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Abstract
1.	 The management of biological invasions is a worldwide conservation priority. 

Unfortunately, decision-making on optimal invasion management can be impeded 
by lack of information about the biological processes that determine invader success 
(i.e. biological uncertainty) or by uncertainty about the effectiveness of candidate 
interventions (i.e. operational uncertainty). Concurrent assessment of both sources 
of uncertainty within the same framework can help to optimize control decisions.

2.	 Here, we present a Value of Information (VoI) framework to simultaneously ana-
lyse the effects of biological and operational uncertainties on management out-
comes. We demonstrate this approach with a case study: minimizing the long-term 
population growth of musk thistle Carduus nutans, a widespread invasive plant, 
using several insects as biological control agents, including Trichosirocalus horridus, 
Rhinocyllus conicus and Urophora solstitialis.

3.	 The ranking of biocontrol agents was sensitive to differences in the target weed's 
demography and also to differences in the effectiveness of the different biocon-
trol agents. This finding suggests that accounting for both biological and opera-
tional uncertainties is valuable when making management recommendations for 
invasion control. Furthermore, our VoI analyses show that reduction of all uncer-
tainties across all combinations of demographic model and biocontrol effective-
ness explored in the current study would lead, on average, to a 15.6% reduction in 
musk thistle population growth rate. The specific growth reduction that would be 
observed in any instance would depend on how the uncertainties actually resolve. 
Resolving biological uncertainty (across demographic model combinations) or op-
erational uncertainty (across biocontrol effectiveness combinations) alone would 
reduce expected population growth rate by 8.5% and 10.5% respectively.

4.	 Synthesis and applications. Our study demonstrates that intervention rank is de-
termined both by biological processes in the targeted invasive populations and 
by intervention effectiveness. Ignoring either biological uncertainty or opera-
tional uncertainty may result in a suboptimal recommendation. Therefore, it is 
important to simultaneously acknowledge both sources of uncertainty during the 
decision-making process in invasion management. The framework presented here 
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1  | INTRODUC TION

Biological invasions cause serious harm around the globe. They 
reduce native biodiversity, alter ecosystem structure and func-
tioning and cause enormous economic loss (Novak, 2007; Buckley 
& Han,  2014; Buckley & Csergo,  2017). Unfortunately, uncer-
tainty about the key processes that drive invader success hampers 
decision-making about effective interventions. Identifying which 
uncertainties most strongly influence management outcomes can 
facilitate the decision-making process by allowing researchers to pri-
oritize research to resolve such key uncertainties (Runge, Converse, 
& Lyons, 2011).

Invasion ecologists have frequently evaluated the efficacy of 
management actions based on perturbation analyses (Jongejans 
et al., 2008; Caswell & Sánchez Gassen, 2015). Perturbation analyses 
quantify the potential effect of a small change in a life-history compo-
nent (e.g. survival, growth or fecundity) on the overall population per-
formance (e.g. long-term population growth; Ramula, Knight, Burns, 
& Buckley, 2008; Caswell & Sánchez Gassen, 2015). Highly sensitive 
life-history transitions are then recommended as targets for manage-
ment interventions (Kroon, van Groenendael, & Ehrlén, 2000; Ramula 
et  al.,  2008). However, highly sensitive transitions may also be the 
ones with the smallest range of variation achievable by management 
(Baxter, McCarthy, Possingham, Menkhorst, & McLean, 2006). For ex-
ample, reduction in adult survival might contribute most to reduced 
population growth of woody invaders (Koop & Horvitz,  2005; Li & 
Ramula, 2015), yet reducing the survival rate of adult woody plants 
may be least feasible in practice (Baxter et al., 2006).

Uncertainties about the biology of invaders and about the effec-
tiveness of interventions are rife, especially for novel invaders and 
situations where data are limited. Biological uncertainties arise when 
invasive organisms' demographic processes such as survival, growth 
and fecundity are poorly understood. These uncertainties are hereaf-
ter referred to as biological uncertainty, but are also known as model, 
parametric or structural uncertainty in ecological settings (Nichols, 
Johnson, & Williams, 1995; Williams & Brown, 2016; Milner-Gulland 
& Shea, 2017). Operational uncertainties arise due to limited infor-
mation on intervention effectiveness, logistical constraints, feasi-
bility or cost (Clewley, Eschen, Shaw, & Wright, 2012). Operational 
uncertainty is also referred to as partial controllability in ecological 
decision theory (Williams & Johnson, 1995). Studies to examine the 
effectiveness of a management action in practice are often lacking. 
When effectiveness is evaluated, it is often provided as a single value 

obtained from one study (Shea, Kelly, Sheppard, & Woodburn, 2005; 
Shea, Sheppard, & Woodburn, 2006; Li et  al., 2013). However, ig-
noring uncertainty in control effectiveness and applying the same 
effectiveness value to guide management in different invasion con-
texts can be problematic, as a control action effective in one situa-
tion may be less so in another (Shea et al., 2005).

