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A B S T R A C T   

The snowpack evolution has a significant impact on the water cycle and energy exchange at the watershed and 
regional scales, especially in the mountainous area with complex topography and land surface properties. An 
accurate description of the vegetation parameters for the regional climate model (RCM) coupled with the land 
surface model (LSM) is necessary to achieve a more accurate simulation of the mountainous snow process. 
However, the default vegetation options could not update real-time in the RCM LSMs, causing large uncertainties 
in the snow mass estimation. Thus, this study investigated the effect of the key vegetation parameters on the 
snow simulation in the Tianshan Mountains (TS) through real-time updates with remotely sensed leaf area index 
(LAI), green vegetation fraction (FVEG) and land cover (LC) products in the Weather Research and Forecasting 
(WRF) model coupled with the Noah LSM with Multiparameterization Options (Noah-MP). The results de-
monstrated that more realistic vegetation parameters could improve the performance of snow simulation in the 
WRF/Noah-MP, especially in the forest regions. The underestimated vegetation parameters of the integrated 
remote sensing products caused an increased surface albedo and less snow interception, particularly in the snow 
ablation period, and less vegetation density could also reduce the net longwave radiation emitted from the 
canopy at the surface, causing a lower near-surface temperature and less snowmelt. Additionally, less snow 
interception and melted snow contributed to a larger snow water equivalent on the ground, such as in the 
Western TS and the high-altitude regions of the Ili Valley. The updating vegetation parameters' approach will 
help to provide information so as to accurately model the snow resources in the mountainous areas.   

1. Introduction 

The seasonal snowpack is a critical component of the freshwater 
storage in the mountainous regions, playing an important role in the 
regional water cycle and water consumption for the agricultural and 
economic development (Barnett et al., 2005; Dong, 2018; Matthew 
et al., 2017). Due to the high albedo and excellent thermal insulation, 
snow also has a significant influence on the climate system by affecting 

the land–atmosphere energy exchange (Bair et al., 2019; Brown and 
Mote, 2009; Malmros et al., 2018; Winter et al., 2017). The alpine 
vegetation phenology in spring is influenced by the snow cover dura-
tion and snow mass (Tomaszewska et al., 2020; Wang et al., 2013, 
2018). In addition, snow also brings natural disasters such as blowing 
snow and snow avalanches which cause huge damage and economic 
losses (Ballesteros-Cánovas et al., 2018; Schweizer et al., 2003). 
Therefore, it is necessary and meaningful to estimate the snow mass in 
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the mountainous areas accurately. 
The current snow measurement approach is mainly based on the in- 

situ observations, remote sensing and model simulations (Dong, 2018). 
The point-based snow observation is sparse, especially in the moun-
tainous areas and forest transitions (Broxton et al., 2019). In addition, 
the in-situ snow water equivalent (SWE) measurement is performed at a 
low frequency (Dong, 2018). During the past decades, remote sensing 
has proven to be an effective approach to investigate snow (DeWalle 
and Rango, 2008). Although the optical remote sensing has been widely 
used to map the snow cover, the quality of the estimation depends on 
the cloud cover and has a limited detection of snow depth (SD) (Hall 
et al., 2010; Huang et al., 2018). Microwave remote sensing could 
monitor the snow mass without the influence of the cloud cover and 
winter darkness. The long repeat-pass interval (Lievens et al., 2019), 
and the coarse spatial resolution and complex influencing factors (Dai 
et al., 2017; Immerzeel et al., 2009) lead to large uncertainties in snow 
mass estimation using the active microwave and passive microwave 
sensors, respectively. The LSMs with a snow physics module could si-
mulate the snow accumulation and ablation processes. However, it is a 
hard challenge to perform adequately snow dynamics due to the re-
quirements on multi-parameters and accurate meteorological forcing 
data in the mountainous areas (Alonso-González et al., 2018; Pan et al., 
2003; Wrzesien et al., 2018). 

