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Abstract: Evapotranspiration (ET) estimation is important for understanding energy exchanges and
water cycles. Remote sensing (RS) is the main method used to obtain ET data over large scales.
However, owing to surface heterogeneities and different model algorithms, ET estimated from RS
products with different spatial resolutions can cause significant uncertainties, whose causes need
to be thoroughly analyzed. In this study, the Surface Energy Balance Algorithm for Land (SEBAL)
model was selected to explore spatial resolution influences on ET simulations. Three satellite datasets
(Landsat Thematic Mapper (TM), Moderate Resolution Imaging Spectroradiometer (MODIS), and
Advanced Very High-Resolution Radiometer (AVHRR)) were selected to independently estimate
ET in SEBAL model to identify the influence of the spatial scale on ET estimation, and analyze the
effects and causes of scale aggregation. Results indicated that: (1) the spatial distributions of ET
estimated from the three satellite datasets were similar, with the MODIS-based ET having the largest
uncertainty; and (2) aggregating input parameters had limited changes in the net radiation and soil
heat fluxes. However, errors in the sensible heat and latent heat fluxes were relatively larger, which
were caused by changes in the selection of hot and cold pixels and the NDVI and surface albedo
parameters during scale aggregation. The scale errors caused by the model mechanisms were larger
than those caused by the land use/cover pattern in the SEBAL model. Overall, this study highlights
the impact of spatial scale on ET and provides a better understanding of the scale aggregation effect
on ET estimation by RS.

Keywords: evapotranspiration; SEBAL model; aggregation effect; satellite sensors; land surface het-
erogeneity

1. Introduction

It has been widely recognized that many hydrological processes and energy exchanges
are scale-dependent [1–4]. Scaling issues impact our ability to accurately model the ex-
changes of water and energy across the surface–atmosphere interface [5]. Several studies
have illustrated that scale changes in hydrological models produce results that are consid-
erably biased due to land surface spatial heterogeneities (e.g., variations in topography,
land use/cover, and soil properties) [6–9]. Evapotranspiration (ET) is a key linchpin of
the Earth’s hydrological cycle and energy balance system [10]. The accurate estimation
of regional ET is crucial for water resources management, agricultural production, and
ecosystem protection, particularly in water-scarce regions [11–13]. Owing to the limitations
of the equipment and resource constraint, ground measurements of ET over large scales
are nearly impossible. Remote sensing (RS) provides an ideal method for determining and
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mapping regional ET at different spatial scales [14–16]. However, considering the spatial
heterogeneities of land surface properties, as well as the non-linear processes in the model
algorithms, the spatial resolution of RS affects the accuracy of ET estimates in regional and
larger scale modeling [17–19]. In order to improve the accuracy of the ET estimates and
to correct the scale errors in ET simulations, it is critical to examine the scale effect on ET
simulations from RS under heterogeneous surfaces [17,20–23].

The spatial resolution of the ET simulations based on RS is dependent on the satel-
lite sensor type. Currently, satellite sensors with different spatial, temporal, and spectral
resolutions have been widely used to estimate ET over multiple spatial scales [17,24,25].
These data can be divided into two categories: high spatial resolution with a poor tempo-
ral resolution (e.g., Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) (30/90 m, 16 d), Landsat 5 Thematic Mapper (TM) (30/120 m, 16 d), Landsat 7 En-
hanced Thematic Mapper Plus (ETM+) (30/60 m, 16 d), Landsat 8 Operational Land Imager
(OLI)/Thermal Infrared Sensor (TIRS) (30/100 m, 16 d)) and high temporal resolution with
poor spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)
(250/500/1000 m, 1–2 d), Advanced Very High-Resolution Radiometer (AVHRR) (1.1 km,
0.5–1 d), Spinning Enhanced Visible InfraRed Imager (SEVIRI) (5 km, 15/30 min)) [26–28].
Most satellite-based ET algorithms were initially developed at high spatial resolutions
and hence require homogeneous conditions across a single pixel, whereas RS data contain
mixed pixels, especially in low resolution datasets [29–31]. In addition, the parameters
and processes that are important and predictive on a fine scale introduce uncertainty or
significant error when being applied to a coarser scale [4,32–35]. Therefore, a noteworthy
issue in RS is how ET estimates differ based on data from satellite sensors with different
spatial resolutions.

To address such issues, several studies have assessed the effect of different satellite
sensor types on ET simulations. Most of these studies have focused primarily on Landsat,
ASTER, and MODIS sensors, and have reported good agreements in the spatial distribution
patterns of the ET estimations [25,36]. However, studies have also indicated that there
are discrepancies among the various spatial resolution data sources [17,18,25,31,36–38].
For example, McCabe and Wood [37] used Landsat-ETM, ASTER, and MODIS data to
estimate ET and found consistency between the higher-resolution data sources (Landsat-
TM and ASTER); however, the MODIS-based estimations were unable to discriminate the
influence of land surface heterogeneity at a field scale, but correctly estimated the mean
values. Sharma et al. [18] found that a regression model explained 91% of the variability
in the Landsat-based crop evapotranspiration (ETc) data, and ~31% of the variability in
the MODIS-based ETc data, which is higher than the measured ETc from the Bowen Ratio
Energy Balance System. Landsat TM, with high spatial resolution (30 m) and MODIS with
high temporal resolution (1–2 d) are widely used sensors that obtain local and regional
ET information. AVHRR, another widely used sensor since the 1980s, has been used to
estimate long-term ET but its accuracy has not been thoroughly analyzed in estimating
regional ET [11,39,40].