Here, we demonstrate how these two sources of uncertainty, bi-
ological and operational, together influence management decisions. 
We use an illustrative case study focused on the selection of the most 
appropriate biological control agent(s) to control musk thistle Carduus 
nutans L., a widespread invasive plant species. In this study, biological 
uncertainty refers to uncertainty about C. nutans' demographic pro-
cesses, as represented by demographic models, while operational un-
certainty refers to uncertainty about the effectiveness of biocontrol 
agents to control the thistle, similar to the distinction drawn by Dodd, 
Ainsworth, Burgman, and McCarthy (2015). Both sources of uncer-
tainty are epistemic (i.e. arising from a lack of knowledge about the 
state of a system that can be reduced through learning) as opposed 
to aleatory (i.e. arising from environmental variation and other uncon-
trollable stochastic events, which usually cannot be reduced through 
learning; Regan, Colyvan, & Burgman, 2002; Shea, Tildesley, Runge, 
Fonnesbeck, & Ferrari, 2014). Biocontrol has been widely applied to 
control this weed, and efforts have resulted in varied success (Shea 
et  al.,  2005). Multiple models for this species' demography in both 
native and invasive populations exist, and corresponding information 
describing effectiveness of several different biocontrol agents is avail-
able (McCarty & Lamp, 1982; Woodburn, 1997; Shea & Kelly, 1998). To 
assess biological and operational uncertainties within the same model 
structure, we use Value of Information (VoI) analysis. VoI analyses ad-
dress how uncertainty affects decision-making, conceptually similar 
to the way that elasticity analyses address how uncertainty affects 
ecological processes (Felli & Hazen, 1998). Like elasticity analysis, VoI 
analysis is a sensitivity analysis—it measures the effect of uncertainty; 
but unlike elasticity analysis, VoI analysis focuses on the relevance of 
uncertainty to the decision maker, rather than to the scientist. The Value 
of Information measures how much the outcome of the decision could 
be improved if uncertainty were resolved before committing to action 
(Runge et al., 2011). We first demonstrate VoI's use for addressing bi-
ological uncertainty alone, and then extend the approach to include 
both biological and operational uncertainties. We discuss the applica-
tion of our framework to biocontrol of C. nutans in particular, to bio-
control programmes in general and to any decision-making process in 
invasion management. In short, this approach can be applied in a wide 

can accommodate diverse data sources and modelling approaches, and has wide 
applicability to guide invasive species management and conservation efforts.
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range of environmental management programmes where both biolog-
ical and operational uncertainty impedes the choice of management.

2  | MATERIAL S AND METHODS

2.1 | Study system

Musk thistle (Carduus nutans L.: Asteraceae) is a short-lived mono-
carpic herbaceous plant. Its seeds germinate in fall or spring, and 
individuals form rosettes and grow for one to several years before 
bolting and flowering. Musk thistle produces flower heads 1.5–
4.5 cm in diameter, and flower heads can hold up to 1,500 achenes 
(Desrochers, Bain, & Warwick, 1988). Plants die after reproduction 
(Desrochers et al., 1988). This species originated in Eurasia, but has 
invaded many regions, including Argentina, Australia, New Zealand 
and North America, and it grows in pastures, croplands, roadsides 
and disturbed areas (Desrochers et  al., 1988). Musk thistle's spiny 
leaves and stems prevent livestock from grazing, reducing pasture 
productivity (Desrochers et  al.,  1988). It is therefore commonly 
listed as a noxious weed in its invaded ranges. Three main biocon-
trol agents have been released for musk thistle management. Its 
rosettes are attacked by the root-crown weevil Trichosirocalus hor-
ridus Panzer; developing flower heads are attacked by larvae of the 
receptacle weevil Rhinocyllus conicus Froel. and the receptacle gall-
fly Urophora solstitialis L. (McCarty & Lamp, 1982; Woodburn, 1997; 
Shea & Kelly, 1998).

