
Quantifying the Uncertainty of the Future Hydrological Impacts of Climate Change: Comparative
Analysis of an Advanced Hierarchical Sensitivity in Humid and Semiarid Basins

JIALI JU,a,h HENG DAI,b,c,h CHUANHAO WU,d BILL X. HU,a,d MING YE,e XINGYUAN CHEN,f DONGWEI GUI,g

HAIFAN LIU,a AND JIN ZHANG
d

a School of Water Resources and Environment, China University of Geosciences, Beijing, China
b State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China

c State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences,

Urumqi, China
d Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou, China

eDepartment of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida
fPacific Northwest National Laboratory, Richland, Washington

gCele National Station ofObservation andResearch forDesert–GrasslandEcosystem,Xinjiang Institute of Ecology andGeography,

Chinese Academy of Sciences, Urumqi, China

(Manuscript received 30 January 2020, in final form 22 December 2020)

ABSTRACT: Comparison and quantification of different uncertainties of future climate change involved in the modeling

of a hydrological system are highly important for both hydrological modelers and policy-makers. However, few studies have

accurately estimated the relative importance of different sources of uncertainty at different spatiotemporal scales. Here, a

hierarchical sensitivity analysis framework (HSAF) incorporated with a variance-based global sensitivity analysis is de-

veloped to quantify the spatiotemporal contributions of different uncertainties in hydrological impacts of climate change in

two different climatic (humid and semiarid) basins in China. The uncertainty sources include three emission scenarios (ESs),

20 global climate models (GCs), three hydrological models (HMs), and the associated sensitive hydrological parameters

(PAs) screened and sampled by the Morris and Latin hypercube sampling methods, respectively. The results indicate that

the overall trend of uncertainty is PA . HM . GC . ES, but their uncertainties have discrepancies in projections of

different hydrological variables. The HM uncertainty in annual and monthly discharge projections is generally larger than

the PA uncertainty in the humid basin than semiarid basin. The PA has greater uncertainty in extreme hydrological event

(annual peak discharge) projections than in annual discharge projections for both basins (particularly for the humid basin),

but contributes larger uncertainty to annual and monthly discharge projections in the semiarid basin than humid basin. The

GC contributes larger uncertainty in all the hydrological variables projections in the humid basin than semiarid basin, while

the ES uncertainty is rather limited in both basins. Overall, our results suggest there is greater spatiotemporal variability of

hydrological uncertainty in more arid regions.
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1. Introduction

It is widely accepted that the most certain impact of future

climate change is an increase in temperature throughout the

world, particularly in the Northern Hemisphere (IPCC 2007,

2013). Global warming is expected to intensify the hydrological

cycle and alter evapotranspiration with consequences for water

resources (Abbaspour et al. 2009; Arnell 1999, 2004; Piao et al.

2010; Thompson et al. 2013; Vörösmarty et al. 2000), ecosystem

services (Hoegh-Guldberg and Bruno 2010; Matthews and

Quesne 2009; Preston 2002), and feedback to regional and

global climates (Jung et al. 2010). Assessments of the hydrologic

impacts of future climate change over large domains are

commonly performed by coupling atmospheric climate projec-

tions from global climate models (GCs) and regional climate

models with land surface schemes and hydrological models (e.g.,

Alfieri et al. 2015; Chen et al. 2011a,b, 2017; Raje and Mujumdar

2010;Gädeke et al. 2014;Habets et al. 2013; Jha andGassman 2014;

Kay et al. 2009; Lu et al. 2018; Maurer and Duffy 2005; Stephens

et al. 2018; Wu et al. 2014, 2015; Xu et al. 2013; Zhang et al. 2011).

Uncertainty is inevitable and important in numerical models,

especially complex hydrological models of future climate change

impacts (Kay et al. 2009; Neuman 2003; Refsgaard et al. 2007).

Uncertainties arise from variant sources, including unpredictable

future conditions, lack of knowledge or data for systems, and

variability in natural characteristics (Neuman 2003; Refsgaard

et al. 2007; Rubin et al. 2010; Tartakovsky 2013). To determine

the future impacts of climate change, theGC and greenhouse gas

emission scenarios (ESs) are generally considered to be the two

major uncertain factors influencing the assessment of hydrologic

systems (Chen et al. 2011a,b; Kay et al. 2009; Liu et al. 2013;

Minville et al. 2008; Thompson et al. 2013;Wilby andHarris 2006;

Wu et al. 2015; Xu et al. 2013).

In addition to the uncertainty in the GC and ES, other

sources of uncertainty, such as hydrological model (HM)
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uncertainty and hydrological parametric (PA) uncertainty, have

also been found to be important for hydrological impact assess-

ments. For example, Chen et al. (2011b, 2013) and Teutschbein

et al. (2011) noted that the dynamic and statistical approaches for

quantifying the impacts of climate change on hydrological sys-

tems are considerably influenced by uncertainty. Wilby (2005)

investigated the impact of climate change on the monthly flow of

the Thames River by considering the effect of PAs and showed

that PAuncertainty is comparable in size toESuncertainty. Jiang

et al. (2007) investigated the hydrological impacts of climate

change in the Dongjiang basin in southern China by comparing

six HMs, and the results emphasized a large difference in mod-

eling hydrological variables (e.g., runoff, evapotranspiration, and

soil moisture). This finding has been confirmed by Najafi et al.

(2011), who suggested that HM selection is necessary before as-

sessing hydrologic climate change impacts.

Estimation of the importance of different uncertainty

sources in climate and hydrological model systems is es-

sential for modelers and managers, and sensitivity analysis

(SA) is required for this estimation process. From the un-

certainty viewpoint, SA focuses on quantifying the uncer-

tainty from different uncertain model inputs that contribute

to the model predictions (Dai and Ye 2015; Saltelli et al.

2010). In general, SA can generally be classified into local

[e.g., one-at-a-time (OAT)] and global methods (Song et al.

2013; Dai and Ye 2015). The main shortcoming of local SA is

computing the local response of the model output for a certain

parameter in a narrow range of parameters (Saltelli 2000; Song

et al. 2015; Valkó et al. 2018; Yang 2011). Compared with local

SA, global SA considers the impact over the entire parameter

space (Bennett et al. 2018; Bianchi Janetti et al. 2019; van

Griensven et al. 2006) and therefore has beenwidely used in two

broad categories: qualitative (e.g., the Morris method and mul-

tiple regression method) and quantitative (e.g., metamodel-

based, variance-based, moment-independent-based, and

information-entropy-based) methods (Khorashadi Zadeh

et al. 2017; Morris 1991; Sobol’ 1993; Song et al. 2013, 2015;

Zeng et al. 2012). Recently, numerous studies have inves-

tigated the uncertainty of climatic and hydrological models

using global SA methods (Chen et al. 2011b, 2013; Dobler

et al. 2012; Nóbrega et al. 2011; Bastola et al. 2011; Shen

et al. 2018; Teng et al. 2012).