In order to explore the effect of spatial resolution on ET estimation, until now, various
studies have discussed the effect of the spatial resolution of input satellite data on ET
estimation by a number of ET models, including the Surface Energy Balance System (SEBS)
developed by Su [41] ([18,30,37]); Surface Energy Balance Algorithm for Land (SEBAL)
developed by Bastiaanssen et al. [42] ([17,20,21,25,34,36]); Mapping Evapotranspiration at
High Resolution with Internalized Calibration (METRIC) developed by Allen et al. [43]
([27]); Two Source Energy Balance (TSEB) developed by Norman et al. [44] ([38,45]), and
Simplified Surface Energy Balance Index (S-SEBI) developed by Roerink et al. [46] ([47]),
among others. These studies have pointed out that for a given area, a decrease in the
number of pixels led to a loss of information, which changes the statistical and spatial
characteristics of the data during the aggregation process. They have also reported that ag-
gregation strategies, land surfaces and model mechanisms can produce different errors for
ET estimation. Moreover, the aggregation of the sensible heat fluxes could cause significant
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errors over a heterogeneous area in the energy balance-based model. In addition, several
studies have attempted to identify the reasons for the significant errors in the aggregated
results. Ershadi et al. [30] and Sharma et al. [18] postulated that the aggregation processes
in ET simulations may be caused by decreases in aerodynamic resistance in the energy
balance model. However, Wang et al. [31] argued that, although aerodynamic resistance
was excluded from the three-temperature (3T) model, due to surface heterogeneity, the
spatial scale effect was still present. Ramírez-Cuesta et al. [27] indicated that surface rough-
ness parameters and land use characteristics were the two main causes of the aggregation
effect in the METRIC model. Despite these studies, in general, the aggregation effect and
its causes for ET estimation remain unclear and require further study [31]. Therefore, it is
necessary to comprehensively examine the changes in aggregation errors and clarify the
causes of such errors in the aggregation process.

The SEBAL model, with a relatively high simulation accuracy and minimal ground-
based data, is one of the most widely applied models for ET estimation [42,48]. Most of the
input parameters used (e.g., Normalized Difference Vegetation Index (NDVI), land surface
temperature, albedo, emissivity, and roughness length) in the SEBAL model to simulate
ET are derived from raw satellite data with different spatial, spectral, and radiometric
resolutions. It is therefore necessary to identify and evaluate the performance of the SEBAL
model for different satellite datasets with various spatial resolutions.

In this study, the Landsat TM, MODIS, and AVHRR images and the SEBAL model
were selected to analyze the effects of spatial resolution on ET estimations. The specific
objectives were: (1) assessing the consistency of the SEBAL model in estimating ET using
different satellite datasets; (2) quantifying the aggregation errors in the SEBAL model, and
(3) identifying the main factors for scale aggregation errors. The findings of this study
can provide insights for reducing scaling errors and in turn improving the accuracy of ET
estimates over regional scales.

2. Materials and Methods
2.1. Study Area

The Yuyang District is located at 37.81◦–38.92◦ N, 108.94◦–110.41◦ E (Figure 1), Shaanxi
Province, China, and covers a total area of ~7000 km2. This area is part of the ecologi-
cally fragile transition zone between the desert-grassland area and the Loess Plateau
region [13,49–52]. The region has a semi-arid continental monsoon climate, with an av-
erage annual temperature of 8.4 ◦C and an average annual precipitation of 402 mm that
gradually decreases from the southeast to northwest. Approximately half of the annual
precipitation occurs from July to September [53]. The altitude varies from 836 m to 1385 m
above sea level, with an average of 1183 m. The main soil types are steppe aeolian sandy
soil in the western part of the region, and Loess soil in the eastern part. The main land
cover types (Figure 1b) are grassland (43.1%); barren land (30.6%); farmland (20.9%); wood
land (3.93%); built-up land (0.85%); and water body (0.62%).

2.2. Datasets and Processing

The input data in the SEBAL model include meteorological data, satellite images, and
digital elevation model (DEM) data. The satellite images were selected with less than 5%
cloud coverage. Furthermore, because the in situ flux data used for model validation were
measured in 2011, we chose the satellite overpass time on August 7, 2011. These data were
processed using a unified projection coordinate system in the WGS-1984 coordinate system
(zone M 49).
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Figure 1. Map of the study area: (a) location of the study area (the Yuyang District) in the agro-
pastoral ecotone, Northwestern China and locations of meteorological stations; (b) land use/cover 
map of the study area and location of the homogeneous and heterogeneous area and flux tower 
site; (c) DEM and water network; (d) characteristics of the homogeneous and heterogeneous areas. 
YLEOS refers to the Yulin Ecohydrological Observation Station, Tsinghua University. 
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on August 7, 2011. These data were corrected with a level 1 T (terrain corrected). Pre-
processing of the data was mainly performed in ENVI 5.3 (ESRI). The digital number val-
ues were converted to radiance using radiation calibration, and the Fast Line-of-Sight At-
mospheric Analysis of Spectral Hypercubes (FLAASH) atmospheric correction was uti-
lized to eliminate the effects of atmosphere and light on ground reflections [54]. 

MODIS data were retrieved from the Land Processes Distributed Active Archive 
Center (LP DAAC) (https://lpdaac.usgs.gov/, accessed on 10 July 2019), including 
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and surface temperature at a 1 km spatial resolution. The original MODIS products were 
in HDF-EOS format and sinusoidal projection, and MODIS Reprojection Tools (MRT) was 

Figure 1. Map of the study area: (a) location of the study area (the Yuyang District) in the agro-
pastoral ecotone, Northwestern China and locations of meteorological stations; (b) land use/cover
map of the study area and location of the homogeneous and heterogeneous area and flux tower
site; (c) DEM and water network; (d) characteristics of the homogeneous and heterogeneous areas.
YLEOS refers to the Yulin Ecohydrological Observation Station, Tsinghua University.

2.2.1. Remote Sensing Datasets

Landsat TM data were downloaded from the Geospatial Data Cloud website, of the
Chinese Academy of Sciences (http://www.gscloud.cn, accessed on 20 May 2019). The
imagery covering the study area is composed of two TM images (path 127, rows 33 and
34) on 7 August 2011. These data were corrected with a level 1 T (terrain corrected).
Pre-processing of the data was mainly performed in ENVI 5.3 (ESRI). The digital number
values were converted to radiance using radiation calibration, and the Fast Line-of-Sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH) atmospheric correction was
utilized to eliminate the effects of atmosphere and light on ground reflections [54].