2.2 | Capturing biological and operational 
uncertainty

We present a decision context in which a biocontrol practitioner is 
deciding among a suite of interventions to manage C. nutans. We 
assume that the management objective is to minimize the long-term 
population growth rate (λ) of C. nutans. We first calculated baseline 
λ under no action. Each of the three biocontrol agents can be re-
leased alone, or together with other agents in an Integrated Pest 
Management framework. Thus, there are seven alternative control 
actions or action combinations: T. horridus alone, R. conicus alone, U. 
solstitialis alone, T. horridus & R. conicus together, T. horridus & U. sol-
stitialis together, R. conicus & U. solstitialis together and all three insects 
together.

We used matrix projection models (Shea & Kelly, 1998; Jongejans 
et al., 2008) as our modelling framework to predict the effect of each 
of the seven alternative actions in achieving the management ob-
jective. Matrix projection models allow us to project the invasion 
trajectory (population growth rate λ  >  1 means the population is 
invading), conduct elasticity analyses to determine which life cycle 
transitions may be vulnerable to management, and evaluate po-
tential interventions by changing components (single or multiple 
elements or vital rates) of the matrix to examine the effects on λ. 
In our matrix models, individuals in a population are classified into 

four stages: seed bank (SB), small rosettes (S) with less than 20% 
chance of surviving and flowering in the next year, medium rosettes 
(M) with between 20% and 80% chance of surviving and flower-
ing in the next year and large rosettes (L) with greater than 80% 
probability of surviving and flowering in the next year (Figure S1; 
Shea et al., 2005; Jongejans et al., 2008). Four population matrices 
were constructed using data from four populations: one in the na-
tive range (a field site at La Cavalerie, a town in the south of France, 
44°00′S, 3°08′E) and three in invaded ranges (Kybeyan, a field site 
at Kybeyan near Canberra in southern New South Wales, Australia, 
36°22′S, 149°24′E; Midland, a rural site on the North Island, New 
Zealand, 40°15′S, 175°43′; and Kansas, a site at the University of 
Kansas' John H. Nelson Environmental Study Area in Jefferson 
County, Kansas, USA, 39°02′S, 95°12′E). More details on vital rates, 
equations used to construct matrix transition elements and final 
matrices can be found in supplementary tables (Tables S2–S7) and 
Jongejans et al (2008). A biocontrol practitioner with an invasion in 
a novel setting may not know which of these different populations 
best represents how the plant will grow in the new setting; thus, bi-
ological uncertainty is represented by these matrix models, particu-
larly by differences in the vital rates used for constructing transition 
elements in the matrices.

Uncertainty about the effectiveness of control actions is an 
important operational uncertainty. We took two approaches to in-
vestigating the effect of operational uncertainty on management 
selection: one considering all possible levels of effectiveness, and 
one informed by published biocontrol agent impacts. We first ex-
plored the effects of operational uncertainty by simulating λ under a 
full range of effectiveness levels for each model. In the simulations, 
we reduced all survival, growth or fecundity rates in each matrix 
by 0%–100%, in intervals of 20%. We then examined operational 
uncertainty about the effectiveness of biocontrol agents achieved 
in practice by conducting a literature survey on the Institute for 
Scientific Information Web of Knowledge and through the Google 
search engine, using the Latin names of our candidate biocontrol 
agents as search terms. We identified a total of 64 relevant studies in 
17 publications, which reported the effectiveness of our biocontrol 
agents or agent combinations (Table S1). We simulated the observed 
range of biocontrol effectiveness for each biocontrol agent or com-
bination of agents for each model by modifying the corresponding 
underlying vital rates in the matrix transition elements. We then es-
timated λ for each model by calculating the dominant eigenvalue of 
each transition matrix.