Among the numerous global SA methods, variance-

based SA is widely used in climatic and hydrological

models because of its advantages of model independence

and capability of providing mathematically rigorous and

accurate measurements of the importance of different

model uncertainty sources (Aryal et al. 2019; Bosshard

et al. 2013; Chu-Agor et al. 2011; Saltelli 2000; Song et al.

2015; Vetter et al. 2017). However, there are two chal-

lenges in applying conventional variance-based global SA

in climatic and hydrological models. The first challenge is the huge

computational cost, and the second challenge is the complex rela-

tionship among the variant uncertainty sources. Conventional

variance-based SA ignores the dependence or deterministic rela-

tionships of different uncertainty sources and fails to consider

combinations of uncertain model inputs based on their character-

istics (Dai et al. 2019; Bennett et al. 2018; Hattermann et al. 2018;

Su et al. 2017). For example, GC uncertainty is caused by different

atmospheric, oceanic and land processes in different GCs. GCs are

used to simulate meteorological variables (e.g., precipitation and

temperature) according toESs.TheESandGC jointly play the role

of forcing inputs in HMs. HM uncertainty is caused by different

conceptual or mathematical formulations, and each HM has a

distinct set of PAs that are subject to PA uncertainty. Therefore,

PA uncertainty depends on HM, ES, and GC uncertainties; HM

uncertainty depends on ES and GC uncertainties; and GC uncer-

tainty depends on ES uncertainty.

Recently, Dai et al. (2017a,b) developed a hierarchical SA

methodology that integrates the variance-based SA method

with the hierarchical uncertainty framework. The hierarchical

sensitivity analysis framework (HSAF) is capable of grouping

different model uncertainty sources and considering the de-

pendence relationships among these uncertain inputs, and

has been suggested to provide useful and solid information

for modelers about the importance of uncertain model in-

puts (Dai et al. 2017a). In this study, for the first time, the

HSAF has been improved and modified to be suitable for a

hydrologic climate model system by considering four sour-

ces of uncertainty (ES, GC, HM, and PA) on the basis of Dai

et al. (2017a,b). Particularly, to reduce the workload of pa-

rameter calibration and validation as well as the computa-

tional cost, the Morris method is used to screen the most

sensitive PAs of HMs, and the Latin hypercube sampling

(LHS) method is used to estimate the sensitivity indices

from sensitive PAs.

By extending the HSAF, this study conducts a compre-

hensive and quantitative SA of climate-influenced hydro-

logical modeling in two different climatic basins [Beijiang

River basin (BRB) and Liao River basin (LRB)] using

continuous simulations of river flows. Two different HSAFs

are implemented to explore the spatiotemporal variability

of uncertainty: the four-layer HSAF considering four un-

certainty sources (ES, GC, HM, and PA) for river discharge

projections at the intra-annual and the interannual scale

and the three-layer HSAF considering three uncertainty

sources (ES, GC, and PA) for surface runoff depth projec-

tions at the grid scale. By providing a pilot example of un-

certainty quantization in climate-influenced hydrological

models, we aim to 1) identify the relative contribution of

each uncertainty source to the model outputs and 2) test the

spatiotemporal variations of general sources of uncertainty

in hydrological predictions in the context of climate change.

The HSAF used in this study is mathematically rigorous and

general and can be applied to a wide range of hydrologic and

environmental models that consider climate change, which

improves our understanding of how climate influences the

hydrological system.

2. Methodology

a. Sensitivity indices for the HSAF

The core of the variance-based HSAF is the variance

decomposition of model outputs (Saltelli et al. 1998, 1999,

2010; Saltelli and Sobol’ 1995). For a model with the form of
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D 5 f(u) 5 f(u1, . . . , uk), where D is the model output and u 5
{u1, . . . , uk} is a set of uncertain model inputs, the total variance

can be decomposed as

V(D)5V
ui
[E

u;i
(Dju

i
)]1E

ui
[V

u;i
(Dju

i
)] , (1)

In this equation, the first term on the right-hand side

is the partial variance contributed by ui and the second

term represents the partial variance caused by the model

inputs except ui. The first-order sensitivity index is thus

defined as Si 5Vui[Eu;i
(Djui)]/V(D). This index measures the

percentage of output uncertainty contributed by ui and

estimates its relative importance compared to other un-

certain inputs.

This variance decomposition technique has been recur-

sively applied by Dai and Ye (2015) and Dai et al. (2017a)

to a three-layer HSAF in a complex groundwater reactive

transport model. Based on Dai et al. (2017a), we developed

the four-layer HSAF, which considers uncertainties from

the ES, GC, HM, and PA [section 2a(1)], and the three-

layer HSAF, which considers uncertainties from the ES,

GC, and PA [section 2a(2)], for the hydrologic climate

model system.

1) FOUR-LAYER HSAF

As shown in Fig. 1, the total variance in the model outputs

can be decomposed based on the ES as

V(D)5V
ES
E

;ESjES(DjES)1E
ES
V

;ESjES(DjES)
5V

ES
E

GC,HM,PAjES(DjES)1E
ES
V

GC,HM,PAjES(DjES) ,
(2)

where ES is the set of multiple alternative ESs, GC is the set

of multiple GCs, HM is the set of multiple HMs, and

PA5PA(1) <PA(2) � � � <PA(k) is the PA set for all the

models, with PA(k) representing the PAs for a given model

HMk; ;ES represents uncertainty sources, excluding ES,

which are GC, HM, and PA. The subscripts GC, HM, PAjES
refer to the change in the GCs, HMs, and PA combinations

under a fixed ES. The first and second terms on the right-

hand side of Eq. (2) represent the partial variances con-

tributed by alternative ESs and other uncertainty sources,

respectively.

The partial variance caused by other uncertainty sources

VGC,HM,PAjES(DjES) can be further decomposed based on

multiple plausible GCs as

V
GC,HM,PAjES(DjES)5V

GCjESE;GCjGC,ES
(DjGC,ES)1E

GCjESV;GCjGC,ES
(DjGC,ES)

5V
GCjESEHM,PAjGC,ES

(DjGC,ES)1E
GCjESVHM,PAjGC,ES

(DjGC,ES), (3)

where the first partial variance term on the right-hand side of

this equation represents the uncertainty contributed by mul-

tiple plausible GCs. The subscripts GCjES and HM, PAjGC,

ES refer to the changes in GCs under one ES and the changes

in HMs and PAs under one GC and ES, respectively. The

second term represents the within-GC partial variance, which

is caused by the HMs and PAs.

Following the same procedure, the partial variance

VHM,PAjGC,ES(DjGC, ES) can be further decomposed based on

multiple HMs as

FIG. 1. Four-layer HSAF with the GC, ES, HM, and PA. ES, GC, HM, and PA represent the set of multiple greenhouse gas emission

scenarios, multiple global climatemodels, multiple hydrological models, and the parameters for a givenmodel, respectively. By neglecting

HM uncertainty, this HSAF can be reduced to the three-layer HSAF, which considers only ES, GC, and PA.
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V
HM,PAjGC,ES

(DjGC,ES)5V
HMjGC,ES

E
;HMjHM,GC,ES

(DjHM,GC,ES)

1E
HMjGC,ES

V
;HMjHM,GC,ES

(DjHM,GC,ES)

5V
HMjGC,ES

E
PAjHM,GC,ES

(DjHM,GC,ES)

1 E
HMjGC,ES

V
PAjHM,GC,ES

(DjHM,GC,ES), (4)

where the first term on the right-hand side of Eq. (4) represents

the partial variance contributed by multiple plausible HMs.

