery of materials. In the future, with the aid of AI techniques, it will be
possible to accomplish the design of superconductors, metallic glasses, sol-
der alloys, high-entropy alloys, high-temperature superalloys, thermoelectric
materials, two-dimensional materials, magnetocaloric materials, polymeric
bio-inspired materials, sensitive composite materials, and topological (elec-
tronic and phonon) materials, and so on. In the past decade, topological ma-
terials have ignited the research enthusiasm of condensedmatter physicists,
materials scientists, and chemists, as they exhibit exotic physical properties
with potential applications in electronics, thermoelectrics, optics, catalysis,
and energy-related fields. From the most recent predictions, more than a
quarter of all inorganic materials in nature are topologically nontrivial. The
establishment of topological electronic materials databases75–77 and topo-
logical phononic materials databases78 using high-throughput methods will
help to accelerate the screening and experimental discovery of new topolog-
ical materials for functional applications. It is recognized that large-scale
high-quality datasets are required to practice AI. Great efforts have also
been expended in building high-quality materials science databases. As
one of the top-ranking databases of its kind, the “atomly.net” materials
data infrastructure,79 has calculated the properties of more than 180,000
inorganic compounds, including their equilibrium structures, electron energy
bands, dielectric properties, simulated diffraction patterns, elasticity tensors,
etc. As such, the atomly.net database has set a solid foundation for extending
AI into the area of materials science research. The X-ray diffraction (XRD)-
matcher model of atomly.net uses ML to match and classify the experi-
mental XRD to the simulated patterns. Very recently, by using the dataset
ll
from atomly.net, an accurate AI model was built to rapidly predict the forma-
tion energy of almost any given compound to yield a fairly good predictive
ability.80

AI-powered Materials Genome Initiative
TheMaterialsGenome Initiative (MGI) is a great plan for rational realization

of newmaterials and related functions, and it aims to discover, manufacture,
and deploy advanced materials efficiently, cost-effectively, and intelligently.
The initiative creates policy, resources, and infrastructure for accelerating
materials development at a high level. This is a new paradigm for the discov-
ery and design of next-generation materials, and runs from a view point of
fundamental building blocks toward generalmaterials developments, and ac-
celerates materials development through efforts in theory, computation, and
experiment, in a highly integrated high-throughput manner. MGI raises an ul-
timately high goal and high level formaterials development andmaterials sci-
ence for humans in the future. The spirit of MGI is to design novel materials
by using data pools and powerful computation once the requirements or as-
pirations of functional usages appear. The theory, computation, and algo-
rithm are the primary and substantial factors in the establishment and imple-
mentation of MGI. Advances in theories, computations, and experiments in
materials science and engineering provide the footstone to not only accel-
erate the speed at which new materials are realized but to also shorten the
timeneeded topush newproducts into themarket. TheseAI techniques bring
a great promise to the developingMGI. The applications of new technologies,
such as ML and DL, directly accelerate materials research and the establish-
ment of MGI. The model construction and application to science and engi-
neering, as well as the data infrastructure, are of central importance. When
the AI-powered MGI approaches are coupled with the ongoing autonomy
of manufacturing methods, the potential impact to society and the economy
in the future is profound. We are now beginning to see that the AI-aided MGI,
among other things, integrates experiments, computation, and theory, and fa-
cilitates access tomaterials data, equips the next generation of thematerials
The Innovation 2, 100179, November 28, 2021 9
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workforce, and enables a paradigm shift in materials development. Further-
more, the AI-powdered MGI could also design operational procedures and
control the equipment to execute experiments, and to further realize autono-
mous experimentation in future material research.

Advanced functional materials for generation upgrade of AI
The realization and application of AI techniques depend on the computa-

tional capability and computer hardware, and this bases physical function-
ality on the performance of computers or supercomputers. For our current
technology, the electric currents or electric carriers for driving electric chips
and devices consist of electrons with ordinary characteristics, such as heavy
mass and low mobility. All chips and devices emit relatively remarkable heat
levels, consuming too much energy and lowering the efficiency of informa-
tion transmission. Benefiting from the rapid development of modern physics,
a series of advanced materials with exotic functional effects have been
discovered or designed, including superconductors, quantum anomalous
Hall insulators, and topological fermions. In particular, the superconducting
state or topologically nontrivial electrons will promote the next-generation
AI techniques once the (near) room temperature applications of these states
are realized and implanted in integrated circuits.81 In this case, the central
processing units, signal circuits, and power channels will be driven based
on the electronic carriers that show massless, energy-diffusionless, ultra-
high mobility, or chiral-protection characteristics. The ordinary electrons will
be removed from the physical circuits of future-generation chips and devices,
leaving superconducting and topological chiral electrons running in future AI
chips and supercomputers. The efficiency of transmission, for information
and logic computing will be improved on a vast scale and at a very low cost.