2.3 | Estimating and comparing the importance of 
biological and operational uncertainty with Value of 
Information (VoI)

We employed VoI analysis to examine how much the management 
outcome could be improved by resolving biological and operational 
uncertainty before committing to action. This information can guide 
information collection strategies. If resolving uncertainty would 
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improve outcomes, gathering information may be worthwhile, but if 
resolving uncertainty would not improve outcomes, further learning 
is unnecessary. We first conducted an Expected Value of Perfect 
Information (EVPI; Howard, 1966) analysis, a common type of VoI 
analysis that quantifies how much the management outcome could 
be improved by perfect information resolving all sources of uncer-
tainty. We initially demonstrate how EVPI can be easily conducted 
by only considering biological uncertainty, assuming the control ef-
fectiveness is known, that is, there is no operational uncertainty. We 
use the biocontrol effectiveness information from Shea et al (2006) 
as a case study for illustration. In Shea et al (2006), each candidate 
biocontrol has one fixed effectiveness value: R. conicus reduces seed 
production by 30%, T. horridus reduces plant growth by 87% and U. 
solstitialis reduces seed production by 70%. Considering only bio-
logical uncertainty, EVPI can be calculated as

Here, q is the total number of models, λa,i represents population growth 
rate projected under action a = 1, 2, …, A (A = 4, including no manage-
ment or release of one of three biocontrol agents), by model i = 1, 2, …, 
q (q = 3; we only considered the three models in the invaded ranges, 
excluding the model from the native range, France, because biocontrol 
agents already exist there and cannot be added). Parameter pi is the 
weight associated with model i (i.e. the prior belief that model i is the 
true model; subject to the constraint that the pi sum to 1), and mina 
indicates the lowest λ across management actions. Therefore, on the 
right side of the equation, the first term is the mean of the minimum λ 
value under each model (cell in row 6, column 7 of Table 1). This value 
describes outcomes when research is conducted to determine which 
model most accurately reflects the demography of the population tar-
geted for management. With this information, managers would be able 
to select the optimal management action for the correct demographic 

model (column 6 in Table 1). Because we do not yet know which model 
would be selected, we average the outcomes that would result if man-
agers made optimal selections based on each model. The second term 
on the right side of the equation is the minimum of the mean λ values 
across all models (cell in row 7, column 7 of Table 1). This value de-
scribes outcomes when research is not conducted and decision makers 
make a decision in the face of uncertainty, that is, without determin-
ing which demographic model best describes their target population. 
Without this information, managers calculate how each management 
option performs under each model, then choose the agent that does 
best, on average, across models, even if this agent is not optimal in 
some cases (row 5 in Table 1).

We extend the EVPI to simultaneously assess both biological and 
operational uncertainty, with operational uncertainty represented 
by variation in biocontrol effectiveness levels. EVPI is then calcu-
lated as:

where q is the number of models, r is the combination of effective-
ness levels of candidate biocontrol agent or agent combination (here-
after referred to as effectiveness combination) and λa,i,j represents 
λ projected after release of biocontrol agent (or combination of bio-
control agents) a, by model i, under effectiveness combination j. This 
EVPI calculation requires data on all model and effectiveness combi-
nations. However, such a full dataset is not available. Effectiveness 
levels are not identical for all biocontrol agents (or combination of 
biocontrol agents) in practice because of real constraints or partial 
observability. Also, effectiveness data for some biocontrol combina-
tions are not available from field studies. For example, we did not find 
studies that examined the combination of T. horridus and U. solstitialis, 
which makes it impossible to conduct an EVPI analysis including all 
biocontrol agent combinations. Here, for demonstration purposes, 
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[
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TA B L E  1   The value of resolving uncertainty in the management of Carduus nutans with different biocontrol agents. Expected Value 
of Perfect Information (EVPI) represents the improvement in management outcome in terms of reduction in population growth rate (λ) 
by resolving uncertainty perfectly. The uncertainty is represented by three different countries in invasive range, Australia, New Zealand 
and USA. The three candidate biocontrol agents are Rhinocyllus conicus, Trichosirocalus horridus and Urophora solstitialis. The biocontrol 
effectiveness level is fixed for each biocontrol agent, and the effectiveness information is from Shea et al (2006). Cells filled in lighter grey 
indicate the lowest λ across biocontrol agents under each model, and the average of the lowest λ in each model. Cells in darker grey indicate 
the average of λ under each biocontrol agent across models, and the minimum of the average λ across models. The averages assign equal 
weight to each of the three models