MODIS data were retrieved from the Land Processes Distributed Active Archive Cen-
ter (LP DAAC) (https://lpdaac.usgs.gov/, accessed on 10 July 2019), including MOD09GA
and MOD11A1, which include surface reflectance at a 500 m spatial resolution and surface
temperature at a 1 km spatial resolution. The original MODIS products were in HDF-EOS
format and sinusoidal projection, and MODIS Reprojection Tools (MRT) was used for
projection transformation, format conversion, and re-sampling to convert the data into the
GeoTiff format. The input data were further processed by clipping and raster calculation
using the ArcGIS 10.2 (ESRI) software package to be compatible with the SEBAL model
requirements.

http://www.gscloud.cn
https://lpdaac.usgs.gov/
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AVHRR data were obtained from the United States National Oceanic and Atmospheric
Administration Satellite Active Archive (https://www.avl.class.noaa.gov/saa/products/
welcome, accessed on 23 July 2019) in high-resolution picture transmission format, with
a spatial resolution of 1.1 km, and five bands (as shown in Table 1). The first two bands
(0.55–0.68 µm and 0.75–1.00 µm, respectively) are visible light and near-infrared, which are
mainly used to calculate NDVI, surface albedo, and other related coefficients. The other
three bands are thermal infrared and were used to estimate land surface temperatures [55].
The data processing in this study includes radiation corrections, geometric corrections, and
clipping in the ENVI 5.3 (ESRI) software package.

Table 1. Wavelength of different satellite sensors.

Band Name
Wavelength (µm)

Landsat TM MODIS AVHRR

Blue 0.45–0.52 0.459–0.470
0.55–0.68Green 0.52–0.60 0.545–0.560

Red 0.63–0.69 0.630–0.690
Near infrared 0.76–0.90 0.841–0.870 0.75–1.00

Shortwave infrared 1 1.55–1.75 1.550–1.750 1.58–1.64
Shortwave infrared 2 2.08–2.35 2.105–2.115 3.55–3.93

Thermal infrared 10.40–12.50 3.66–14.385 (16 thermal
infrared bands)

10.5–11.3
11.5–12.5

2.2.2. Meteorological and Flux Data

Meteorological data, including daily air temperatures (Ta) and wind speeds (U), were
used as forcing data for the SEBAL model. Data from eight meteorological stations (Etuoke,
Hengshan, Jingbian, Shenmu, Xingxian, Yulin, Suide, YLEOS) in the study area collected
on 7 August 2011 (Figure 1a), were downloaded from Chinese National Meteorological
Information Center (https://data.cma.cn/, accessed on 7 May 2019). These data were
interpolated using inverse distance weighting methods to obtain their spatial distributions
for the study area.

Flux data were obtained from the YLEOS (38◦26′43.6” N, 109◦28′2.7” E, 1233 m eleva-
tion). A detailed description and introduction to these data can be found in Gong et al. [53].

2.2.3. Other Data

As a model input parameter, DEM data were obtained from the Geospatial Data Cloud
site, of the Chinese Academy of Sciences (http://www.gscloud.cn, accessed on 3 June
2019). The original spatial resolution of the DEM is 30 m, to match the spatial resolution
of the satellite data, the nearest neighbor method is used to resample the data to 500 m
and 1000 m, respectively, for the SEBAL model input. Land use/cover data were used to
specify the surface roughness parameter [48] and to assist in the selection of hot and cold
pixels. We utilized a 2010 land-use map with a 30 m spatial resolution, from the Resource
and Environment Cloud Platform, Chinese Academy of Sciences (http://www.resdc.cn/,
accessed on 20 June 2019).

2.3. Methods
2.3.1. SEBAL Model

The SEBAL model was developed based on the surface energy balance equation [42].
A detailed description of the model can be found in Bastiaanssen et al. [42,48,56] and
Allen et al. [57]. A flowchart for the SEBAL model algorithms is shown in Figure 2.

https://www.avl.class.noaa.gov/saa/products/welcome
https://www.avl.class.noaa.gov/saa/products/welcome
https://data.cma.cn/
http://www.gscloud.cn
http://www.resdc.cn/


Remote Sens. 2021, 13, 1524 6 of 22

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 22 
 

 

where k is the von Karman’s constant (0.41), Ux is the wind speed (m/s) at height zx, u* is 
the friction velocity (m/s), and z  is the momentum roughness length for each pixel (m), 
which can be calculated as Equation (7) [61]: z = 0.05 + 0.5/ NDVINDVI .

 
(7) 

The LE is the residual of the energy balance equation (Equation (1)). 
The evaporative fraction (EF), defined as the ratio of LE and the available radiant 

energy, has been shown to be approximately constant during the daytime [62,63]. The EF 
can be calculated as: EF = LER − G = R − G − HR − G  (8) 

Then, the instantaneous ET (ETinst) (mm/hr) value is calculated using the following 
equation: ET = 3600 ×   (9) 

where λ is the latent heat of vaporization (J/kg). 
Therefore, cumulative daytime evaporation losses can be accurately estimated by 

multiplying an instantaneous EF estimate by the cumulative daytime Rn [63]. The daily 
ET value was calculated from the instantaneous ET based on the EF [42]: ET = 86400 × EF × (R − G )2.501 − 0.002361 × (T − 273.15) × 10  (10) 

where Rn24 is the net radiant flux throughout the day (W/m2), G24 is the soil heat flux 
throughout the day (W/m2), 86,400 is the number of seconds per day, and EF is the evap-
orative fraction. 

ρ 

Ts NDVI albedo UTa

Rswd Rlud

DEM

Rlwd dT

u* 

rah

Rn G H

LE

ETdaily

zom

Input parameters

 
Figure 2. Flowchart for the Surface Energy Balance Algorithm for Land (SEBAL) model algo-
rithms. NDVI is normalized difference vegetation index, ET is evapotranspiration, and LE is latent 
heat flux.  

Figure 2. Flowchart for the Surface Energy Balance Algorithm for Land (SEBAL) model algorithms.
NDVI is normalized difference vegetation index, ET is evapotranspiration, and LE is latent heat flux.

The energy balance equation can be expressed as follows:

Rn = G + H + LE (1)

where Rn is the net radiation flux, G is the soil heat flux, H is the sensible heat flux, and LE
is the latent heat flux. All units are in W/m2.