The subscripts HMjGC, ES and PAjHM, GC, ES refer to the

change in HMs under one GC and one ES and the change in

PAs under one HM, one GC, and one ES, respectively. The

second term represents the within-HM partial variance, which

is caused by the PAs. Therefore, the total variance in themodel

outputs can be decomposed as

V(D)5E
ES
V

GC,HM,PAjESj(DjES)1V
ES
E

GCjESEHMjGC,ES
E

PAjHM,GC,ES
(DjES)

5E
ES
[E

GCjESVHM,PAjGC,ES
(DjGC,ES)1V

GCjESEHM,PAjGC,ES
(DjGC,ES)]

1V
ES
E

GCjESEHMjGC,ES
E

PAjHM,GC,ES
(DjES)

5E
ES
E

GCjESEHMjGC,ES
V

PAjHM,GC,ES
(DjHM,GC,ES)

1E
ES
E

GCjESVHMjGC,ES
E

PAjHM,GC,ES
(DjHM,GC,ES)

1 E
ES
V

GCjESEHMjGC,ES
E

PAjHM,GC,ES
(DjHM,GC,ES)

1V
ES
E

GCjESEHMjGC,ES
E

PAjHM,GC,ES
(DjHM,GC,ES)

5V(PA)1V(HM)1V(GC)1V(ES) , (5)

where V(PA), V(HM), V(GC), and V(ES) in Eq. (5),

represent the variances contributed from four sources

of input uncertainty: PA, HM, GC, and ES. Following

the definition of the first-order sensitivity index, the

new set of sensitivity indices for our HSAF can be de-

fined as

S
ES

5
V

ES
E

GCjjSEHMjGC,ES
E

PAjHM,GC,ES
(DjHM,GC,ES)

V(D)
5
V(ES)

V(D)

S
GC

5
E

ES
V

GCjjSEHMjGC,ES
E

PAjHM,GC,ES
(DjHM,GC,ES)

V(D)
5
V(GC)

V(D)

S
HM

5
E

ES
E

GCjjSVHMjGC,ES
E

PAjHM,GC,ES
(DjHM,GC,ES)

V(D)
5
V(HM)

V(D)

S
PA

5
E

ES
E

GCjjSEHMjGC,ES
V

PAjHM,GC,ES
(DjHM,GC,ES)

V(D)
5
V(PA)

V(D)
. (6)

2) THREE-LAYER HSAF

For the three-layer HSAF (without considering the HM

uncertainty), the total variance can be decomposed (following

the same process) as

V(D)5E
ES
V

GC,PAjES(DjES)1V
ES
E

GCjESEPAjGC,ES
(DjES)

5E
ES
[E

GCjESVPAjGC,ES
(DjGC,ES)1V

GCjESEPAjGC,ES
(DjGC,ES)]

1 V
ES
E

GCjESEPAjGC,ES
(DjES)

5E
ES
E

GCjESVPAjGC,ES
(DjGC,ES)1E

ES
V

GCjESEPAjGC,ES
(DjGC,ES)

1V
ES
E

GCjESEPAjGC,ES
(DjGC,ES)

5V(PA)1V(GC)1V(ES) . (7)

The new set of sensitivity indices can be defined as
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S
ES

5
V

ES
E

GCjESEPAjGC,ES
(DjGC,ES)

V(D)
5
V(ES)

V(D)

S
GC

5
E

ES
V

GCjESEPAjGC,ES
(DjGC,ES)

V(D)
5
V(GC)

V(D)

S
PA

5
E

ES
E

GCjESVPAjGC,ES
(DjGC,ES)

V(D)
5
V(PA)

V(D)
. (8)

b. Calculation of sensitivity indices by LHS

A conventional approach for the variance estimation in Eqs.

(6) and (8) is the Monte Carlo (MC) method (Song et al. 2015).

However, conventional MC sampling is computationally ex-

pensive, especially for the high-dimensional models used in this

study. LHS is one of themost popular random samplingmethods

due to its significantly faster convergence rate [O(N23)]

than conventional MC [O(N21/2)] or quasi–Monte Carlo

[O(N22/3)] (Dick et al. 2013; Iman and Conover 1980; Guth et al.

2019). To reduce the unaffordable computational cost, the LHS

methodwas used to generate the randomPAsamples in this study

(Helton and Davis 2003; McKay et al. 1979).

LHS divides the ranges of the m model parameters into n

disjointed intervals with an equal probability 1/n from which

one value is sampled randomly in each interval. Assuming

that we have k alternative ESs, l plausible GCs under each

ES, j plausible HMs under each GC and n LHS-generated

PA sets, the partial variance caused by PA uncertainty can

be estimated as

V(PA)5E
ES
E

GCjESEHMjGC,ES
V

PAjHM,GC,ES
(DjHM,GC,ES)

5�
k
�
l
�
j

8>>>><
>>>>:

1

n
�
n

i51

D2(PA
i
jHM

j
, GC

l
, ES

k
)

2

�
1

n
�
n

i51

D(PA
i
jHM

j
, GC

l
, ES

k
)

�2

9>>>>=
>>>>;
P(HM

j
jGC

l
, ES

k
)P(GC

l
jES

k
)P(ES

k
) , (9)

where P(HMjjGCl,ESk) is the weight of model HMj under

GCl and ESk satisfying�jP(HMjjGCl, ESk)5 1, P(GCljESk)
is the weight of GCl satisfying�lP(GCljESk)5 1, and P(ESk)

is the weight of ESk satisfying �kP(ESk)5 1. Similarly, the

partial variances of the HMs, GCs and ESs can be calcu-

lated as

V(HM)5E
ES
E

GCjESVHMjGC,ES
E

PAjHM,GC,ES
(DjHM,GC,ES)

5E
ES
E

GCjES

8<
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h i2

2 E
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h i2
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k
)�

l
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l
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k
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�
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n
�
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i
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l
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j
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l
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k
)
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j

�
1

n
�
n
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i
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j
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l
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k
)P(HM

j
jGC

l
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k
)

�2

9>>>>>=
>>>>>;
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(10)

V(GC)5E
ES
V

GCjESEHMjGC,ES
E

PAjHM,GC,ES
(DjHM,GC,ES)

5E
ES

8<
:

E
GCjES E

HMjGC,ES
E

PAjHM,GC,ES
(DjHM,GC,ES)
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(11)
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(12)

Based onEqs. (9)–(12), the sensitivity indices defined inEq. (6)

(four-layer HSAF) and Eq. (8) (three-layer HSAF) can be

evaluated.

c. GCs and ESs

ESs provide plausible descriptions of how the world might

evolve during the twenty-first century with respect to a range of

variables, such as technological change, socioeconomic change,

energy and land use, and emissions of greenhouse gases and air

pollutants (van Vuuren et al. 2011). GCs driven by a time series

of ESs are considered the most essential and feasible tools for

making projections of future climate change and have been

widely applied to evaluate the hydrological impacts of climate

change (Kay et al. 2009; Habets et al. 2013; Xu et al. 2013;

Alfieri et al. 2015; Wu et al. 2014, 2015). In this study, daily

precipitation data and maximum and minimum temperature

data from 20 GCs provided by the CMIP5 (https://esgf-

node.llnl.gov/search/cmip5/) were used (Table 1). We chose

these 20 GCs because they have both daily data and three

representative concentration pathways (RCP2.6, RCP4.5, and

RCP8.5). The period 1971–2000 was chosen as the baseline

period for BRB, while the period 1979–2005 was chosen as the

baseline period for LRB (due to the observational data be-

ginning in 1979). The period 2071–2100 under three ESs

(RCP2.6, RCP4.5, and RCP8.5) was considered the future

period for both basins.