Models No management R. conicus T. horridus U. solstitialis Lowest λ

Australia 1.20 0.93 0.50 0.59 0.50

New Zealand 2.68 2.14 2.47 1.31 1.31

USA 1.75 1.50 0.72 1.07 0.72

Average of λ across models 1.88 1.52 1.23 0.99

Average of the lowest λ in each model 0.84

Minimum of the average λ across models 0.99

EVPI 0.15

Improvement in management outcome 14.9%
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we estimate λ under the 25th, 50th and 75th quantiles of the effec-
tiveness levels obtained from the literature survey for each of the 
three biocontrol agents alone. Rhinocyllus conicus and U. solstitialis 
both feed in C. nutans' capitula and therefore only affect fecundity. 
Trichosirocalus horridus, on the other hand, feeds on rosettes and can 
thus also reduce survival and affect growth. However, as there were 
only two studies that explicitly examined the effect of T. horridus on 
growth and survival, we did not analyse these effects. Therefore, in 
the above EVPI equation, a = 1, 2, …, A (A = 3), i = 1, 2, …, q (q = 3) 
and j = 1, 2, …, r (r = 27). The parameter pj is the weight associated 
with effectiveness combination j (i.e. the belief weight that effective-
ness combination j is the true effectiveness combination, subject to 
the constraint that the pj sum to 1). We assigned equal weight to all 
models, but these weights could be updated should evidence support 
a reassessment of model credibility.

We subsequently conducted Expected Value of Partial 
Information (EVXI; Brand & Small, 1995) analyses to quantify how 
much the management outcome could be improved by resolving 
only biological uncertainty or only operational uncertainty. The 
EVXI analysis considering biological uncertainty as represented by 
the three demographic models can be quantified as:

where n (n = q × r = 81) model–biocontrol effectiveness combinations 
are grouped into i = 1, …, q model sets (q = 3). A similar EVXI analysis 
can be performed for operational uncertainty as represented by the 27 
biocontrol effectiveness combinations:

where n model–biocontrol effectiveness combinations are grouped 
into j = 1, …, r biocontrol effectiveness combination sets (r = 27).

3  | RESULTS

3.1 | Population growth rates under a full range of 
simulated intervention effectiveness

In the four populations, the growth rate (λ) of C. nutans in the ab-
sence of management ranges from 0.60 (France) to 2.68 (New 
Zealand) (Figure 1; Figure S2). Elasticity analysis suggests that thistle 
growth rate is most sensitive to different parameters in the different 
populations (Figure S1). Population growth is driven by different de-
mographic processes in different locations, and interventions should 
therefore target different life-history vital rates in different contexts 
(Shea et al., 2005).

Grouping vital rates into three groups (survival, growth and 
fecundity) and accounting for the effectiveness of intervention, 
we find that reducing survival results in the largest reduction in 

λ on average, while reducing growth generally ranks second, and 
reducing fecundity ranks third (Figure  1). However, this ranking 
is sensitive to the particular model. For example, reducing fecun-
dity performs better than reducing growth for the population in 
New Zealand, but the opposite is true for the population in USA 
(Figure S2). Actions' rank may also change when considering the 
fact that different actions may achieve different effectiveness 
levels. For example, when both have 20% effectiveness, reducing 
survival is more effective than reducing growth. However, reduc-
ing growth can perform better than reducing survival when it is 
40% effective or higher (Figure 1).

3.2 | Population growth rates under effectiveness 
levels of biocontrol agents based on empirical studies

Our review of biological control efforts for C. nutans identified 17 
studies (most with multiple study sites and years) that documented 
biocontrol effectiveness. Effectiveness varied widely across biocon-
trol agents (Figure  2), representing a high level of operational un-
certainty. Trichosirocalus horridus is the only biocontrol agent that 
reduces growth and survival. Rhinocyllus conicus achieves the high-
est effectiveness in reducing fecundity. The combination of R. coni-
cus & U. solstitialis and the combination of R. conicus & T. horridus 
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F I G U R E  1   Population growth rate of populations in France, 
Australia, USA and New Zealand under biocontrol targeting 
reduction in survival, growth and fecundity. The simulated 
biocontrol effectiveness ranges from 0% (i.e. without management) 
to 100%. The interventions were simulated by reducing all relevant 
demographic rates by the efficacy rate; for example, reducing 
all survival rates in the matrix model by 20% from their baseline 
values. The box plots capture the biological uncertainty in the 
baseline demographic rates as represented by the four populations; 
the four different types of small dots are the values for the specific 
populations. The horizontal line towards the middle of the box 
represents the 50th percentile, while the bottom and top of the 
box represent the 25th percentile and 75th percentile respectively. 
See Figure S2 for an alternative visualization that highlights how 
effectiveness of biocontrol affects different vital rates [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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rank as the second and third most effective in reducing fecundity, 
respectively (Figure  2). However, the number of records varies 
greatly across biocontrol agents. Rhinocyllus conicus is more ex-
tensively studied (11 studies) than T. horridus or U. solstitialis (both 
with five studies; Figure 2). The effectiveness of biocontrol agents 
used in combination is far less studied, with only one study on the 
combination of R. conicus, T. horridus and U. solstitialis. The combina-
tion of T. horridus & U. solstitialis has never been assessed in the field 
(Figure  2). Furthermore, biocontrol agents' effectiveness was only 
evaluated in a subset of the four countries, except for R. conicus, 
which was studied in all four.