The pixel-by-pixel net radiant flux calculation was obtained by subtracting the outgo-
ing radiant components from the incoming ones [42,58]:

Rn = (1− α)Rswd + Rlwd − Rlud −
(
1− εg

)
Rlwd (2)

where Rswd is incoming (downward) shortwave radiation (W/m2), α is the surface albedo
(dimensionless), Rlwd is downward longwave radiation (W/m2), Rlud is outgoing (upward)
longwave radiation (W/m2), and εg is the surface thermal emissivity (dimensionless).

G represents the rate of heat storage in the soil, plant, and water in heat transfer,
is relatively difficult to estimate directly based on satellite data, and it can be calculated
from the empirical relationship between Rn, land surface temperature, NDVI, and surface
albedo, as follows [42,59]:

G = Rn ×
1
α
× (Ts − 273.15)×

(
0.0032α+ 0.0064α2

)
×
(

1− 0.978NDVI4
)

(3)

where Ts is the land surface temperature (K).
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H is considered proportional to the ratio between the surface–air temperature differ-
ence (dT) and bulk aerodynamic resistance to heat transport (rah) [42], and it is obtained
from Equation (4):

H =
ρCpdT

rah
= ρCp(aTs + b)/rah (4)

where ρ is the air density (kg/m3), Cp is the air specific heat at a constant pressure
(1004 J/kg/K); dT is the temperature difference between heights z1 and z2 (K); z1, specified
as 0.01 m, is the height above the zero-plane displacement height of the crop canopy; z2, as
2 m, is the distance above the zero-plane displacement, but below the height of the surface
boundary layer.

Due to the two unknown variables (dT and rah) in the equation, in this algorithm, two
anchor pixels (referred to as hot and cold pixels) were chosen based on their land surface
temperatures, and then the variables of dT and rah were calculated using a trial-and-error
method in an iterative process. The cold pixels were selected from areas with an adequate
water supply and lush vegetation and fully irrigated area (high NDVI, low temperature
value and low albedo), and sensible heat flux is negligible, LE ≈ Rn −G. Hot pixels were
selected from sparsely vegetated and desert areas (high temperature, high albedo and
low NDVI), and the latent heat flux is negligible, H ≈ Rn − G. Bastiaanssen et al. [48]
suggested that the cold pixels can be identified in open water bodies or in well-irrigated
agricultural fields, and that the hot pixels can be chosen in bare soil surface. In this study,
for each image, the specific extreme pixel selection was based on the land-use map, albedo,
Ts, and NDVI.

rah is dependent on surface roughness, wind speed, and atmospheric stability [60]. It
is calculated as

rah =
ln
(

z2
z1

)
k× u∗

(5)

u∗ =
k×Ux

ln
(

zx
zom

) (6)

where k is the von Karman’s constant (0.41), Ux is the wind speed (m/s) at height zx, u* is
the friction velocity (m/s), and zom is the momentum roughness length for each pixel (m),
which can be calculated as Equation (7) [61]:

zom = 0.05 + 0.5/
(

NDVI
NDVImax

)2.5
(7)

The LE is the residual of the energy balance equation (Equation (1)).
The evaporative fraction (EF), defined as the ratio of LE and the available radiant

energy, has been shown to be approximately constant during the daytime [62,63]. The EF
can be calculated as:

EF =
LE

Rn −G
=

Rn −G−H
Rn −G

(8)

Then, the instantaneous ET (ETinst) (mm/h) value is calculated using the following
equation:

ETinst = 3600× LE
λ

(9)

where λ is the latent heat of vaporization (J/kg).
Therefore, cumulative daytime evaporation losses can be accurately estimated by

multiplying an instantaneous EF estimate by the cumulative daytime Rn [63]. The daily ET
value was calculated from the instantaneous ET based on the EF [42]:

ETdaily =
86400× EF× (Rn24 −G24)

[2.501− 0.002361× (Ts − 273.15)]× 106 (10)
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where Rn24 is the net radiant flux throughout the day (W/m2), G24 is the soil heat flux
throughout the day (W/m2), 86,400 is the number of seconds per day, and EF is the
evaporative fraction.

2.3.2. Aggregation Process and Statistical Indicators

We chose a simple averaging method as the aggregation scheme, which has the
advantage of not only preserving the spatial distribution of ET, but also maintaining the
most statistically and spatially predictable behaviors, recommended by Sridhar et al. [4],
Hong et al. [17], Wang et al. [31], and Bian and Butler [64].

Figure 3 shows the aggregation procedures in this study. First, we evaluated the
consistency of the three satellite sensors used for ET simulation to understand the perfor-
mances of the data sources with different spatial resolutions in the SEBAL model. Second,
to assess the impact of spatial scale changes on ET simulation, the input parameters from
the original 30 m × 30 m (Landsat TM) spatial resolution were aggregated to a coarser
resolution (1200 m × 1200 m) at intervals of 30 m using the simple averaging scheme. The
aggregated parameters were then used to calculate ET by the SEBAL model. Third, as land
surface heterogeneity is the main cause for aggregation errors [5,65], in order to explore
the causes of scale aggregation, the heterogeneous and homogeneous areas were chosen on
a pixel scale to calculate ET over different spatial resolutions, independently.
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Figure 3. Flowchart of the ET simulation and aggregation processes. Landsat TM is Landsat Thematic
Mapper, MODIS is Moderate Resolution Imaging Spectroradiometer, and AVHRR is Advanced Very
High-Resolution Radiometer.

To evaluate the aggregation effect, each aggregated result was compared with the
original 30 m resolution data, and a set of evaluation criteria was applied to describe the
changes in ET simulations due to scale aggregation, including spatial mean, coefficient
of variation (CV), relative error (RE), mean relative error (MRE), absolute error (AE) [66],
and spatial distribution characteristics. The relative spatial mean (µ) and relative spatial
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standard deviation (σ) were used to quantify the changes in the key input parameters for
each aggregated resolution [17,30]:

µ = M0/Mi (11)

σ = σ0/σi (12)

where M0 and σ0 are the spatial mean and standard deviation of the original parameter
spatial resolution (30 m), respectively, Mi and σi are the spatial mean and standard deviation
of the aggregated spatial resolution, respectively, and i represents each aggregated spatial
resolution.