AI for materials and materials for AI
The coming decadewill continue towitness the development of advanced

MLalgorithms, newly emerging data-driven AImethodologies, and integrated
technologies for facilitating structure design and property prediction, as well
as to accelerate the discovery, design, development, and deployment of
advanced materials into existing and emerging industrial sectors. At this
moment, we are facing challenges in achieving accelerated materials
research through the integration of experiment, computation, and theory.
The great MGI, proposed for high-level materials research, helps to promote
this process, especially when it is assisted by AI techniques. Still, there is a
long way to go for the usage of these advanced functional materials in
future-generation electric chips and devices to be realized. More materials
and functional effects need to be discovered or improved by the developing
AI techniques. Meanwhile, it is worth noting that materials are the core com-
ponents of devices and chips that are used for construction of computers or
machines for advancedAI systems. The rapid development of newmaterials,
especially the emergence of flexible, sensitive, and smartmaterials, is of great
importance for a broad range of attractive technologies, such as flexible cir-
cuits, stretchable tactile sensors, multifunctional actuators, transistor-based
artificial synapses, integrated networks of semiconductor/quantum devices,
intelligent robotics, human-machine interactions, simulated muscles, biomi-
metic prostheses, etc. These promising materials, devices, and integrated
technologies will greatly promote the advancement of AI systems toward
wide applications in human life. Once the physical circuits are upgraded by
advanced functional or smart materials, AI techniques will largely promote
the developments and applications of all disciplines.

AI IN GEOSCIENCE
AI technologies involved in a large range of geoscience fields

Momentous challenges threatening current society require solutions to
problems that belong to geoscience, such as evaluating the effectsof climate
change, assessing air quality, forecasting the effects of disaster incidences
on infrastructure, by calculating the incoming consumption and availability
of food, water, and soil resources, and identifying factors that are indicators
for potential volcanic eruptions, tsunamis, floods, and earthquakes.82,83 It has
becomepossible, with the emergence of advanced technology products (e.g.,
deep sea drilling vessels and remote sensing satellites), for enhancements in
10 The Innovation 2, 100179, November 28, 2021
computational infrastructure that allow for processing large-scale, wide-
range simulations of multiple models in geoscience, and internet-based
data analysis that facilitates collection, processing, and storage of data in
distributed and crowd-sourced environments.84 The growing availability of
massive geoscience data provides unlimited possibilities for AI—which has
popularized all aspects of our daily life (e.g., entertainment, transportation,
and commerce)—to significantly contribute to geoscience problems of great
societal relevance. As geoscience enters the era of massive data, AI, which
has been extensively successful in different fields, offers immense opportu-
nities for settling a series of problems in Earth systems.85,86 Accompanied by
diversified data, AI-enabled technologies, such as smart sensors, image visu-
alization, and intelligent inversion, arebeing actively examined in a large range
of geoscience fields, such asmarine geoscience, rock physics, geology, ecol-
ogy, seismicity, environment, hydrology, remote sensing, Arc GIS, and plane-
tary science.87
Multiple challenges in the development of geoscience
There are some traits of geoscience development that restrict the applica-

bility of fundamental algorithms for knowledge discovery: (1) inherent chal-
lenges of geoscience processes, (2) limitation of geoscience data collection,
and (3) uncertainty in samples and ground truth.88–90 Amorphous bound-
aries generally exist in geoscience objects between space and time that
are not as well defined as objects in other fields. Geoscience phenomena
are also significantly multivariate, obey nonlinear relationships, and exhibit
spatiotemporal structure and non-stationary characteristics. Except for the
inherent challenges of geoscience observations, themassive data atmultiple
dimensions of time and space, with different levels of incompleteness, noise,
and uncertainties, disturb processes in geoscience. For supervised learning
approaches, there are other difficulties owing to the lack of gold standard
ground truth and the “small size”of samples (e.g., a small amount of historical
data with sufficient observations) in geoscience applications.
Usage of AI technologies as efficient approaches to promote the
geoscience processes

Geoscientists continually make every effort to develop better techniques
for simulating the present status of the Earth system (e.g., howmuch green-
house gases are released into the atmosphere), and the connections be-
tween andwithin its subsystems (e.g., how does the elevated temperature in-
fluence the ocean ecosystem). Viewed from the perspective of geoscience,
newly emerging approaches, with the aid of AI, are a perfect combination
for these issues in the application of geoscience: (1) characterizing objects
and events91; (2) estimating geoscience variables from observations92; (3)
forecasting geoscience variables according to long-term observations85;
(4) exploring geoscience data relationships93; and (5) causal discovery and
causal attribution.94 While characterizing geoscience objects and events us-
ing traditional methods are primarily rooted in hand-coded features, algo-
rithms can automatically detect the data by improving the performance
with pattern-mining techniques. However, due to spatiotemporal targets
with vague boundaries and the related uncertainties, it can be necessary to
advance pattern-mining methods that can explain the temporal and spatial
characteristics of geoscience data when characterizing different events
andobjects. To address the non-stationary issue of geoscience data, AI-aided
algorithms have been expanded to integrate the holistic results of profes-
sional predictors and engender robust estimations of climate variables
(e.g., humidity and temperature). Furthermore, forecasting long-term trends
of the current situation in the Earth system using AI-enabled technologies
can simulate future scenarios and formulate early resource planning and
adaptation policies. Mining geoscience data relationships can help us seize
vital signs of the Earth systemand promote our understanding of geoscience
developments. Of great interest is the advancement of AI-decisionmethodol-
ogy with uncertain prediction probabilities, engendering vague risks with
poorly resolved tails, signifying the most extreme, transient, and rare events
formulated by model sets, which supports various cases to improve accu-
racy and effectiveness.
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Figure 6. Applications of AI in hydraulic resource management
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AI technologies for optimizing the resource management in
geoscience