The release of biological control agents is projected to result 
in different λ values in different countries (Figure 3). In the event 
of a new invasion, where there is uncertainty about which exist-
ing invasion is the closest analogue, the models would represent 
our biological uncertainty. The large variation in λ across mod-
els represents high biological uncertainty, while the different λ 
values within the same model suggests high uncertainty about 
control effectiveness. The λ values are generally lowest under 
the full biocontrol agent combination of R. conicus, T. horridus and  
U. solstitialis, and second lowest under the biocontrol agent  
R. conicus (Figure 3).

3.3 | Value of resolving biological uncertainty in a 
case study

Value of information analysis focusing on biological uncertainty 
alone showed that on average in the face of uncertainty, U. solstitialis 
is the optimal single agent with the lowest mean λ across countries. 
This analysis identified T. horridus as the optimal single biocontrol 
agent in Australia and the USA and U. solstitialis as the optimal in 
New Zealand. Rhinocyllus conicus was not optimal in any country 
(Table 1). The EVPI value was 0.15, which means that when only bio-
logical uncertainty is involved, resolving uncertainty could result in a 
0.15 reduction in the population growth rate (Table 1).

3.4 | Value of integrating and resolving both 
biological and operational uncertainty within the 
same framework

The full EVPI analysis shows that simultaneous reduction in biologi-
cal and operational uncertainty would lead to a 15.6% improvement 
in management outcomes. Additionally, the EVXI analyses con-
ducted within the same framework show that resolving biological 
uncertainty alone (as represented by the three models in invaded 
ranges) can improve the management by 8.5%, and resolving op-
erational uncertainty alone (as represented by the 27 biocontrol-
effectiveness-combinations) can improve management by 10.5%.

In the face of both biological and operational uncertainty, the 
optimal intervention is to release T. horridus (Table 2, last row, last 
column). In the face of operational uncertainty but with full resolu-
tion of biological uncertainty (Table 2, last row), the optimal inter-
vention is either to release R. conicus (Australia, USA) or T. horridus 

F I G U R E  2   The effectiveness levels of biocontrol in empirical 
studies based on a literature survey. The biocontrol agents are: 
Trichosirocalus horridus (T.), Rhinocyllus conicus (R.) and Urophora 
solstitialis (U.). Combination of agents is shown by combination of 
the first letters of the agent's genus name, for example, R.T. means 
the combination of R. conicus and T. horridus. Note: Trichosirocalus 
horridus may have negative effectiveness, because some results 
found that Carduus nutans produced more branches (thus 
potentially more flowers) due to the loss of apical dominance 
after being attacked by T. horridus. The horizontal dashed line at 
0 represents the baseline effectiveness level 0. Black points in 
each bar represent the effectiveness levels of the corresponding 
biocontrol agent from empirical studies. The horizontal line 
towards the middle of the box represents the 50th percentile, 
while the bottom and top of the box represent the 25th percentile 
and 75th percentile respectively [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  3   Population growth rate under different effectiveness 
levels of biocontrol agents in empirical studies. The biocontrol 
agents are Trichosirocalus horridus (T.), Rhinocyllus conicus (R.) and 
Urophora solstitialis (U.). Combinations of agents are shown by 
combination of the first letters of the agent's genus name, for 
example, R.T. means the combination of R. conicus and T. horridus 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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(New Zealand). In the face of biological uncertainty but with full res-
olution of operational uncertainty (Table 2, last column), the optimal 
intervention can be either to release T. horridus (17 of 27 effective-
ness combinations), R. conicus (8 effectiveness combinations) or U. 
solstitialis (2 effectiveness combinations). If all uncertainty can be 
resolved (Table  2, 27  ×  3 cells), any of the three agents might be 
optimal.