Recently, the RCMs coupled LSMs were successfully applied to es-
timate the mountain snowpack storage through more reasonable si-
mulation of the orographic precipitation at a high spatial resolution in a 
given domain (Chen et al., 2014; Leung and Qian, 2003; Minder et al., 
2016). For example, the WRF model (Skamarock and Klemp, 2008) 
coupled with the Noah-MP (Niu et al., 2011) model has effectively 
captured the snow dynamics in the mountain area (Liu et al., 2019; 
Tomasi et al., 2017). As an essential structure of the RCM LSMs, the 
vegetation has an important impact on the snow process (Essery et al., 
2009; Roth and Nolin, 2017; Todt et al., 2019). Vegetation intercepts 
the snowfall during the snow accumulation season, reducing the surface 
ground snow under the canopy (Hedstrom and Pomeroy, 1998; Helbig 
et al., 2019). In addition, vegetation reduces the albedo and augments 
the radiation absorption, affecting the longwave radiation that is 
transmitted under the vegetation and impacting the snowmelt and re-
volution (Essery, 2013; Niu and Yang, 2004). The vegetation para-
meters, such as the LC, LAI and FVEG constitute the key parameters in 
the RCM LSMs of the land surface and phenology (Corporation et al., 
2018; Xu et al., 2014). However, these parameters are mainly based on 
the look-up table or climatology of the remote sensing products, in-
dicating that they could not be updated in real-time (Gou et al., 2019; 
Wen et al., 2012). Previous studies demonstrated that more realistic 
vegetation parameters from real-time remote sensing data of LAI, FVEG, 
and LC could better reflect the land and atmosphere interactions (Cao 
et al., 2019; Ge et al., 2020; Kumar et al., 2019). Nevertheless, the 
changes in snow simulation caused by the vegetation parameters did 
not sufficiently attract attention using the RCM LSMs in the mountai-
nous area. 

Situated in the hinterland of the Eurasian continental climate zone, 
the Tianshan Mountains (TS) are called the water tower of Central Asia 
and function as an ecological barrier (Chen et al., 2016). Major rivers 
(e.g. the Ili River, Tarim River, Chu River and Syr Darya River) origi-
nate from the TS and provide large proportions of glaciers/snowmelt 
water for the oasis-desert ecosystem (Chen et al., 2018), creating one of 
the largest irrigational areas worldwide (Farinotti et al., 2015; Sorg 
et al., 2012). The accurate estimation of SD and SWE has a significance 
to the surrounding water resources, agriculture and ecosystem (Yang 
et al., 2019a; Zhang et al., 2016). Since the meteorological observations 
are sparse (Yang et al., 2020), especially in the high-altitude and forest 
regions, most studies investigated the variability of the snow cover by 
means of optical remote sensing in the entire or part of the TS (Tang 
et al., 2017; Wu et al., 2019; Zhou et al., 2017). A few studies that were 
based on the in-situ observations focused on the variations of the SD 

and snow phenology in the areas within China (Li et al., 2019, 2018b). 
Recently, the SD and SWE have been simulated by the Noah-MP only on 
a point scale (You et al., 2020a, You et al., 2020b). In addition, micro- 
scale research demonstrated that the differences in forest canopy 
openness could cause changes in the energy budget of the snow surface, 
particularly in the snowmelt season (Lu et al., 2017). However, little is 
known about the impact of the vegetation on the snow simulation in the 
entire TS. Hence, it is expected that the accurate vegetation parameters 
could improve the performance of the snow simulation using the RCM 
LSMs in the TS. 

This study aimed at investigating the impacts of various vegetation 
parameter datasets (LC, LAI and FVEG) on snow by means of the WRF/ 
Noah-MP in the TS from 2005 to 2015. The objectives of the study are 
as following: (1) to evaluate the performance of snow simulation in the 
WRF/Noah-MP; (2) to investigate the spatial distribution of the SD and 
SWE; (3) to discuss the effect of different vegetation parameter sources 
on the snow process. This is the first attempt to estimate the snow mass 
using the RCM LSMs and to investigate the differences in snow simu-
lation caused by the vegetation parameters over the entire TS. The re-
sults will help to enhance understanding of the vegetation effect on 
snow simulation and will give new insight in order to improve the snow 
process in the RCM LSMs. 