Currently, AI can perform better than humans in some well-defined tasks.
For example, AI techniques have been used in urbanwater resource planning,
mainly due to their remarkable capacity for modeling, flexibility, reasoning,
and forecasting the water demand and capacity. Design and application of
an Adaptive Intelligent DynamicWater Resource Planning system, the subset
of AI for sustainable water resource management in urban regions, largely
prompted the optimization of water resource allocation, will finally minimize
the operation costs and improve the sustainability of environmentalmanage-
ment95 (Figure 6). Also, meteorology requires collecting tremendous
amounts of data on many different variables, such as humidity, altitude,
and temperature; however, dealing with such a huge dataset is a big chal-
lenge.96 An AI-based technique is being utilized to analyze shallow-water
reef images, recognize the coral color—to track the effects of climate change,
and to collect humidity, temperature, andCO2 data—to grasp the health of our
ecological environment.97 Beyond AI’s capabilities for meteorology, it can
also play a critical role in decreasing greenhouse gas emissions originating
from the electric-power sector. Comprised of production, transportation, allo-
cation, and consumption of electricity, many opportunities exist in the elec-
tric-power sector for Al applications, including speeding up the development
of new clean energy, enhancing system optimization and management,
improving electricity-demand forecasts and distribution, and advancing sys-
temmonitoring.98 Newmaterials may even be found, with the auxiliary of AI,
for batteries to store energy or materials and absorb CO2 from the atmo-
sphere.99 Although traditional fossil fuel operations have been widely used
for thousands of years, AI techniques are being used to help explore the
development of more potential sustainable energy sources for the develop-
ment (e.g., fusion technology).100
ll
In addition to the adjustment of energy structures due to climate change (a
core part of geoscience systems), a second, less-obvious step could also be
taken to reduce greenhouse gas emission: using AI to target inefficiencies. A
related statistical report by the Lawrence Livermore National Laboratory
pointed out that around 68% of energy produced in the US could be better
used for purposeful activities, such as electricity generation or transportation,
but is instead contributing to environmental burdens.101 AI is primed to
reduce these inefficiencies of current nuclear power plants and fossil fuel op-
erations, aswell as improve the efficiency of renewable grid resources.102 For
example, AI can be instrumental in the operation and optimization of solar
and wind farms to make these utility-scale renewable-energy systems far
more efficient in the production of electricity.103 AI can also assist in reducing
energy losses in electricity transportation and allocation.104 A distribution sys-
tem operator in Europe usedAI to analyze load, voltage, and network distribu-
tion data, to help “operators assess available capacity on the systemandplan
for future needs.”105 AI allowed the distribution system operator to employ
existing and new resources to make the distribution of energy assets more
readily available and flexible. The International Energy Agency has proposed
that energy efficiency is core to the reform of energy systems and will play a
key role in reducing the growth of global energy demand to one-third of the
current level by 2040.

AI as a building block to promote development in geoscience
The Earth’s system is of significant scientific interest, and affects all as-

pects of life.106 The challenges, problems, and promising directions provided
by AI are definitely not exhaustive, but rather, serve to illustrate that there is
great potential for future AI research in this important field. Prosperity, devel-
opment, and popularization of AI approaches in the geosciences is
commonly driven by a posed scientific question, and the bestway to succeed
The Innovation 2, 100179, November 28, 2021 11
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is that AI researchers work closely with geoscientists at all stages of
research. That is because the geoscientists can better understand which sci-
entific question is important and novel, which sample collection process can
reasonably exhibit the inherent strengths, which datasets and parameters
can be used to answer that question, and which pre-processing operations
are conducted, such as removing seasonal cycles or smoothing. Similarly,
AI researchers are better suited to decide which data analysis approaches
are appropriate and available for the data, the advantages and disadvantages
of these approaches, and what the approaches actually acquire. Interpret-
ability is also an important goal in geoscience because, if we can understand
the basic reasoning behind the models, patterns, or relationships extracted
from the data, they can be used as building blocks in scientific knowledge dis-
covery. Hence, frequent communication between the researchers avoids
long detours and ensures that analysis results are indeed beneficial to both
geoscientists and AI researchers.

AI IN THE LIFE SCIENCES
The developments of AI and the life sciences are intertwined. The ultimate

goal of AI is to achieve human-like intelligence, as the human brain is capable
of multi-tasking, learning with minimal supervision, and generalizing learned
skills, all accomplished with high efficiency and low energy cost.107

Mutual inspiration between AI and neuroscience
In the past decades, neuroscience concepts have been introduced

into ML algorithms and played critical roles in triggering several impor-
tant advances in AI. For example, the origins of DL methods lie directly
in neuroscience,5 which further stimulated the emergence of the field of
RL.108 The current state-of-the-art CNNs incorporate several hallmarks
of neural computation, including nonlinear transduction, divisive normal-
ization, and maximum-based pooling of inputs,109 which were directly
inspired by the unique processing of visual input in the mammalian vi-
sual cortex.110 By introducing the brain’s attentional mechanisms, a
novel network has been shown to produce enhanced accuracy and
computational efficiency at difficult multi-object recognition tasks than
conventional CNNs.111 Other neuroscience findings, including the mech-
anisms underlying working memory, episodic memory, and neural plas-
ticity, have inspired the development of AI algorithms that address
several challenges in deep networks.108 These algorithms can be
directly implemented in the design and refinement of the brain-machine
interface and neuroprostheses.