For bias correction, the GC outputs (i.e., temperature and

precipitation) were first rescaled to high spatial resolutions

(0.258 for BRB and 0.58 for LRB) over the study basins using

the nearest interpolationmethod, and then, the variance-based

change factor (VB-CF) methodology was used to correct the

biases in temperature and precipitation simulations for each

GC based on the observed gridded dataset (see section 3b).

The VB-CF method is based on matching two distributions

with the same shape to model historical and future simulations

(Hawkins et al. 2013; Wang et al. 2016). The daily precipitation

and temperature of the models can be corrected as

X
adj,fut

(t)5X
raw

1
s
X,raw

s
X,ref

X
obs

(t)2X
ref


 �
. (13)

where Xraw and sX,raw represent the long-term average and

standard deviation of the future simulations, respectively; Xref

and sX,ref are the long-term average and standard deviation of

TABLE 1. Basic information on the selected 20 CMIP5 models.

Modeling name Institution Resolution (8)

BCC-CSM1.1 Beijing Climate Centre, China 2.8 3 2.8

BCC-CSM1.1-m Beijing Climate Centre, China 2.8 3 2.8

CanESM2 Canadian Centre for Climate Modeling and Analysis, Canada 2.8 3 2.8

CCSM4 National Centre for Atmospheric Research, United States 1.25 3 0.94

CNRM-CM5 Centre National de Recherches Meteorologiques 1.4 3 1.4

CSIRO-Mk3.6.0 Australian Commonwealth Scientific and Industrial Research Organisation in collaboration

with the Queensland Climate Change Centre of Excellence, Australia

1.875 3 1.875

FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy of Sciences, and Tsinghua

University, China

2.8 3 2.8

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, United States 2.5 3 2.0

GFDL-ESM2G

GFDL-ESM2M

HadGEM2-ES Met Office Hadley Centre 1.875 3 1.25

IPSL-CM5A-LR Institute Pierre-Simon Laplace, France 1.9 3 3.75

IPSL-CM5A-MR 2.5 3 1.25

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for

Environmental Studies, and JapanAgency forMarine-Earth Science andTechnology, Japan

1.4 3 1.4

MIROC-ESM-CHEM 2.8 3 2.8

MIROC-ESM 2.8 3 2.8

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.875 3 1.875

MPI-ESM-MR 1.875 3 1.875

MRI-CGCM3 Meteorological Research Institute, Japan 1.1 3 1.1

NorESM1-M Norwegian Climate Centre, Norway 2.5 3 1.875
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the present simulations, respectively. According to Eq. (13),

the bias-corrected precipitation and temperature of 20 GCs

during the present (reference) period (1971–2000 for BRB and

1979–2005 for LRB) are the same as the observations.

d. HMs and PAs

Two physically based distributed HMs (VIC and CREST)

and a lumped conceptual HM (Xinanjiang) are used to inves-

tigate the contributions of HM and PA to the overall uncer-

tainty in hydrological projections, because these three models

are good at representing HMs with different levels of com-

plexity and structure.

1) VIC MODEL

The VICmodel is a semidistributed grid-based HM that was

developed by the University of Washington and Princeton

University. The model can simulate the physical exchange of

water and energy among the atmosphere, soil, and vegetation

in a surface vegetation–atmospheric transfer scheme (Liang

et al. 1994; Lohmann et al. 1998). In this study, version 4.1.2d

of the VIC model (www.hydro.washington.edu/Lettenmaier/

Models/VIC/index.shtml) was run to simulate the water bal-

ance over the two study basins. The Dag Lohmann model

(Nijssen et al. 1997) was used to transport the grid cell surface

runoff and baseflow simulated by the VIC model within each

grid cell to the outlet of the grid cell and then into the river

system. Seven PAs needed to be calibrated in the VIC model

(Table S1 in the online supplemental material). The PA SA of

the VIC model has been demonstrated by Demaria et al.

(2007) in four catchments in theU.S. and byGou et al. (2020) in

10 major river basins across China, both of which suggest that

the infiltration curve shape parameter (B) and the soil depths

of layers 1 (d1) and 2 (d2) are the most sensitive PAs. The

parameter B represents the relative area ratio of the average

water content of the grid to the maximum water content of the

grid. A larger B indicates greater inhomogeneity of the spatial

distribution of the moisture content and more surface runoff.

Meanwhile, changes in d1 and d2 affect soil evapotranspiration,

which further influences surface and subsurface runoff. Therefore,

these three PAs (B, d1, and d2) were chosen for uncertainty

analysis in this study. The ranges of the PAs were chosen based

on the minimum andmaximum parameter values in the Global

Land Data Assimilation Systems (GLDAS) dataset for China

(Table S1).

2) CREST MODEL

CREST is a grid-based distributed HM developed by the

University of Oklahoma and NASA SERVIR. The model can

simulate the spatial and temporal variations of land surface and

subsurface water fluxes and storages by cell-to-cell simulation.

The details of the CREST model can be found in Wang et al.

(2011). In this study, version 2.1.2 of CREST is used to simulate

the discharge at the outlet of the two basins (Tang et al. 2016).

Table S1 shows 12 PAs of the CREST model and their ranges.

We screened the most sensitive PAs of the CREST model by

using the Morris method (see section 2e). The ranges of the

PAs are determined based on the work of Wang et al. (2011)

and Xue et al. (2013).