2.3.3. Determination of Homogeneous and Heterogeneous Area

We selected the regions of interest with the most and least types of land use/cover,
and then calculated the landscape pattern indices to determine the relatively heterogeneous
and homogeneous regions to analyze the uncertainty of the simulated ET caused by scale
aggregation on different land pattern complexities. The selected sample areas correspond
to 25 km2 (5 km × 5 km) lots (Figure 1d). Six landscape pattern indices were selected to
indicate the surface features: number of patches (NP), largest patch index (LPI), mean
shape index (SHAPE_MN), contagion index (CONTAG), Shannon’s diversity index (SHDI)
and patch richness index (PR) [4,67,68]. Detailed descriptions of these indices are shown in
Table 2.

Table 2. Description of the selected landscape pattern indices.

Landscape Pattern
Indices Formula Value Range Meanings

NP
NP = ni

ni is the number of patches in the
landscape of patch type (class) i.

NP ≥ 1
NP = 1 when the landscape

contains only one patch of the
corresponding patch type.

SHAPE
SHAPE =

0.25∗Pij√aij

Pij is the perimeter (m) of patch ij.
aij is the area (m2) of patch ij.

SHAPE ≥ 1

SHAPE = 1 when the patch is
a square and increases

without limit as the patch
shape becomes more irregular.

CONTAG

CONTAG =
1+∑m

i=1 ∑m
k=1

[
Pi ∗

gik
∑m

k=1 gik

]
∗[

ln(Pi ∗
gik

∑m
k=1 gik

)
]

1 ln(m)

(100)

Pi is the proportion of the landscape
occupied by patch type (class) i.
gik is the number of adjacencies

(joins) between pixels of patch types
(classes) i and k based on the

double-count method.
m is the number of patch types

(classes) present in the landscape,
including the landscape border

if present.

0 < CONTAG ≤ 100

CONTANG approaches 0
when the patch types are

maximally disaggregated and
interspersed.

CONTAG = 100 when all
patches are maximally

aggregated.

LPI
LPI =

max(aij)
n

j=1
A (100)

aij is the area (m2) of patch ij.
A is the total landscape area (m2)

0 < LPI < 100

LPI = 0 when the largest patch
of the corresponding patch

type is small.
LPI = 100 when the entire

landscape consists of a
single patch.
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Table 2. Cont.

Landscape Pattern
Indices Formula Value Range Meanings

SHDI
SHDI = −

m
∑

i=1
(Pi∗lnPi)

Pi is the proportion of the landscape
occupied by patch type (class) i.

SHDI ≥ 0 Larger the value of SHDI, the
greater the diversity.

PR

PR = m
m is the number of patch types

(classes) present in the landscape,
excluding the landscape border

if present.

PR ≥ 1
PR is 1, this indicates the

simplest landscape in terms of
landscape composition.

Source: McGarigal et al. [68]. Note: NP represents number of patches, SHAPE represents shape index, CONTAG represents contagion
index, LPI represents largest patch index, SHDI represents Shannon’s diversity index, and PR represents patch richness index.

The statistical results for the different land use/cover pattern are shown in Table 3.
In the homogeneous area, the land use/cover pattern was mainly determined by a single
land use/cover type (barren land, 81.75%, followed by grassland, 15.53%). The landscape
indices indicate that the homogeneous area is characterized by fewer numbers of patches
(NP = 23), the landscape fragmentation degree is lower, the geometrical shape is simple,
with an LPI of 81.70%, and the landscape diversity is lower (SHDI = 0.55). In contrast,
the heterogeneous area (shown in Figure 1d) clearly has a relatively complex land surface,
comprising of mainly farmland (47.90%), and grassland (50.80%), with barren land and
built-up land patches mixed together. Table 3 shows that the heterogeneous area has a
larger number of the patches (NP = 43), the landscape fragmentation degree is higher, the
geometrical shape is more complex (LPI = 28.17%) and the landscape diversity is higher
(SHDI = 0.76).

Table 3. Landscape pattern indices and land cover types under different surface conditions.

Landscape Pattern Indices Proportion of Land
Cover Types (%) NP LPI (%) SHAPE_MN CONTAG SHDI PR

Homogeneous area
Farmland: 2.72

Grassland: 15.53
Barren land: 81.75

23 81.70 1.64 68.50 0.55 3

Heterogeneous area

Farmland: 47.90
Wood land: 0.35
Grassland: 50.80

Built-up land: 0.51
Barren land: 0.44

43 28.17 2.25 65.24 0.76 5

Note: Not listed land use/cover types indicate that the land use/cover types do not exist in this area.

3. Results
3.1. Assessment of the ET Estimates from the Different Satellite Datasets
3.1.1. Validation of the ET Simulations from the Different Satellite Sensors

In order to check the consistency of the SEBAL performance for the three datasets, we
compared the estimated ETdaily with the observed ETdaily from the eddy covariance data
by extracting the pixel value corresponding to the geographic location of the flux tower
site. AE and RE were selected to evaluate the model reliability. Table 4 shows the errors
between the pixel values of the simulated ETdaily and the in situ observation. The observed
ETdaily was 1.40 mm/d on 7 August 2011. All of the simulated values underestimated the
ETdaily values compared with the observed ETdaily value. The simulated ETAVHRR, with
a RE of 3.60% and an AE of −0.05 mm/d, was the closest to the observed values. The
simulated ETLandsat had a relatively high agreement with the flux observation, with an AE
of −0.17 mm/d and an RE of 11.98%. However, the simulated ETMODIS had the largest
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error, which was more than twice the RE between the high-resolution daily estimated ET
and the observational data (AE = −0.46 mm/d, RE = 32.90%).

Table 4. Comparison of the simulated ET with the measured ET data for 7 August 2011.