On the other hand, insights fromAI research have the potential to offer new
perspectives on the basics of intelligence in the brains of humans and other
species. Unlike traditional neuroscientists, AI researchers can formalize the
concepts of neuralmechanisms in a quantitative language to extract their ne-
cessity and sufficiency for intelligent behavior. An important illustration of
such exchange is the development of the temporal-difference (TD) methods
in RLmodels and the resemblance of TD-form learning in the brain.112 There-
fore, the China Brain Project covers both basic research on cognition and
translational research for brain disease and brain-inspired intelligence
technology.113

AI for omics big data analysis
Currently, AI can perform better than humans in some well-defined tasks,

such as omics data analysis and smart agriculture. In the big data era,114

there are many types of data (variety), the volume of data is big, and the gen-
eration of data (velocity) is fast. The high variety, big volume, and fast velocity
of data makes having it a matter of big value, but also makes it difficult to
analyze the data. Unlike traditional statistics-based methods, AI can easily
handle big data and reveal hidden associations.

In genetics studies, there are many successful applications of AI.115 One
of the key questions is to determine whether a single amino acid polymor-
phism is deleterious.116 There have been sequence conservation-based
SIFT117 and network-based SySAP,118 but all thesemethods havemet bottle-
necks and cannot be further improved. Sundaram et al. developed PrimateAI,
which can predict the clinical outcome of mutation based on DNN.119
12 The Innovation 2, 100179, November 28, 2021
Another problem is how to call copy-number variations, which play important
roles in various cancers.120,121 Glessner et al. proposed a DL-based tool
DeepCNV, in which the area under the receiver operating characteristic
(ROC) curvewas 0.909,much higher than otherMLmethods.122 In epigenetic
studies, m6A modification is one of the most important mechanisms.123

Zhang et al. developed an ensemble DL predictor (EDLm6APred) for
mRNAm6Asite prediction.124 The area under theROCcurve of EDLm6APred
was 86.6%, higher than existing m6A methylation site prediction models.
There aremany other DL-based omics tools, such as DeepCpG125 formethyl-
ation, DeepPep126 for proteomics, AtacWorks127 for assay for transposase-
accessible chromatin with high-throughput sequencing, and deepTCR128

for T cell receptor sequencing.
Another emerging application is DL for single-cell sequencing data. Unlike

bulk data, in which the sample size is usually much smaller than the number
of features, the sample size of cells in single-cell data could also be big
comparedwith the number of genes. Thatmakes theDL algorithmapplicable
formost single-cell data. Since the single-cell data are sparse and havemany
unmeasured missing values, DeepImpute can accurately impute these
missing values in the big gene 3 cell matrix.129 During the quality control
of single-cell data, it is important to remove the doublet solo embedded cells,
using autoencoder, and then build a feedforward neural network to identify
the doublet.130 Potential energy underlying single-cell gradients used genera-
tive modeling to learn the underlying differentiation landscape from time se-
ries single-cell RNA sequencing data.131

In protein structure prediction, the DL-based AIphaFold2 can accurately
predict the 3D structures of 98.5% of human proteins, and will predict the
structures of 130 million proteins of other organisms in the next few
months.132 It is even considered to be the second-largest breakthrough in
life sciences after the human genome project133 andwill facilitate drug devel-
opment among other things.

AI makes modern agriculture smart
Agriculture is entering a fourth revolution, termed agriculture 4.0 or smart

agriculture, benefiting from the arrival of the big data era as well as the rapid
progress of lots of advanced technologies, in particular ML, modern informa-
tion, and communication technologies.134,135 Applications of DL, information,
and sensing technologies in agriculture cover thewhole stages of agricultural
production, including breeding, cultivation, and harvesting.

Traditional breeding usually exploits genetic variations by searching natu-
ral variation or artificial mutagenesis. However, it is hard for either method to
expose the whole mutation spectrum. Using DL models trained on the exist-
ing variants, predictions can be made on multiple unidentified gene loci.136

For example, an ML method, multi-criteria rice reproductive gene predictor,
was developed and applied to predict coding and lincRNA genes associated
with reproductive processes in rice.137 Moreover, models trained in species
with well-studied genomic data (such as Arabidopsis and rice) can also be
applied to other specieswith limited genome information (such aswild straw-
berry and soybean).138 In most cases, the links between genotypes and phe-
notypes are more complicated than we expected. One gene can usually
respond to multiple phenotypes, and one trait is generally the product of
the synergism between multi-genes and multi-development. For this reason,
multi-traits DL models were developed and enabled genomic editing in plant
breeding.139,140