3) XINANJIANG MODEL

The Xinanjiang model is a conceptual rainfall–runoff HM

developed by Zhao et al. (1980). In this HM, actual evapo-

transpiration is computed from potential evapotranspiration,

while the soil storage deficit is represented in three layers, i.e.,

upper, lower, and deep soil layers. The total runoff is divided

into surface runoff, interflow and groundwater runoff using a

free water capacity distribution curve and is estimated using a

soil moisture storage capacity distribution curve based on the

concept of the effect of runoff formation on repletion of stor-

age. Surface runoff is routed by the lag-and-route method,

while interflow and groundwater are routed through linear

reservoirs representing interflow and groundwater storage,

respectively (Zhao 1992; Zhao and Liu 1995). This model has

been widely used in many regions of the world (Lin et al. 2014;

Liu et al. 2009; Yao et al. 2014). There are 12 PAs in the

Xinanjiang model (see Table S1). Among these parameters,

four PAs (the areal mean free water capacity of the surface soil

layer, SM; the recession constant of surface water storage, CS;

the ratio of potential evapotranspiration to pan evaporation,

KC; and the outflow coefficients of the free water storage to

groundwater relationships, KG) play a vital role in model

calibration (Ren et al. 2010). We screened the most sensitive

PAs of the Xinanjiang model by using the Morris method (see

section 2e). The ranges of the parameters are determined

based on previous studies (Ren et al. 2010; Song et al. 2013;

Wang and Zhao 1989; Zhao 1992).

e. Screening procedure for sensitive PAs

Considering the large number of PAs in the three HMs, the

Morris method was used to screen the most sensitive PAs be-

fore performing uncertainty analysis (Morris 1991). The prin-

ciple of the Morris method is the discretization of each input

PA in levels and the implementation of a number of OAT

designs, in which each PA is varied while others are fixed. The

selection of the variation direction and the samples from

the PA space is random. The elementary effects of each PA on

the model output are estimated by repeating these steps.

The number of OAT designs is denoted as n, and the PA

space is divided into P levels. Here EE
(j)
i , the elementary effect

of the ith input PA at the jth repetition, is expressed as follows:

EE
( j)
i 5

y u( j) 14e
i

� �
2 y u( j)

� �
b

, (14)

where b 5 1/(P 2 1) and ei is a vector of the canonical base.

The evaluation indices are obtained as follows:
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where mi* is a measure of the influence of the ith PA on

the model output. A larger mi*represents a larger uncertainty
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contribution of the ith PA to the model output, and vice versa.

The termsi is ameasure of the interaction effects betweenPAs.A

larger si suggests stronger interaction effects between PAs.

3. Study area and datasets

a. Study area

The BRB is the second largest tributary of the Pearl River in

southern China. The study area accounts for 73% of the BRB

and has a drainage area of 34 097 km2 (Fig. 2). The BRB is

located in tropical and subtropical climate zones, with precip-

itation during the flood season (April–September) accounting

for approximately 70%–80% of the annual precipitation. Due

to sufficient precipitation, its high humidity and climate

warming, the BRB has often suffered extreme floods (e.g.,

June and August 1994, June 1998, June 2005, and July 2006) in

the past few decades and will likely encounter more severe

floods in the next few decades (Wu et al. 2014, 2015).

The LRB is located in northeast China and has a drainage

area of 12.1 3 104 km2 (Fig. 2). Most of the LRB is charac-

terized by a semiarid monsoon climate, with an annual av-

erage temperature from 48 to 98C and an annual average

precipitation between 350 and1000mm. Intra-annual precipitation

is unevenly distributed, and precipitation from June to September

accounts for more than 70% of the annual precipitation. The

Hengshi and Tieling hydrological stations are the discharge sta-

tions of the BRB and LRB, respectively (Fig. 2).

b. Datasets

DEMdata with a spatial resolution of 90mwere provided by

the International Scientific and Technical Data Mirror Site,

Computer Network Information Center, Chinese Academy of

Sciences (http://datamirror.csdb.cn). The global 1-km land

cover classification dataset was obtained from theUniversity of

Maryland (Hansen et al. 2000). The classification of the soil

texture (at a resolution of 1 km) based on the Harmonized

World Soil Database (HWSD) was provided by the Food and

Agriculture Organization of the United Nations and the

International Institute for Applied Systems Analysis.

For the BRB, the 30-yr (1971–2000) daily precipitation data

from 24 rainfall stations and daily maximum and minimum

temperature data from four meteorological stations (Table S2)

were provided by the Hydrology Bureau of Guangdong

Province and the ChinaMeteorological Administration (http://

cdc.cma.gov.cn/home.do), respectively. For the LRB, the high

spatial resolution (0.18 3 0.18) daily precipitation and tem-

perature grid data for the period 1979–2007 were extracted

FIG. 2. Map showing the location of the study basins and hydrological stations.
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from the China Meteorological Forcing Dataset (He et al.

2020). The daily discharge data of the Hengshi (1971–2000)

and Tieling (1996–2007) hydrological stations were pro-

vided by the Hydrological Bureau of the Ministry of Water

Resources of China.

4. Results

a. Screening of sensitive PAs

The most sensitive PAs to the outputs of CREST and

Xinanjiang are identified using the Morris method. Figure 3

shows the Morris outputs of the PAs in the two study basins.

For the CREST model, coeM and expM are the two most

sensitive PAs for both the BRB and LRB. For the Xinanjiang

model, SM andCS are the twomost sensitive PAs for the BRB,

whileKC, KG, and CS are the three most sensitive PAs for the

LRB. Therefore, coeM and expM of the CREST model; SM,

CS, KC, and KG of the Xinanjiang model; and B, d1, and d2 of

the VIC model are selected to explore the uncertainty of PAs

in terms of their climate hydrological impacts (Table 2). The

LHS method is used to generate 20 samples for each selected

PA of the three HMs (VIC, CREST, and Xinanjiang). We

assume that the selected PAs follow a uniform or normal dis-

tribution (Table 2).

b. Hydrological simulations and predictions

For the BRB, the HM simulations are evaluated by dividing

the recorded data series into three subperiods: 1970 for model

warm-up, 1971–1990 for model calibration and 1991–2000 for

model validation. For the LRB, 1995, 1996–2002, and 2003–07

are used for model warm-up, model calibration and validation,

respectively. The efficacy of the HM simulations is evaluated

using the Nash–Sutcliffe efficiency (NSE) coefficient and rel-

ative error (RE). The performance statistics for the three HMs

in the two study basins are summarized in Table 3.

TABLE 2. Sensitive parameter used for three HMs; U represents

uniform distribution, and N represents normal distribution.

Model Parameter Parameter range Distribution

VIC B 0–0.4 B ; U(0, 0.4)

d1 0.01–0.5 d1 ; U(0.01, 0.5)

d2 0.05–1.0 d2 ; U(0.05, 1.0)

CREST ExpM 0.1–2 expM ; U(0.1, 2)

CoeM 1–150 coeM ; U(90, 24.766)

Xinanjiang KC 0.5–1.5 KC ; N(1, 0.167)

CS 0–1 CS ; U(0, 1)

SM 0–100 SM ; N(50, 16.63)

KG 0.01–0.69 KG ; U(0.01, 0.69)

FIG. 3. Morris method outputs for the PAs of the CREST and Xinanjiang models in the BRB and LRB.
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For the BRB, the performance of the three HMs is satis-

factory, with the NSE larger than 0.7 and RE less than 11% in

both the calibration and validation periods. For the LRB, the

VIC and CREST models perform relatively well, with NSE

values greater than 0.63 and absolute RE values less than 20%

during the calibration and validation periods, while the per-

formance of the Xinanjiang model is relatively low in the val-

idation period, mainly due to the lumped model structure and

excess storage runoff mechanism. Overall, the simulated dis-

charge is generally in good agreement with the observations,

especially on the monthly time scale (Figs. S1 and S2 in the

online supplemental material), suggesting that the selected

HMs can reasonably reproduce the water balance of the two

basins and can therefore be used to assess the hydrological

impacts of future climate change.