Types Simulated ET
Value (mm/d)

Absolute Error
(mm/d)

Relative Error
(%)

Measured data 1.40

Simulated
data

ETLandsat 1.23 −0.17 11.98
ETMODIS 0.94 −0.46 32.90
ETAVHRR 1.35 −0.05 3.60

3.1.2. Spatial Patterns and Statistical Characteristics of the Simulated ET from the
Different Datasets

Figure 4 shows the spatial distribution of the simulated ET based on the different
sensors. Although the input parameters were derived from the three satellite sensors with
different spatial resolutions, the ET simulated using the SEBAL model exhibited similar
spatial distribution patterns. Higher heterogeneity and ET values were distributed in the
high vegetation density of woods and crops in the southeastern part of the study area. In
contrast, lower heterogeneity and ET values were distributed in the grassland and barren
land in the northwestern part of the study area (Figures 1b and 4). Landsat TM, which has
a spatial resolution of 30 m, can capture the detailed textural features of the land surfaces.
The spatial ET patterns based on the Landsat TM data in the mountainous areas with
complex terrain in the southeastern part of the study area were well captured compared to
the spatial patterns obtained from the MODIS and AVHRR data. For example, the narrow
Wuding River valley has a large area of farmland with higher ET values, and can be easily
observed in the Landsat TM images, whereas the low spatial resolutions of the ET maps
derived from the MODIS and AVHRR data contained mixed pixels and were unable to
reflect the detailed heterogeneity of the land surface, making the river valley difficult to
observe on the derived ET maps.
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Figure 5 presents the frequency distribution and statistical analysis (mean, maximum,
minimum, and standard deviation) of the three datasets. It shows a bimodal distribution
among the three datasets. The histogram shapes of ETLandsat and ETAVHRR were similar
and had two peak frequencies at 1.2–1.4 mm/d and 2.6–2.8 mm/d, respectively. How-
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ever, the ETMODIS histogram had peak frequencies at approximately 1.0–1.2 mm/d and
2.8–3.0 mm/d. From the spatial statistical characteristics, the maximum value of ETLandsat
was 4.33 mm/d, followed by ETAVHRR (3.42 mm/d), and ETMODIS (3.28 mm/d). The
maximum ET values of the three datasets indicated a gradually decreasing trend from finer
to coarser spatial resolution datasets.
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In summary, the above analyses indicated that the different datasets affected the ET
values and statistical characteristics. The coarser spatial resolution data had the larger un-
certainty and the MODIS data underestimated the ET value with the largest discrepancies.

3.2. Effects of Aggregation on the Energy Balance Components and ET Estimation

In order to evaluate the effect of input parameter aggregation on the results of the
SEBAL model, we used simple averaging schemes to aggregate the input parameters from
the original 30 m × 30 m spatial resolution to 1200 m × 1200 m at intervals of 30 m to test
the responses of the four energy-balance components to changes in spatial scale, including
Rn, G, H, and LE. The spatial means, MRE, and CV were used to quantify the variations of
the four fluxes during the aggregation process.

Figure 6 shows the statistical results of the SEBAL input parameter aggregation. The
spatial mean and spatial heterogeneity of the NDVI and albedo showed larger changes
than other parameters. However, the spatial distribution of the Ts and U were obtained by
interpolation, showing limited changes for spatial scale aggregation.

Figure 7 shows the statistical characteristics of the spatial mean and spatial heterogene-
ity of the fluxes calculated at different aggregation levels. There was a decreasing trend in
the spatial mean values of Rn when finer resolution data were aggregated to a coarser reso-
lution, ranging from 562.96 W/m2 to 562.46 W/m2 and the MRE was −0.06%. In contrast,
the spatial mean value of G tended to increase, ranging from 75.33 W/m2 to 76.21 W/m2.
G was slightly overestimated when the finer scale data were aggregated to a coarser scale,
and the MRE was 0.82%. All errors exhibited a relatively steady increase. In terms of spatial
variability, a relatively small CV was present in the Rn and G (6.68–8.02%, 9.65–12.49%,
respectively). The spatial CV of Rn and G showed similar variations: a decreasing tendency
when the scale was aggregated, indicating a decrease in spatial heterogeneity. Overall,
scale aggregation had limited effects on the Rn and G.

In contrast, the scale aggregation had greater effects and more significant variations
on the H and LE than on the Rn and G. The spatial mean values and CV had fluctuating
variations. The spatial mean value of the H initially increased, then decreased, ranging
from 209.80 W/m2 to 247.96 W/m2. The MRE of the H was 3.03% and RE reached a
maximum of 10.88% at a spatial resolution of 300 m. The spatial mean value of the LE
first decreased, and then increased, ranging from 238.97 W/m2 to 276.58 W/m2, and the
MRE was −2.80%. The RE reached a maximum of −9.46% at a spatial resolution of 300 m.



Remote Sens. 2021, 13, 1524 13 of 22

The relatively larger CV was present in both the H and LE estimations (43.58–55.14%,
52.94–66.12%, respectively) and had an increasing spatial heterogeneity trend with scale
aggregation.
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and the blue lines represent the coefficient of variation).
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To evaluate the error variation for scale aggregation, we compared the estimated fluxes
at different scales with the observed data. We used the Bowen ratio adjustment method
reported in Twine et al. [69] to modify the latent and sensible heat fluxes to solve the energy
balance closure issue of the eddy covariance flux. Figure 8 shows the AE between the
modified flux observation from the YLEOS and the simulated fluxes at different spatial
resolutions. The results indicate that the Rn and G values are similar to the original values
(at 30 m resolution) and showed relatively little error variation in the scale aggregation
(AE values: ~10–20 W/m2 and ~−15 W/m2, respectively). However, when the pixels were
enlarged, the differences between the tower flux data and model output of the H yielded
a relative larger error, i.e., AE values increased from 20 W/m2 to 60 W/m2. The LE error
showed a similar tendency to the H, but in the opposite direction, i.e., AE decreased from
0 W/m2 to −30 W/m2. This implies that the H is the main source of the error during the
scale aggregation.
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Figure 9 shows the statistics of the daily ET estimations with the scale aggregation. The
spatial means of the daily ET initially decreased, then increased with the scale aggregation,
ranging from 1.74 mm/d to 1.96 mm/d. A spatial resolution of 300 m was a critical point
in the ET simulation scale aggregation. In addition, the spatial heterogeneity increased
(CV ranged from 37.05% to 46.12%) with the spatial scale aggregation. We also found that
the largest ET values corresponded to smaller spatial heterogeneities. This implies that
spatial aggregation affects the SEBAL model simulation processes and performance in a
complex way.