It is well known that dynamic and accurate monitoring of crops during the
whole growth period is vitally important to precision agriculture. In the new
stage of agriculture, both remote sensing and DL play indispensable roles.
Specifically, remote sensing (including proximal sensing) could produce agri-
cultural big data from ground, air-borne, to space-borne platforms, which
have a unique potential to offer an economical approach for non-destructive,
timely, objective, synoptic, long-term, and multi-scale information for crop
monitoring and management, thereby greatly assisting in precision deci-
sions regarding irrigation, nutrients, disease, pests, and yield.141,142 DL
makes it possible to simply, efficiently, and accurately discover knowledge
from massive and complicated data, especially for remote sensing big
data that are characterized with multiple spatial-temporal-spectral
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Figure 7. Integration of AI and remote sensing in smart agriculture
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information, owing to its strong capability for feature representation and su-
periority in capturing the essential relation between observation data and
agronomy parameters or crop traits.135,143 Integration of DL and big data
for agriculture has demonstrated the most disruptive force, as big as the
green revolution. As shown in Figure 7, for possible application a scenario
of smart agriculture, multi-source satellite remote sensing data with various
geo- and radio-metric information, as well as abundance of spectral informa-
tion from UV, visible, and shortwave infrared to microwave regions, can be
collected. In addition, advanced aircraft systems, such as unmanned aerial
vehicles with multi/hyper-spectral cameras on board, and smartphone-
based portable devices, will be used to obtain multi/hyper-spectral data in
specific fields. All types of data can be integrated by DL-based fusion tech-
niques for different purposes, and then shared for all users for cloud
computing. On the cloud computing platform, different agriculture remote
sensing models developed by a combination of data-driven ML methods
and physical models, will be deployed and applied to acquire a range of bio-
physical and biochemical parameters of crops, which will be further
analyzed by a decision-making and prediction system to obtain the current
water/nutrient stress, growth status, and to predict future development. As a
result, an automatic or interactive user service platform can be accessible to
make the correct decisions for appropriate actions through an integrated irri-
gation and fertilization system.

Furthermore, DL presents unique advantages in specific agricultural appli-
cations, such as for dense scenes, that increase the difficulty of artificial
planting and harvesting. It is reported that CNNs and Autoencoder models,
trained with image data, are being used increasingly for phenotyping and
yield estimation,144 such as counting fruits in orchards, grain recognition
and classification, disease diagnosis, etc.145–147 Consequently, this may
greatly liberate the labor force.
ll
The application of DL in agriculture is just beginning. There are still many
problems and challenges for the future development of DL technology. We
believe, with the continuous acquisition ofmassive data and the optimization
of algorithms, DL will have a better prospect in agricultural production.

AI IN PHYSICS
The scale of modern physics ranges from the size of a neutron to the size

of the Universe (Figure 8). According to the scale, physics can be divided into
four categories: particle physics on the scale of neutrons, nuclear physics on
the scale of atoms, condensedmatter physics on the scale ofmolecules, and
cosmic physics on the scale of the Universe. AI, also called ML, plays an
important role in all physics in different scales, since the use of the AI algo-
rithm will be the main trend in data analyses, such as the reconstruction
and analysis of images.

Speeding up simulations and identifications of particles with AI
There aremany applications or explorations of applications of AI in particle

physics. We cannot cover all of them here, but only use lattice quantum chro-
modynamics (LQCD) and the experiments on the Beijing spectrometer (BES)
and the large hadron collider (LHC) to illustrate the power of ML in both theo-
retical and experimental particle physics.

LQCD studies the nonperturbative properties of QCD by using Monte
Carlo simulations on supercomputers to help us understand the strong
interaction that binds quarks together to form nucleons. Markov chain
Monte Carlo simulations commonly used in LQCD suffer from topological
freezing and critical slowing down as the simulations approach the real sit-
uation of the actual world. New algorithms with the help of DL are being
proposed and tested to overcome those difficulties.148,149 Physical observ-
ables are extracted from LQCD data, whose signal-to-noise ratio
The Innovation 2, 100179, November 28, 2021 13
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deteriorates exponentially. For non-Abelian gauge theories, such as QCD,
complicated contour deformations can be optimized by using ML to reduce
the variance of LQCD data. Proof-of-principle applications in two dimen-
sions have been studied.150 ML can also be used to reduce the time
cost of generating LQCD data.151

On the experimental side, particle identification (PID) plays an important
role. Recently, a few PID algorithms on BES-III were developed, and the
ANN152 is one of them. Also, extreme gradient boosting has been used for
multi-dimensional distribution reweighting, muon identification, and cluster
reconstruction, and can improve the muon identification. U-Net is a convolu-
tional network for pixel-level semantic segmentation, which is widely used in
CV. It has been applied on BES-III to solve the problem of multi-turn curling
track finding for the main drift chamber. The average efficiency and purity
for the first turn’s hits is about 91%, at the threshold of 0.85. Current (and
future) particle physics experiments are producing a huge amount of data.
Machine leaning can be used to discriminate between signal and over-
whelming background events. Examples of data analyses on LHC, using su-
pervised ML, can be found in a 2018 collaboration.153 To take the potential
advantage of quantum computers forward, quantum ML methods are also
being investigated, see, for example, Wu et al.,154 and references therein,
for proof-of-concept studies.