Based on the HM simulations, we use 20 GCs under 3 dif-

ferent ESs to predict the future river discharge at the Hengshi

(BRB) and Tieling (LRB) hydrological stations. Each HMwas

run on 20 sets of the selected PAs (see section 4a). For each

basin, a total of 400 (20 3 20) simulation samples were gen-

erated for three HMs under each ES, so the total number of

simulations was 3600 (3 3 3 3 400). Figure 4 displays the un-

certainty range of the intra-annual discharges during the future

period 2071–2100 from 3 HMs, 20 PAs, 20 GCs, and 3 ESs in

the two study basins. There are significant differences in the

average discharge projections between different simulation

sample combinations of ESs, GCs, and PAs. For the BRB, the

uncertainty range for each HM is larger in spring and summer

(March–August) and smaller in autumn and winter (September–

February). For the LRB, the uncertainty range for each HM is

larger in summer and early autumn (June–October) and smaller in

late autumn, winter, and spring (November–May). Furthermore,

the uncertainty range tends to be larger under the highest ES

(RCP8.5) for all the HMs in both basins.

c. SA for river discharge at interannual and intra-annual
scales

Figure 5 displays the interannual variability (2071–2100) of

the sensitivity indices of different ESs, GCs, HMs and PAs to

the annual discharge projections at the Hengshi (BRB) and

Tieling (LRB) stations. The sensitivity indices of the four

sources of uncertainty show significantly larger interannual

variability in the LRB than in the BRB, suggesting a stronger

temporal variation in uncertainty in more arid climates.

Overall, the ES is the least important source of uncertainty for

the discharge predictions for both basins, with average con-

tributions (sensitivity indices) of 0.9% and 1.4% for the BRB

and LRB, respectively (Figs. 5a,e). This is well supported by

Figs. S3a and S3e, which shows small discrepancies in the dis-

charge projections among the three ESs. The HM and PA are

generally the first and second largest uncertainty sources for

the BRB on the interannual scale, with average contributions

of 43.6% and 38.5%, respectively (Figs. 5c,d). For the LRB, the

PA and HM are generally the first and second largest uncer-

tainty sources, with average contributions of 68.7% and 23.6%,

respectively (Figs. 5g,h). The GC is the third largest source of

uncertainty for both basins and tends to be larger in the BRB

(,34%, Fig. 5b) than in the LRB (,16.2%, Fig. 5f).

Figure 6 displays the intra-annual variability of the sensi-

tivity indices of different ESs, GCs, HMs and PAs to the dis-

charge projections in the two study basins. As shown, the

uncertainties of the ES and GC tend to increase from January

to June and decrease from June to December for the BRB

(Figs. 6a,b), whereas the opposite patterns are identified for the

uncertainties of the HM and PA (Figs. 6c,d), which is well

supported by Figs. S4a and S4b. Overall, the HM and PA are

the twomost important sources of uncertainty in the BRB. The

HM contributes large uncertainty (.51.6%) during late

summer (August), autumn (September–November) and

winter (December–February) and relatively small uncer-

tainty (,38.9%) during spring (March–May) and early

summer (June–July). The PA contributes larger uncer-

tainty (.45.9%) during spring compared with the other

seasons. The uncertainties of ES and GC first increase from

January to June and then decrease from July to December

(Figs. 6a,b), with large contributions during spring (1.3%

and 14.2%) and summer (2% and 23.8%).

The intra-annual variability of the sensitivity indices in the

LRB is significantly different from that in the BRB. For the

LRB, the PA dominates the uncertainty in all months (.60%).

The HM is the second-largest source of uncertainty, with

average contributions of 27.7%, 17.3%, 15.9%, and 11.9% in

TABLE 3. Model evaluation of discharge simulation at Hengshi station in the BRB and at Tieling station in the LRB.

Model Period Time scale

BRB LRB

NSE RE (%) NSE RE (%)

VIC Calibration Monthly 0.93 23.8 0.91 11.5

Daily 0.85 0.82

Validation Monthly 0.91 28.72 0.80 17.1

Daily 0.82 0.63

CREST Calibration Monthly 0.87 11.02 0.85 219.9

Daily 0.71 0.79

Validation Monthly 0.88 4.36 0.72 13.6

Daily 0.70 0.71

Xinanjiang Calibration Monthly 0.87 2.36 0.85 212.1

Daily 0.75 0.78

Validation Monthly 0.83 3.59 0.61 216.0

Daily 0.71 0.45
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winter, spring, summer, and autumn, respectively. The ES

and GC contribute small uncertainties during May–June,

late autumn (October–November) and winter, with average

contributions of 0.08% and 2.9%, respectively, while the

large uncertainties of ES and GC are found during March–

April and July–September, with average contributions of

1.5% and 7.2%, respectively.

d. SA of annual peak discharge

Figure 7 displays the interannual variability of the sen-

sitivity indices of the four uncertainty sources for the an-

nual peak discharge (indicated by the annual maximum

discharge) projections in the two study basins during the

future period 2071–2100. As shown, the PA accounts for the

largest uncertainty in the annual peak discharge projections

for both basins, with average contributions of 78.7% and

76% in the BRB and LRB, respectively (Figs. 7d,h). In

addition, the PA contributes greater uncertainty in the

projections of the annual peak discharge compared with the

annual discharge for both the BRB and LRB (Fig. 5), which

suggests that the PA has a greater impact on the projections

of extreme hydrological events.

Compared with PA, the uncertainty of HM tends to be

smaller and accounts for 3%–22.6% of the total uncertainty in

the BRB (Fig. 7), which is significantly smaller than contribu-

tion of the uncertainty of HM in the annual average discharge

projections (26.1%–53.6%, Fig. 5). Compared with the BRB,

the uncertainty of HM shows stronger variations in the LRB

(1.1%–61.4%). Furthermore, the uncertainty of GC is larger in

the BRB (4%–36.5%) than in the LRB (0.3%–8.9%). The ES

remains the least important source of uncertainty, accounting

for 0.2%–2.0% and 0.1%–2.9% of the total uncertainty for the

BRB and LRB, respectively, which is smaller than its contri-

bution to the total uncertainty in the BRB and LRB for the

interannual projections (Fig. 5).

e. SA of surface runoff simulated by the VIC model

Based on the surface runoff simulations by the VIC model,

the SA of three uncertainty sources (the ES, GC, and PA from

the VIC model) for the surface runoff projections is conducted

FIG. 4. Projections of the intra-annual discharge in the future period 2071–2100 by the VIC, CREST, and

Xinanjiang models using 20 PAs, 20 GCs, and 3 different ESs in the BRB and LRB. The shaded area and the line

represent ensemble simulations and ensemble average simulations, respectively, for a certain HM (VIC, CREST,

or Xinanjiang).
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in the two basins using the three-layer HSAF [i.e., Eqs. (7) and

(8)]. Figure 8 displays the interannual and intra-annual vari-

abilities (2071–2100) of the sensitivity indices of the ES, GC,

and PA for the projections of the basin-averaged annual sur-

face runoff over the two basins. On the interannual scale

(Figs. 8a,b), the PA is the dominant contributor of uncertainty,

accounting for 91.4% and 95.9% of the total uncertainty in the

BRB and LRB, respectively. In contrast, the ES is the least

important source of uncertainty for both basins, with a larger

uncertainty in the BRB (0.6%–2.5%) than in the LRB (0.01%–

1%). Similarly, the uncertainty of GC is significantly larger in

the BRB (6.1%–31%) than in the LRB (2.2%–5.7%).