4  | DISCUSSION

We used Value of Information analyses to concurrently examine how 
biological and operational uncertainty affect selection of the most 
appropriate biological control agent(s) to control Carduus nutans in 
different parts of its invaded range. Our study demonstrates that 
optimal biocontrol agent selection is jointly determined by the un-
derlying biological processes of the targeted invasive populations 
and by the effectiveness of candidate biocontrol agents. Ignoring 
either biological uncertainty or operational uncertainty may result in 

a suboptimal recommendation. The approach we demonstrate here 
serves two goals: (a) to identify the control option that is expected to 
work best given current uncertainties and (b) to estimate how much 
potential we have to improve management outcomes by conducting 
research to resolve either type of uncertainty. Using this approach, 
we show that T. horridus is the optimal biological control agent, given 
biological and operational uncertainty. We further estimate that the 
musk thistle growth rate could be reduced by 15.6%, on average, 
if both sources of uncertainty are resolved. However, when either 
source of uncertainty is ignored, smaller management improvements 
(8.5% or 10.5%) are achieved (Li et al., 2019).

These findings make it clear that before any biological control 
agent is released targeting a new invasive population musk this-
tle, research should be conducted to describe the demography of 
musk thistle in the novel environment, and to estimate the relative 
performance of the potential biocontrol agents under local con-
ditions. Both pieces of information have the potential to substan-
tially improve outcomes by identifying the optimal agent for the 
targeted environment. This recommendation was not a foregone 

TA B L E  2   Optimal biocontrol with lowest population growth rate under 27 different biocontrol effectiveness combinations for matrix 
models of populations in three countries where C. nutans is invasive (Australia, New Zealand and USA). The three candidate biocontrol 
agents are Rhinocyllus conicus, Trichosirocalus horridus and Urophora solstitialis. The effectiveness levels of 0.25, 0.5 and 0.75 represent the 
25% quantile, median and 75% quantile of the effectiveness of each biocontrol agent. Cells filled with light grey, intermediate grey and dark 
grey colour indicate the lowest growth rate under biocontrol by R. conicus, T. horridus and U. solstitialis respectively. The last column and row 
show the optimal biocontrol agent with lowest population growth rate across models and effectiveness combinations, respectively, while the 
right bottom cell shows the overall optimal biocontrol agent across models and effectiveness combinations

Model
Australia New Zealand USA Across models

0.25 0.25 0.25
0.25 0.25 0.5
0.25 0.25 0.75
0.25 0.5 0.25
0.25 0.5 0.5
0.25 0.5 0.75
0.25 0.75 0.25
0.25 0.75 0.5
0.25 0.75 0.75
0.5 0.25 0.25
0.5 0.25 0.5
0.5 0.25 0.75
0.5 0.5 0.25
0.5 0.5 0.5
0.5 0.5 0.75
0.5 0.75 0.25
0.5 0.75 0.5
0.5 0.75 0.75
0.75 0.25 0.25
0.75 0.25 0.5
0.75 0.25 0.75
0.75 0.5 0.25
0.75 0.5 0.5
0.75 0.5 0.75
0.75 0.75 0.25
0.75 0.75 0.5
0.75 0.75 0.75

= R.conicus
= T.horridus
= U.solstitialis

Efficacy of
R. conicus

Efficacy of
T. horridus

Efficacy of
U. solstitialis

Across efficacy combinations
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conclusion. If one agent had clearly outperformed the others re-
gardless of the local demography of musk thistle or the range of 
possible efficacies of the agents, research to determine localized 
vital rates and the local impact of possible biocontrol agents would 
be a wasted effort. As a monocarpic perennial, musk thistle has a 
highly flexible life history, reproducing as an annual, biennial or 
longer lived perennial depending on local conditions. This flexibil-
ity may underlie the importance of gathering demographic infor-
mation specific to the targeted region for appropriate biocontrol 
agent selection. As managers working in other systems confront 
similar decisions, recommendations about whether to carry out 
additional studies or to move ahead with management will depend 
on details of the focal system.