AI makes nuclear physics powerful
Cosmic raymuon tomography (Muography)155 is an imaging graphe tech-

nology using natural cosmic raymuon radiation rather than artificial radiation
to reduce the dangers. As an advantage, this technology can detect high-Z
materials without destruction, as muon is sensitive to high-Z materials. The
Classification Model Algorithm (CMA) algorithm is based on the classifica-
tion in the supervised learning and gray system theory, and generates a bi-
nary classifier designing and decision function with the input of the muon
track, and the output indicates whether the material exists at the location.
The AI helps the user to improve the efficiency of the scanning time
with muons.
14 The Innovation 2, 100179, November 28, 2021
AIso, for nuclear detection, the Cs2LiYCl6:Ce (CLYC) signal can react to
both electrons and neutrons to create a pulse signal, and can therefore be
applied to detect both neutrons and electrons,156 but needs identification
of the two particles by analyzing the shapes of the waves, that is n-g ID.
The traditional method has been the PSD (pulse shape discrimination)
method, which is used to separate the waves of two particles by analyzing
the distribution of the pulse information—such as amplitude, width, raise
time, fall time, and the two particles that can be separated when the distribu-
tion has two separated Gaussian distributions. The traditional PSD can only
analyze single-pulsewaves, rather thanmultipulsewaves, when two particles
react with CLYC closely. But it can be solved by using an ANN method for
classification of the six categories (n,g,n + n,n + g,g + n,g). Also, there are
several parameters that could be used by AI to improve the reconstruction
algorithm with high efficiency and less error.

AI-aided condensed matter physics
AI opens up a new avenue for physical science, especially when a trove

of data is available. Recent works demonstrate that ML provides useful in-
sights to improve the density functional theory (DFT), in which the single-
electron picture of the Kohn-Sham scheme has the difficulty of taking
care of the exchange and correlation effects of many-body systems. Yu
et al. proposed a Bayesian optimization algorithm to fit the Hubbard U
parameter, and the new method can find the optimal Hubbard U through
a self-consistent process with good efficiency compared with the linear
response method,157 and boost the accuracy to the near-hybrid-func-
tional-level. Snyder et al. developed an ML density functional for a 1D
non-interacting non-spin-polarized fermion system to obtain significantly
improved kinetic energy. This method enabled a direct approximation of
the kinetic energy of a quantum system and can be utilized in orbital-free
DFT modeling, and can even bypass the solving of the Kohn-Sham equa-
tion—while maintaining the precision to the quantum chemical level when
a strong correlation term is included. Recently, FermiNet showed that the
many-body quantum mechanics equations can be solved via AI. AI models
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also show advantages of capturing the interatom force field. In 2010, the
Gaussian approximation potential (GAP)158 was introduced as a powerful
interatomic force field to describe the interactions between atoms. GAP
uses kernel regression and invariant many-body representations, and per-
forms quite well. For instance, it can simulate crystallization of amorphous
crystals under high pressure fairly accurately. By employing the smooth
overlap of the atomic position kernel (SOAP),159 the accuracy of the poten-
tial can be further enhanced and, therefore, the SOAP-GAP can be viewed
as a field-leading method for AI molecular dynamic simulation. There are
also several other well-developed AI interatomic potentials out there, e.g.,
crystal graph CNNs provide a widely applicable way of vectorizing crystal-
line materials; SchNet embeds the continuous-filter convolutional layers into
its DNNs for easing molecular dynamic as the potentials are space contin-
uous; DimeNet constructs the directional message passing neural network
by adding not only the bond length between atoms but also the bond angle,
the dihedral angle, and the interactions between unconnected atoms into
the model to obtain good accuracy.

AI helps explore the Universe
AI is one of the newest technologies, while astronomy is one of the oldest

sciences. When the twomeet, new opportunities for scientific breakthroughs
are often triggered. Observations and data analysis play a central role in as-
tronomy. The amount of data collected by modern telescopes has reached
unprecedented levels, even the most basic task of constructing a catalog
has become challenging with traditional source-finding tools.160 Astrono-
mers have developed automated and intelligent source-finding tools based
on DL, which not only offer significant advantages in operational speed but
also facilitate a comprehensive understanding of the Universe by identifying
particular forms of objects that cannot be detected by traditional software
and visual inspection.160,161

More than a decade ago, a citizen science project called “Galaxy Zoo”was
proposed to help label one million images of galaxies collected by the Sloan
Digital Sky Survey (SDSS) by posting images online and recruiting volun-
teers.162 Larger optical telescopes, in operation or under construction, pro-
duce data several orders of magnitude higher than SDSS. Even with volun-
teers involved, there is no way to analyze the vast amount of data
received. The advantages of ML are not limited to source-finding and galaxy
classification. In fact, it has amuchwider range of applications. For example,
CNN plays an important role in detecting and decoding gravitational wave
signals in real time, reconstructing all parameters within 2 ms, while tradi-
tional algorithms take several days to accomplish the same task.163 Such
DL systems have also been used to automatically generate alerts for tran-
sients and track asteroids and other fast-moving near-Earth objects,
improving detection efficiencyby several orders ofmagnitude. In addition, as-
trophysicists are exploring the use of neural networks to measure galaxy
clusters and study the evolution of the Universe.

In addition to the amazing speed, neural networks seem to have a deeper
understanding of the data than expected and can recognize more complex
patterns, indicating that the “machine” is evolving rather than just learning
the characteristics of the input data.