On the intra-annual scale (Fig. 8c), the uncertainty of PA

decreases from January to June and increases from July to

December in theBRB,with the largest and smallest uncertainty in

December (94%) and June (89%), respectively, which is some-

what different from the uncertainty of PA at the four-layerHSAF

(Fig. 6d). In contrast, the opposite pattern is identified for GC

uncertainty, that is, the largest and smallest contributions of GC

are detected in June (10.6%) andDecember (4.6%), respectively,

similar to the GC uncertainty under the four-layer HSAF

(Fig. 6b). For the LRB (Fig. 8d), the uncertainty of PA is domi-

nant in all months and tends to be smaller in winter (80%), which

is similar to the PAuncertainty under the four-HSAF (Fig. 6h). In

contrast, the GC contributes larger uncertainty in winter (18%)

than in the other seasons (5%), which is different from the un-

certainty of GC under the four-layer HSAF, which had the

smallest contribution in winter (Fig. 6f).

Figure 9 displays the spatial distribution of the sensitivity

indices of the GC, ES, and PA for the projections of the 30-yr

FIG. 5. Interannual variability of the sensitivity indices of the PA, HM, GC, and ES for the projected annual

discharge at Hengshi station in the BRB and at Tieling station in the LRB in the future period 2071–2100. The

sensitivity indices are calculated based on the four-layer HSAF [Eq. (6)].
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(2071–2100) average annual surface runoff over the two basins.

The main observation is that the uncertainty of the three

sources is unevenly distributed over the two basins. Overall,

the ranking of the uncertainty contribution is PA.GC. ES.

For the BRB (Figs. 9a,b), the uncertainty of ES and GC tends

to increase from upstream (no less than 0.3% and 4.1%, re-

spectively) to downstream (no more than 2.4% and 11.8%,

respectively), whereas the uncertainty of PA tends to decrease

from upstream to downstream (from 95.5% to 86.3%, Fig. 9c).

For the LRB, the PA and ES contribute larger uncertainties

in the midstream region (no more than 0.7% and 97.7%,

respectively) than in the upstream and downstream regions

(no less than 0.03% and 68.4%, respectively). The opposite

pattern is detected for the GC uncertainty, which makes the

largest contribution (31.5%) upstream and downstream and

the smallest contribution (1.7%) midstream.

Figure 10 displays the spatial distribution of the sensitivity

indices of the GC, ES, and PA for the 30-yr (2071–2100) av-

erage surface runoff projections on the seasonal scale. For the

BRB (Fig. 10a), the uncertainty of the ES and GC tends to

increase from upstream to downstream in all seasons, while the

opposite trend is identified for the PA uncertainty. The con-

tribution of PA uncertainty is still the largest (83%–95%) and

tends to be larger in autumn and winter over most of the BRB.

The ES uncertainty is larger in spring and winter (especially

for the downstream) and smaller in summer and autumn

(especially for the upstream). The GC uncertainty is large

(small) during spring and summer (autumn and winter)

downstream (upstream).

For the LRB (Fig. 10b), the uncertainties of ES and GC are

relatively larger in spring and winter (with averages of 2% and

15%, respectively) than in summer and autumn (with averages

FIG. 6. Intra-annual variability of the sensitivity indices of the PA, HM,GC, and ES for the discharge projections

at Hengshi station in the BRB and at Tieling station in the LRB during the future period 2071–2100. The sensitivity

indices are calculated based on the four-layer HSAF [Eq. (6)].
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of 0.5% and 2.5%, respectively). In contrast, the PA uncer-

tainty is significantly larger in summer and autumn (with an

average of 97%) and smaller in spring and winter (with an

average of 85%). On the spatial scale, the GC uncertainty is

significantly larger upstream for all seasons (.10%), while the

PA uncertainty is generally small upstream (,90%).

5. Discussion

In this study, we extended the HSAF of Dai et al. (2017a) to

quantify the relative contribution of uncertainty sources to

hydrological projections under climate change on both tem-

poral and spatial scales. The four-layer HSAF considering four

uncertainty sources (i.e., ES, GC, HM, and PA) in projections

of river discharge and the three-layer HSAF considering three

uncertainty sources (i.e., ES, GC, and PA) in projections of

surface runoff were developed and tested in both humid and

semiarid basins. Different from previous studies (Dai et al.

2017a), the Morris method was used to screen the most sensi-

tive PAs of the HMs to reduce the workload of parameter

calibration and validation. Meanwhile, the LHS method was

used to estimate the sensitivity indices from the sensitive PAs

to reduce the computational costs. Compared with qualitative

comparison methods (Chen et al. 2011b, 2013; Dobler et al.

2012) and ANOVAmethods (Aryal et al. 2019; Bosshard et al.

2013; Vetter et al. 2015, 2017), the HSAF presented in this

study is capable of grouping different model uncertainty

sources and considering the dependence relationships among

uncertainty inputs as well as the spatiotemporal variations of

uncertainty sources, especially grouping the most sensitive

PAs from different HMs. More importantly, this HSAF can

theoretically be applied to perform quantitative analysis of

FIG. 7. Interannual variability of the sensitivity indices of the PA, HM,GC, and ES for the annual peak discharge

projections at Hengshi station in the BRB and at Tieling station in the LRB during the future period 2071–2100.

The sensitivity indices are calculated based on the four-layer HSAF [Eq. (6)].
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n (n $ 2) kinds of uncertain sources (e.g., GC, GC internal

variability, ES, HM, PA, and downscaling methods) in the

context of climate change impact studies.

The results of this study highlight the strong temporal and

spatial variability of general sources of uncertainty in hydrological

predictions. The ES is generally the smallest uncertainty contrib-

utor in hydrological projections, but its uncertainty shows large

variability on both temporal and spatial scales (e.g., Figs. 5–7, 9,

and 10), a consistent finding with the projections of extreme pre-

cipitation events (Wada et al. 2013; Xu et al. 2019) and runoff (Kay

et al. 2009;Vetter et al. 2017). TheHM(PA) is the largest source of

uncertainty for the humid BRB (the semiarid LRB) on both in-

terannual (Fig. 5) and intra-annual (Fig. 6) scales, a finding gen-

erally consistent with Aryal et al. (2019), which indicated that the

HM contributes the largest uncertainty at dry seasons in a humid

catchment of Nepal considering the GC, bias-correction methods,

and HM. Compared with HM, research on the uncertainty of

PA over time and space is rather lacking because most

previous studies on uncertainty assessments of hydrological

impacts of climate change are based on the assumption that

the optimal parameter set identified in the historical period

would remain valid in future projections (Aryal et al. 2019;

Giuntoli et al. 2015; Su et al. 2017; Vetter et al. 2015, 2017).