The framework we present here is flexible, and can be adapted 
to include alternative methods for encapsulating uncertainty. In 
our study, biological uncertainty is represented by multiple mod-
els of populations from different locations across the invaded 
range. Alternatively, biological uncertainty could be incorporated 
by including variation around each parameter in the demographic 
model (Moore & Runge,  2012). Biological uncertainty can also be 
represented by considering models with different structures (e.g. Li 
et al., 2017) or models applying different modelling approaches, such 
as individual-based models versus population-based models (Shea 
et al., 2005; Shea et al., 2006). Uncertainties associated with more 
nuanced aspects of the dynamics, such as nonlinearities, context-
dependent efficacy and interactions among interventions, can also 
be evaluated with this framework. To make these types of model 
syntheses possible, we encourage demographic modellers and re-
searchers reporting management impacts to present their work in a 
way that can be easily used by researchers with related research in-
terests. For example, for a matrix model, instead of only presenting 
the overall transition values, it can be helpful to list the vital rates 
that make up the transition values (Jongejans et al., 2008).

Operational uncertainty is rarely quantified, but our results indi-
cate that it is no less important than biological uncertainty. Our EVPI 
analysis shows that resolving operational uncertainty can improve 
the management outcome by up to 10.5% (Table 2). Even in our well-
studied system, there are still some combinations of biological con-
trol agents that have not been studied or are poorly addressed. For 
example, our literature survey did not identify studies that combined 
T. horridus and U. solstitialis, even though these are the two most ef-
fective biocontrol agents in our simple EVPI example (Table 1; Shea 
et al., 2005). Furthermore, our models suggest that these agents may 
be highly effective when released together. It could be instructive 
to test our prediction with this combination should the data become 
available. In addition to evaluating the mean effectiveness of man-
agement options, decision makers should also consider variation in 
effectiveness. For example, a control with a better mean effective-
ness but also a large variation in effectiveness may not necessarily 
be preferred over one with a lower mean but also a smaller variation, 
especially in situations where managers are risk averse.

In order to highlight the importance of both biological and oper-
ational uncertainty, we focused on a study system where extensive 

prior work has provided data that may be used to represent these 
two types of uncertainty. However, biocontrol practitioners or 
managers of other invasive species do not need to have a similar 
quantity of data to employ this decision-making framework. When 
confronted by an invasion requiring management, regardless of the 
amount of information available, the framework illustrated in this 
study can be applied through the following procedure to assist the 
decision-making process: (a) Identify the management objective 
(our case study objective is the reduction of musk thistle population 
growth rate, but it could be many other metrics in other settings, e.g. 
Shea et al., 2005; Probert et al., 2016) and alternative interventions 
(we examine alternative biocontrol agents, but any sort of interven-
tion, such as mowing, crash grazing or herbicide spraying, is possible) 
for achieving that objective. (b) Synthesize existing knowledge in a 
model that is appropriate for the decision setting and the species 
in question. We used a matrix model based on life-history states, 
but other model structures would be valuable in other settings. 
While models must provide comparable metrics of the objective, 
they may otherwise take very different forms. Where data are not 
available, expert judgement processes would be appropriate to esti-
mate parameters for the model (Runge et al., 2011). (c) Consider key 
sources of uncertainty in the models. Biological uncertainty is rep-
resented well by the variety of choices in selecting model structure 
and in estimating demographic parameters. A variety of estimates 
for candidate management action impacts can capture operational 
uncertainty. (d) Use VoI tools to identify which of the sources of un-
certainty, if any, are impediments to making a decision. If recommen-
dations are clear, despite uncertainty, management may proceed. If 
decisions depend on a key uncertainty, the VoI analysis quantifies 
the benefit of learning before a decision is made, allowing the man-
ager to prioritize research that will help most with management. In 
the case of biological control release, a species release either occurs 
or it does not, but in other pest management decision settings, re-
peated decisions may be made as information is gained. An adap-
tive management approach, in which management and research are 
conducted concurrently in a formal framework, may be warranted in 
such cases (Williams & Johnson, 1995).

Overall, our study demonstrates that optimal invasion control 
can be jointly affected by biological and operational uncertainty. 
Here, we illustrate a Value of Information framework to integrate 
multiple biological models and management effectiveness combi-
nations. In this framework, the effects of biological uncertainty 
and operational uncertainty on management outcomes can be 
evaluated. This analysis is especially important when research ef-
fort or time is limited, as in disease outbreaks (Li et al., 2017), or 
in efforts to eradicate invasive species after early detection be-
fore they spread in the invaded range (Moore, Runge, Webber, & 
Wilson, 2011). Additionally, EVXI analysis, which quantifies how 
much the management outcome can be improved by resolving a 
certain source of uncertainty, can guide the design of the most 
appropriate information collection strategy. The framework pre-
sented in the current study will be especially valuable in systems 
with significant uncertainty.
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