AI IN CHEMISTRY
Chemistry plays an important “central” role in other sciences164 because it

is the investigation of the structure and properties ofmatter, and identifies the
chemical reactions that convert substances into to other substances.
Accordingly, chemistry is a data-rich branch of science containing complex
information resulting from centuries of experiments and, more recently, de-
cades of computational analysis. This vast treasure trove of data is most
apparent within the Chemical Abstract Services, which has collected more
than 183 million unique organic and inorganic substances, including alloys,
coordination compounds, minerals, mixtures, polymers, and salts, and is ex-
panding by addition of thousands of additional new substances daily.165 The
unlimited complexity in the variety of material compounds explains why
chemistry research is still a labor-intensive task. The level of complexity
and vast amounts of data within chemistry provides a prime opportunity to
ll
achieve significant breakthroughs with the application of AI. First, the type
of molecules that can be constructed from atoms are almost unlimited,
which leads to unlimited chemical space166; the interconnection of these
molecules with all possible combinations of factors, such as temperature,
substrates, and solvents, are overwhelmingly large, giving rise to unlimited re-
action space.167 Exploration of the unlimited chemical space and reaction
space, and navigating to the optimum ones with the desired properties, is
thus practically impossible solely fromhuman efforts. Secondly, in chemistry,
the huge assortment ofmolecules and the interplay of themwith the external
environments brings a new level of complexity, which cannot be simply pre-
dicted using physical laws. While many concepts, rules, and theories have
been generalized fromcenturies of experience fromstudying trivial (i.e., single
component) systems, nontrivial complexities are more likely as we discover
that “more is different” in the words of Philip Warren Anderson, American
physicist and Nobel Laureate.168 Nontrivial complexities will occur when
the scale changes, and the breaking of symmetry in larger, increasingly com-
plex systems, and the rules will shift from quantitative to qualitative. Due to
lack of systematic and analytical theory toward the structures, properties,
and transformations of macroscopic substances, chemistry research is
thus, incorrectly, guided by heuristics and fragmental rules accumulated
over the previous centuries, yielding progress that only proceeds through trial
and error. ML will recognize patterns from large amounts of data; thereby of-
fering an unprecedented way of dealing with complexity, and reshaping
chemistry research by revolutionizing the way in which data are used. Every
sub-field of chemistry, currently, has utilized some form of AI, including tools
for chemistry research and data generation, such as analytical chemistry and
computational chemistry, as well as application to organic chemistry, catal-
ysis, and medical chemistry, which we discuss herein.

AI breaks the limitations of manual feature selection methods
In analytical chemistry, the extraction of information has traditionally relied

heavily on the feature selection techniques, which are based on prior human
experiences. Unfortunately, this approach is inefficient, incomplete, and often
biased. Automated data analysis based on AI will break the limitations of
manual variable selection methods by learning from large amounts of
data. Feature selection through DL algorithms enables information extraction
from the datasets in NMR, chromatography, spectroscopy, and other analyt-
ical tools,169 thereby improving the model prediction accuracy for analysis.
These ML approaches will greatly accelerate the analysis of materials, lead-
ing to the rapid discovery of new molecules or materials. Raman scattering,
for instance, since its discovery in the 1920s, has been widely employed as a
powerful vibrational spectroscopy technology, capable of providing vibra-
tional fingerprints intrinsic to analytes, thus enabling identification of mole-
cules.170 Recently, ML methods have been trained to recognize features in
Raman (or SERS) spectra for the identity of an analyte by applying DL net-
works, including ANN, CNN, and fully convolutional network for feature engi-
neering.171 For example, Leong et al. designed a machine-learning-driven
“SERS taster” to simultaneously harness useful vibrational information
from multiple receptors for enhanced multiplex profiling of five wine flavor
molecules at ppm levels. Principal-component analysis is employed for the
discrimination of alcohols with varying degrees of substitution, and sup-
ported with vector machine discriminant analysis, is used to quantitatively
classify all flavors with 100% accuracy.172 Overall, AI techniques provide
the first glimmer of hope for a universal method for spectral data analysis,
which is fast, accurate, objective and definitive and with attractive advan-
tages in a wide range of applications.

AI improves the accuracy and efficiency for various levels of
computational theory

Complementary to analytical tools, computational chemistry has proven a
powerful approach for using simulations to understand chemical properties;
however, it is faced with an accuracy-versus-efficiency dilemma. This
dilemma greatly limits the application of computational chemistry to real-
world chemistry problems. To overcome this dilemma, ML and other AI
methods are being applied to improve the accuracy and efficiency for various
The Innovation 2, 100179, November 28, 2021 15



Figure 9. A closed loop workflow to enable automatic and intelligent design, synthesis, and assay of molecules in organic chemistry by AI
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levels of theory used to describe the effects arising at different time and
length scales, in the multi-scaling of chemical reactions.173 Many of the
open challenges in computational chemistry can be solved by ML ap-
proaches, for example, solving Schrödinger’s equation,174 developing atom-
istic175 or coarse graining176 potentials, constructing reaction coordinates,177

developing reaction kinetics models,178 and identifying key descriptors for
computable properties.179 In addition to analytical chemistry and computa-
tional chemistry, several disciplines of chemistry have incorporated AI tech-
nology to chemical problems. We discuss the areas of organic chemistry,
catalysis, and medical chemistry as examples of where ML has made a sig-
nificant impact.Many examples exist in literature for other subfields of chem-
istry and AI will continue to demonstrate breakthroughs in a wide range of
chemical applications.