3.3. The Effects of Land Use/Cover Pattern on the ET Estimation during the Aggregation Process

The aggregation effect is mainly caused by non-linear processes in the model mech-
anisms and surface heterogeneity [17,18] as discussed in Section 3.2. To demonstrate the
effect of land use/cover pattern on the ET estimation, two comparison groups (homoge-
neous and heterogeneous areas) were used to illustrate the changes in the ET estimation
during the aggregation process. We selected the following representative nodes of the
spatial resolution aggregation results to compare the spatial patterns of the ET estimates:
30 m (original), 60 m, 120 m, 240 m, 480 m, and 960 m (coarse).
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Table 5 shows the four energy balance components of the statistical analysis results
over the homogeneous and heterogeneous areas at different spatial resolutions. The Rn
and G were minimally affected by the different land use/cover pattern with the scale
aggregation, and the maximum absolute error was less than 1 W/m2. The maximum error
of the H in the heterogeneous area was −35.99 W/m2 at the spatial resolution of 120 m,
while the maximum error of the H in the homogeneous area was −33.78 W/m2 at the
spatial resolution of 240 m.

Table 5. Statistical results of the energy fluxes in the homogeneous and heterogeneous areas at different spatial resolutions.

Homogeneous Area Heterogeneous Area

Rn AE G AE H AE LE AE Rn AE G AE H AE LE AE

30 m 512.75 - 81.64 - 293.64 - 137.47 - 603.16 - 65.88 - 164.35 - 372.93 -
60 m 512.61 −0.14 81.7 0.06 317.5 23.86 113.41 −24.06 603.14 −0.02 65.98 0.10 153.07 −11.28 384.09 11.16
120 m 512.49 −0.26 81.8 0.16 325.48 31.84 105.21 −32.26 603.02 −0.14 66.12 0.24 128.36 −35.99 408.54 35.61
240 m 512.44 −0.31 81.89 0.25 327.42 33.78 103.13 −34.34 602.93 −0.23 66.26 0.38 129.78 −34.57 406.89 33.96
480 m 511.32 −1.43 81.95 0.31 315.98 22.34 113.39 −24.08 603.3 −0.14 66.34 0.46 160.51 −3.84 376.45 3.52
960 m 511.26 −1.49 82.00 0.36 283.22 −10.42 146.04 8.57 603.37 0.21 66.39 0.51 189.37 25.02 347.61 −25.32

Note: Rn represents net radiation flux; G represents soil heat flux; LE represents latent heat flux; H represents sensible heat flux; and AE
represents absolute error—all units are W/m2.

Figure 10 shows the spatial distributions and basic statistics of the simulated ET on
the different surfaces at different spatial scales. We found that the maximum ET values
decreased from fine to coarser resolutions, independent of the land use/cover type. Higher
spatial resolutions of 30 m, 60 m, and 120 m preserved the detailed spatial patterns and
textural features. For spatial resolutions of 240 m, 480 m, and 960 m, the small surface
features disappeared and the spatial structures were obscured, resulting in larger statistical
errors in the ET estimation. This indicates that lower spatial resolutions, fewer pixels,
and higher spatial variabilities, all contributed to the uncertainty in the ET estimation.
Particularly, at a spatial resolution of 960 m, much spatial information was lost, and the
spatial patterns, ranges, and magnitudes of ET were degraded.
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In the homogeneous area, patches of the grassland with higher ET values were spa-
tially smaller, while the barren land covered a larger area and had lower ET values. After
spatial pixel aggregation, the grassland patches lost clear boundaries and produced drasti-
cally high and low ET values. The peak of the histogram shifted to a low-value area. The
spatial means decreased from 1.24 mm/d at the spatial resolution of 30 m to 1.06 mm/d
at the spatial resolution of 240 m. The spatial heterogeneity also increased with the scale
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aggregation and the standard deviation increased from 0.37 mm/d to 0.77 mm/d. Likewise,
in the heterogeneous area, farmland and grassland were staggered after the scale aggre-
gation, the peak of the histogram shifted to the high-value area, the mean and maximum
ET values decreased, and the standard deviation increased from 0.41 mm/d at the 30 m
spatial resolution to 0.74 mm/d at the spatial resolution of 960 m, which indicates that the
pixel aggregation increased both ET estimation errors and spatial heterogeneity.

4. Discussion
4.1. Estimation of the ET from the Three Different Satellite Sensors

Multiple satellites have been launched to obtain Earth observations, with sensors with
different spatial, temporal, spectral, and radiation resolutions would usually cause uncer-
tainties in estimating surface fluxes. The ET estimated using multiple sensors (ETLandsat,
ETMODIS, and ETAVHRR) with different spatial resolutions were compared in this study.
As shown in Section 3.1, both the spatial characterization and frequency distribution of
the results demonstrate the similar results between the Landsat TM and AVHRR datasets.
However, the MODIS data had the largest uncertainty. The results are similar to those of
other studies [14,37,70]. The largest uncertainty in the ETMODIS could be caused by the
following reasons: (1) the original thermal infrared band of MODIS has a spatial resolution
of 1 km, and re-sampling may increase its spatial variability; (2) the influence of wavelength
range and input parameter calculation methods resulted in the lower ET values; and (3)
the difference of about 0.26 mm/d in the spatial mean between the ETMODIS and ETLandsat
is consistent with the 30 min time gap between the overpass times of the two satellites, the
time gap leads to the variation in the EF, causing the difference in the daily ET.

The validation of the RS-based ET at large scales is difficult due to discrepancies in
spatial resolution between the ground measurements and remote sensing datasets [30,70].
Generally, input parameters with a higher resolution correspond to the ET estimates with
higher accuracy [18,71]. In this study, we observed that finer spatial resolutions did not
match the highest ET accuracies. Gaur et al. [47] reported that a high spatial resolution
may lead to the underestimation of ET values, and thus, a higher resolution dataset was
not necessarily the best choice. This is caused by the mismatch between the flux tower site
position and the pixel. The main contributing source area of the YLEOS determined by
the footprint model was approximately 1263 m wide and 1682 m long [53], which matches
the spatial resolution (1.1 km) of the AVHRR pixels and explains the reason for the higher
simulation accuracy of the AVHRR data. Therefore, verifications of the ET simulations
with in situ observations must consider the match of the spatial scales.

