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Differences of drought tolerance of the main tree species in Dongling Mountain Beijing
China as indicated by tree rings. XIAO Jianyu'> ZHANG Wen-=yan'’> MOU Yu-mei' > LYU
lixin'" ( 'State Key Laboratory of Vegetation and Environmental Change Institute of Botany ~Chi-
nese Academy of Sciences Beijing 100093  China; *University of Chinese Academy of Sciences Bei—
Jing 100049  China) .

Abstract: Forests in Beijing exhibit vulnerability to increasing stress of extreme drought in recent
years. To investigate the drought tolerance of different tree species we chose three tree species
( Larix principis-rupprechtii  Pinus tabuliformis and Quercus wutaishanica) from the forest of
Dongling Mountain in Beijing and used dendroecological method to analyze the relationship between
radial growth and climate as well as their resistance and resilience to extreme drought events. Our
results showed that the radial growth of L. principis—rupprechiii and P. tabuliformis was significantly
negatively correlated with monthly mean temperature from May to June but that of (. wutaishanica
was significantly negatively correlated with monthly mean temperature only in May. The radial
growth of L. principis—rupprechtii was significantly positively correlated with monthly mean precipita—
tion in June monthly mean relative humidity from May to June and August to September. The radial
growth of P. tabuliformis was significantly positively correlated with monthly mean precipitation and
monthly mean relative humidity from June to August. The radial growth of Q. wutaishanica was sig—
nificantly positively correlated with monthly mean precipitation in February and May and monthly
mean relative humidity in May. The radial growth of all the three species was significantly positively
correlated with monthly mean SPEI ( standardized precipitation evapotranspiration index) from May
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to July. L. principis—rupprechtii was least drought tolerant as indicated by the greatest growth reduc—
tion ( 46.6%—-69.6%) lowest resistance ( 0.534 0.304 0.530) and resilience ( 0.686 0.570

0.753) during the three extreme drought events occurred in the 1994 2001-2002 and 2007. In
contrast tree growth of (). wutaishanica showed the highest drought resistance in 2007 whereas no
significant differences were observed between other two species. Exireme drought events caused by
continuous high temperature and reduced precipitation during the growing season accounted for the
reduction in tree radial growth. The various physiological and ecological strategies of tree species
were the possible reasons for the difference in drought tolerance. Our results could provide a basis
for the selection of suitable afforestation tree species and the formulation of forest protection mea—
sures to maintain forest ecosystem functions and services under the background of undergoing

climate change.

Key words: climate change; extreme drought; dendroecology; resistance; resilience.
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Fig.2 Meteorological data of Huailai meteorological station from 1970 to 2018.
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Fig.3 Standard ring width chronology of three tree species.
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Table 1 Statistic characteristics of standard tree-ring chronologies of three tree species

Year since sub-sample signal strength >85%.

56 (1963—
) o

Statistic characteristics Larix principis— Pinus Quercus
rupprechtii tabuliformis wutaishanica
Number of trees 60 64 49
Number of cores 60 64 49
Average age 35 43 70
Chronology length 1973—2018 1963—2018 1930—2018
>85% 1982 1972 1939
Year since SSS ( Sub-sample signal strength) >85%
Common interval 1982—2018 1982—2018 1982—2018
Mean sensitivity 0.26 0.19 0.38
Standard deviation 0.24 0.25 0.23
Series intercorrelation 0.55 0.61 0.69
First order autocorrelation 0.21 0.06 0.17
Signal-to-noise ratio 45.50 50.75 46.14
Expressed population signal 0.98 0.98 0.98
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Fig.5 Selection of drought events and superposed epoch analysis of radial growth of different tree species.
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Fig.6 Resistance and resilience of different tree species in dif—
ferent years ( 1994 2001-2002 and 2007) .

( P<0.05) Different lowercase let—
ters meant significant difference among tree species at 0.05 level.
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