AI enables robotics capable of automating the synthesis of molecules
Organic chemistry studies the structure, property, and reaction of car-

bon-based molecules. The complexity of the chemical and reaction
space, for a given property, presents an unlimited number of potential
molecules that can be synthesized by chemists. Further complications
are added when faced with the problems of how to synthesize a particular
molecule, given that the process relies much on heuristics and laborious
testing. Challenges have been addressed by researchers using AI. Given
enough data, any properties of interest of a molecule can be predicted by
mapping the molecular structure to the corresponding property using su-
pervised learning, without resorting to physical laws. In addition to known
molecules, new molecules can be designed by sampling the chemical
space180 using methods, such as autoencoders and CNNs, with the mol-
ecules coded as sequences or graphs. Retrosynthesis, the planning of
synthetic routes, which was once considered an art, has now become
much simpler with the help of ML algorithms. The Chemetica system,181

for instance, is now capable of autonomous planning of synthetic routes
that are subsequently proven to work in the laboratory. Once target
molecules and the route of synthesis are determined, suitable reaction
conditions can be predicted or optimized using ML techniques.182
16 The Innovation 2, 100179, November 28, 2021
The integration of these AI-based approaches with robotics has enabled
fully AI-guided robotics capable of automating the synthesis of small organic
molecules without human intervention Figure 9.183,184

AI helps to search through vast catalyst design spaces
Catalytic chemistry originates from catalyst technologies in the chemical

industry for efficient and sustainable production of chemicals and fuels. Thus
far, it is still a challenging endeavor to make novel heterogeneous catalysts
with good performance (i.e., stable, active, and selective) because a catalyst’s
performance depends on many properties: composition, support, surface
termination, particle size, particle morphology, atomic coordination environ-
ment, porous structure, and reactor during the reaction. The inherent
complexity of catalysis makes discovering and developing catalysts with
desired properties more dependent on intuition and experiment, which is
costly and time consuming. AI technologies, such as ML, when combined
with experimental and in silico high-throughput screening of combinatorial
catalyst libraries, can aid catalyst discovery by helping to search through
vast design spaces. With a well-defined structure and standardized data,
including reaction results and in situ characterization results, the complex as-
sociation between catalytic structure and catalytic performance will be re-
vealed by AI.185,186 An accurate descriptor of the effect of molecules, molec-
ular aggregation states, and molecular transport, on catalysts, could also be
predicted. With this approach, researchers can build virtual laboratories to
develop new catalysts and catalytic processes.

AI enables screening of chemicals in toxicology with minimum ethical
concerns

Amorecomplicated sub-field of chemistry ismedical chemistry,which is a
challenging field due to the complex interactions between the exotic sub-
stances and the inherent chemistry within a living system. Toxicology, for
instance, as a broad field, seeks to predict and eliminate substances (e.g.,
pharmaceuticals, natural products, food products, and environmental sub-
stances), which may cause harm to a living organism. Living organisms
are already complex, nearly any known substance can cause toxicity at a
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high enough exposure because of the already inherent complexity within
living organisms.Moreover, toxicity is dependent on an array of other factors,
including organism size, species, age, sex, genetics, diet, combination with
other chemicals, overall health, and/or environmental context. Given the scale
and complexity of toxicity problems, AI is likely to be the only realistic
approach to meet regulatory body requirements for screening, prioritization,
and risk assessment of chemicals (including mixtures), therefore revolution-
izing the landscape in toxicology.187 In summary, AI is turning chemistry from
a labor-intensive branch of science to a highly intelligent, standardized, and
automated field, and much more can be achieved compared with the limita-
tion of human labor. Underlying knowledgewith new concepts, rules, and the-
ories is expected to advance with the application of AI algorithms. A large
portion of new chemistry knowledge leading to significant breakthroughs is
expected to be generated from AI-based chemistry research in the decades
to come.

CONCLUSIONS
This paper carries out a comprehensive survey on the development and

application of AI across a broad range of fundamental sciences, including in-
formation science, mathematics, medical science, materials science, geosci-
ence, life science, physics, and chemistry. Despite the fact that AI has been
pervasively used in a wide range of applications, there still exist ML security
risks on data and ML models as attack targets during both training and
execution phases. Firstly, since the performance of an ML system is highly
dependent on the data used to train it, these input data are crucial for the se-
curity of the ML system. For instance, adversarial example attacks188

providing malicious input data often lead the ML system into making false
judgments (predictions or categorizations) with small perturbations that
are imperceptible to humans; data poisoning by intentionally manipulating
raw, training, or testing data can result in a decrease in model accuracy or
lead to other error-specific attack purposes. Secondly, ML model attacks
include backdoor attacks onDL, CNN, and federated learning thatmanipulate
the model’s parameters directly, as well as model stealing attack, model
inversion attack, and membership inference attack, which can steal the
model parameters or leak the sensitive training data. While a number of de-
fense techniques against these security threats have been proposed, new
attack models that target ML systems are constantly emerging. Thus, it is
necessary to address the problemofML security and develop robustML sys-
tems that remain effective under malicious attacks.

Due to the data-driven character of theMLmethod, features of the training
and testing data must be drawn from the same distribution, which is difficult
to guarantee in practice. This is because, in practical application, the data
source might be different from that in the training dataset. In addition, the
data feature distribution may drift over time, which leads to a decline of the
performance of the model. Moreover, if the model is trained with only new
data, it will lead to catastrophic “forgetting” of the model, which means the
model only remembers the new features and forgets the previously learned
features. To solve this problem, more and more scholars pay attention on
how to make the model have the ability of lifelong learning, that is, a change
in the computing paradigm from “offline learning + online reasoning” to “on-
line continuous learning,” and thus give the model have the ability of lifelong
learning, just like a human being.
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