4.2. Aggregation Effects on the Energy Balance Flux Simulation

Land–atmosphere interaction processes respond non-linearly to changes in scale, and
land surface heterogeneities make the scaling process more complicated [4,27,34]. The
effect of the spatial resolution on the energy balance components in the SEBAL model was
assessed in this study. The results indicate that the Rn and G has the limited changes in
scale, while the H and LE yielded relatively larger errors with the spatial scale aggregation.
This was also reported by Su et al. [34], Ershadi et al. [30], and Ramírez-Cuesta et al. [27].
The Rn is computed as the algebraic sum of the incoming and outgoing short wave and
long wave radiation at the surface, and is closely related to the Ts, Ta, albedo, and NDVI
(Equation (2) and Figure 2). Small changes in the Ts and Ta values were observed at an
aggregated resolution (Figure 6). The increases in the albedo and NDVI resulted in a
small increase in the Rn. The G was calculated with the empirical relation using the Rn,
albedo, and NDVI (Equation (3)), which are linearly combined, producing similar small
decreasing trends.

Since aggregation tends to average out small surface features, it will introduce more
mixed pixels. The difference between the aggregated imagery and the original fine-
resolution imagery increases with the aggregation level [18]. This explains why the CV of H
and LE increased with the pixel size. As the SEBAL algorithm is non-linear, the changes in
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the spatial resolution could impact the turbulent heat flux calculations, resulting in a spatial
scale discrepancy [34]. A relatively larger error in the aggregation found in the H could be
explained by the combined effect of the aerodynamic resistance on heat transfer and the
aggregated roughness properties of the surface (zom) in the SEBAL model (Figure 2 and
Equations (4)–(7)). However, the U and Ts underwent relatively small changes, suggesting
that the aerodynamic resistance could be the reason for the changes in the H when the scale
was aggregated. Differences in the H at different pixel resolutions highlight the important
role of zom parameterization in the flux estimation, which is directly related to the changes
in NDVI.

In addition, the acquisition of aerodynamic resistance requires local calibration by the
user to select cold and hot pixels in specific image scenes using multiple iterative steps,
which exhibits a highly nonlinear relationship. A sensitivity analysis of the SEBAL model
confirmed that the changes in the H are very sensitive to the selection of hot and cold
pixels [21,72]. Compared with the low-resolution data, the high-resolution satellite data
have fewer mixed pixels and the extremely hot and cold pixels are more readily identified.
When the scale is aggregated, (1) it changes the locations of the hot and cold pixels in the
Ts images at the various spatial resolutions; (2) it introduces more land surface information,
causing the value of the hot and cold pixels to decrease as the scale is enlarged, which could
result in large deviations in the slope and intercept of the linear relationship between dT
and Ts (Equations (4)–(6) and Figure 11), resulting in a larger error in the H. The non-linear
changes in the cold and hot pixel values also explain why the multiple high and low values
were present in the ET trend during the scale aggregation.
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In general, the variation in the surface temperature for the selected extreme pixels
(hot pixels and cold pixels) at the different spatial resolution are a major reason for the ET
uncertainty in the ET simulation.

4.3. Influence of the Land Use/Cover Pattern on the ET Estimates during the Aggregation Process

ET estimates using remote sensing data are largely affected by plant structure, canopy
characteristics, and the proportion of bare soil present in a pixel [47]. A scale change
could alter the composition of land cover in a pixel, which creates differences in the ET
variance. This study indicates that the land use/cover pattern has obvious effects on the ET
simulation using the different RS products. In addition, we also determined that a different
pattern of land use/cover exhibited different aggregation results. As Figures 1d and 10
show in the homogeneous areas, the aggregation of the small grassland patches with higher
ET values to large barren land patches with lower ET values decreased the maximum value
of the ET, which in turn decreases the spatial average values of the ET. The aggregation
process in the heterogeneous areas is dominated by the mixing of the high ET farmland and
low ET grassland patches, increasing the maximum value of the ET during the aggregation,
and in turn raising the overall spatial means of the ET. We also found that the land cover
has a much greater impact on the H and LE than on the Rn and G (Table 5). Unexpectedly,
we found that regardless of the complexity of the land use/cover pattern, the entire land
surface affected the ET aggregation results. This is because the aggregation increases the
number of mixed pixels over the homogeneous and heterogeneous areas and affects the
selection of the hot and cold pixels, resulting in the changes to the ET simulation. This
illustrates that the effect of the model mechanisms is greater than the impact of the land
use/cover pattern in the SEBAL model simulation.

4.4. Limitations and Outlook

In this study, we examined the effect of spatial aggregation on the ET simulations.
However, the transit times of satellites, spectral resolutions and parameter estimation
methods may also affect the analysis of the multi-sensor estimated ET values. Future
studies should choose datasets with the same or closer transit times to evaluate the scale
aggregation effects. In addition, there is only one in situ flux site available in the study area
of the present study. If feasible, in situ data from more flux sites need to be used in the
verification of simulation results in future studies.

5. Conclusions

In this study, we investigated the spatial resolution influences on the ET estimation
using the SEBAL model. The main conclusions of this study are as follows:

1. The spatial distribution patterns of the ET estimates using Landsat TM, MODIS,
and AVHRR datasets were similar, with MODIS having the largest uncertainties.
The validation of the simulated ET must consider matching spatial scales of the
satellite datasets.

2. With scale aggregation, the spatial average values of the Rn decreased slightly, while
the G increased, and the spatial variabilities of both Rn and G all decreased. The
spatial mean values of the H and LE were relatively larger, but the relative error was
less than 20%. This was due to the changes in the selection of the locations of the hot
and cold pixels in the model mechanisms as well as the NDVI and surface albedo
input parameters in the SEBAL model.

3. Surface heterogeneity affected the spatial scale aggregation results, and differences in
the land use/cover pattern led to the different aggregation results. However, the scale
errors caused by the SEBAL model mechanisms were larger than that contributed by
the land use/cover pattern during the scale aggregation.
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