Using efficient sampling methods to obtain parameter samples

in parameter space is one of the enhanced tools representing

the uncertainty of PA.

The LHSmethod was applied to generate 20 sets of the most

sensitive parameters for each HM to sample within a bounded

sensitive parameter range, and the results highlight the large

uncertainty range of PA, especially for projections of annual

peak discharge (Figs. 7d,h). Particularly, the PA contributes

larger uncertainty to (annual and monthly) discharge projec-

tions in the semiarid basin than the humid basin (Figs. 5d,h and

6d,h), which may be attributed to the strong responses of hy-

drological processes to the PAs in the semiarid basin because

the adaptive range of PA is generally smaller in the semiarid

basins than in humid basins (Wang et al. 2012; Xie et al. 2007).

In addition, the Xinanjiang model identified more sensitive

PAs for the semiarid basin (KC, CS, and KG) than for the

humid basin (SM and CS, Table 2), which may be another

reason for the greater uncertainty of PA in the semiarid

basin. These results also indicate that the uncertainty of PA

is generally larger in projections of annual peak discharge

(Fig. 7) compared with projections of annual discharge

(Fig. 5), which can be mainly attributed to the larger un-

certainty range of PA for annual peak discharge than for

annual discharge (Figs. S3 and S5). Overall, our study sug-

gests that the influences of PA on hydrological projections

FIG. 8. Interannual variability (2071–2100) of the sensitivity indices of the PA, GC, and ES for surface runoff

projections in (a) the BRB and (b) LRB. Intra-annual variability of the sensitivity indices of the PA,GC, and ES for

surface runoff projections in (c) the BRB and (d) LRB. The sensitivity indices are calculated based on the three-

layer HSAF [Eq. (8)].
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should be considered with caution, especially for projections

of extreme hydrological events.

The HM contributes greater uncertainty to the annual peak

discharge projections in the semiarid basin than in the humid

basin (Figs. 7c,g), probably due to the larger discrepancies in

the simulations of annual peak discharge between the HMs in

the semiarid basin than in the humid basin (Fig. S6). In con-

trast, the HM contributes greater uncertainty to annual dis-

charge projections in the humid basin than in the semiarid

basin (Figs. 5c,g and 6c,g), which can be attributed to the larger

uncertainty range of annual discharge simulations of HMs in

the humid basin than in the semiarid basin (Fig. S3) due to the

larger discrepancies in annual discharge simulations between

the VIC model and the other two HMs in the humid ba-

sin (Fig. S7).

The results also indicate that the GC contributes larger un-

certainty to discharge projections in the wet season than in the

dry season in the humid basin (Figs. 6b and 8c), a finding

generally consistent with Aryal et al. (2019) and Hattermann

et al. (2018), mainly due to the larger uncertainty range in the

precipitation projections during the wet season (see Fig. S8).

Most previous studies indicated that GC is one of the largest

FIG. 9. Spatial distribution of the sensitivity indices of the PA, GC, and ES for the 30-yr (2071–2100) average

surface runoff projections over the (left) BRB and (right) LRB. The sensitivity indices are calculated based on the

three-layer HSAF [Eq. (8)].
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sources of uncertainty in climate change projections (Bosshard

et al. 2013; Chen et al. 2011b; Déqué 2007; Kay et al. 2009;

Prudhomme and Davies 2009; Su et al. 2017; Wilby and Harris

2006). However, our results demonstrate that the uncertainty

of GC is often obscured by the PA and HM (e.g., Figs. 5b, 5f,

6b, 6f, and 8), and one of the possible reasons is that the effects

of GC uncertainty are weakened after transformations using

the statistical downscaling method (VB-CF). VB-CF is a sim-

ple matching of observed and modeled variables instead of the

dynamic downscaling of large-scale atmospheric fields, leading

to a decreased variability in GC simulations (see Fig. S1b; Wu

et al. 2020).

This study is subject to a few limitations. First, only one

downscaling technique was applied in this study. It is widely

accepted that the uncertainty caused by the downscaling

methods is potentially large (Bosshard et al. 2013). Second, we

consider only two different climatic basins, which cannot rep-

resent other types of climatic zones (e.g., arid or semihumid

basin) or high-latitude regions. Third, only one member of

each GC was used in this study without considering the un-

certainty from the internal variability of GC. Therefore, more

sources of uncertainty (e.g., different downscaling techniques

and multiple GC members) need to be considered within the

HSAF to better understand the spatiotemporal variations of

the general sources of uncertainty in hydrological predictions.

6. Conclusions

This study presents an advanced hierarchical SA of a

climate-influenced hydrological model system to quantify

different sources of uncertainty in the hydrological impacts of

future climate change in two different climatic (humid and

semiarid) basins. The HSAF is developed to be integrated with

the variance-based SA method to estimate the relative im-

portance of different uncertainty sources, including 3 ESs, 20

GCs, 3 HMs, and 20 sets of the most sensitive PAs. The

Morris method was applied to screen the most sensitive

parameters for different HMs, and the LHS strategy was

applied to estimate the sensitivity indices for the HSAF. The

spatiotemporal variability of the uncertainties in hydrolog-

ical (annual discharge, annual peak discharge, and surface

runoff) predictions were comparatively analyzed using the

four- and three-layer HSAFs.

The parameter sensitivity results show that expM and coeM

are the two most sensitive parameters of the CRESTmodel for

both basins and that SM and CS (KC, CS, and KG) are themost

sensitive parameters for the BRB (LRB). The uncertainty

analysis indicates that the overall trend of uncertainty contri-

butions to the projected discharge is PA . HM . GC . ES.

However, the sources of uncertainty have significant discrep-

ancies in the projections of different hydrological variables.

The HM uncertainty in annual and monthly discharge projec-

tions tends to be larger than the PA uncertainty in the humid

basin than in the semiarid basin. The PA has greater uncer-

tainty in extreme hydrological event (annual peak discharge)

projections than in annual discharge projections in both basins

(particularly for the humid basin) but contributes larger un-

certainty to annual and monthly discharge projections in the

semiarid basin than in the humid basin. The GC contributes

larger uncertainty in the projections of all the hydrological

FIG. 10. Spatial distribution of the sensitivity indices of the PA, GC, and ES for the 30-yr average surface runoff projections over the

(a) BRB and (b) LRB on the seasonal scale. The sensitivity indices are calculated based on the three-layer HSAF [Eq. (8)].
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variables in the humid basin than in the semiarid basin.

Compared with other uncertainties, the ES uncertainty is

rather limited in both basins. Overall, our results suggest a

greater spatiotemporal variability of general sources of un-

certainty in more arid regions. We also suggest that more

attention should be paid to the selection of HMs for humid

basins and the optimization of PAs for arid basins.

The HSAF used is mathematically rigorous and general and

can be applied to a wide range of climate-influenced models

with more or different sources of uncertainty. The sensitivity

results can provide a better understanding of the spatiotem-

poral variations of various uncertainty sources in hydrological

projections under climate change.
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