2. Data and methods 

2.1. Study area 

The TS measure approximately 2,500 km in length and has a width 
of 250–350 km, spanning from Xinjiang (China), southeastern 
Kazakhstan and Uzbekistan to Kyrgyzstan with 800,000 km2 and de-
veloped the largest mountain system in Central Asia (Fig. 1b). The 
westerlies and complex topography bring abundant precipitation which 
is beneficial to form the rich glaciers and snow resources. The lowland 
area of the TS is one of the largest irrigated zones worldwide, and its 
agriculture and economy are highly dependent on the glaciers/snow 
melting water (Farinotti et al., 2015). The mean annual temperature 
and annual precipitation amount are 4.6 °C and 329.3 mm, respectively 
(Yang et al., 2019a). The western and northern part of the TS is char-
acterized by a relatively humid climate, while the eastern and central 
parts exhibit a typical continental climate (Farinotti et al., 2015). The 
annual precipitation reaches 500–700 mm and 1,000 mm along the 
northern slope of the TS (NTS) and the windward slope of the western 
part, respectively, but below 100 mm in the southern slope of the TS 
(STS) (Lu et al., 2019). The snowfall amount accounts for 30% of the 
annual precipitation in the NTS (Guo and Li, 2015; Yang et al., 2019b). 
The maximum precipitation period in the western part occurs in late 
winter to early spring, which is earlier than that in the central part in 
summer, the northern and eastern part in spring and early summer 
(Aizen et al., 1997). Leptosol, Gypsisol, Kastanozem, Solonchak and 
Chernozem are the main soil types in this area (Fao/Iiasa/Isric/Isscas/ 
Jrc, 2012). As illustrated in Fig. 1e, the TS is dominated by barren land, 
grassland cropland, and shrubland in CCI-LC 2015, accounting for 
55.1%, 21.2%, 13.0%, and 6.1% of total land areas, respectively. The 
forest cover (1.2%) is mainly distributed in the altitude zone from 
1,300 m to 2, 800 m (Lu et al., 2017). 

2.2. Datasets’ acquisition and processing 

2.2.1. Meteorological observations and Terrestrial water storage product 
The data from the meteorological stations and satellite were used to 

evaluate the performance of the WRF/Noah-MP. There are 95 meteor-
ological stations in the study area (shown in Fig. 1b). These data have 
been strictly processed and subjected to quality control before release. 
Fifty-nine stations were collected from the China Meteorological Ad-
ministration (CMA, http://data.cma.cn/site/index.html), which in-
cludes the mean daily temperature, precipitation, snow depth and a 5- 
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day SWE (SWE is recorded once every 5 days when SD  >  5 cm). 
Thirty-three stations were obtained from the Global Surface Summary 
of the Day (GSOD, https://data.nodc.noaa.gov/cgi-bin/iso?id=gov. 
noaa.ncdc:C00516). All GSOD stations cover the mean daily tempera-
ture, of which only 3 stations contain daily snow depth data. Details are 
visible in Table 1. The average daily temperature, SD, and precipitation 
in the cold season (from November to March) from the in-situ ob-
servations were applied so as to evaluate the performance of the WRF/ 
Noah-MP simulations. 

Due to a lack of observations in the forest regions, the daily SD and 
5-day SWE at the Tianshan Station for Snow Cover and Avalanche 
Research (TSSAR), Chinese Academy of Sciences, and the daily SD at 
the Baiyanggou (BYG) and Tianchi (TC) station obtained from the 
Xinjiang Meteorological Bureau were employed to validate the vege-
tation impact on the snowpack simulation (Table 2 and Fig. 1b). In 

addition, changes in the Terrestrial Water Storage (TWS) during the 
cold season are dominated by snow accumulation or melting in the 
mountainous regions (Wrzesien et al., 2018). In order to evaluate the 
SWE simulation during the cold season in the TS, the Gravity Recovery 
and Climate Experiment (GRACE) monthly TWS anomaly product 
(version RL06) at a 0.5° spatial resolution from 2005 to 2015 (https:// 
grace.jpl.nasa.gov/data/get-data/) was utilized to compare with the 
TWS anomaly estimated by the WRF/Noah-MP. The GRACE measure-
ment error of water-equivalent height was < 25 mm in the midlatitude 
region (Landerer and Swenson, 2012; Wahr et al., 2006). The sum of 
the soil moisture, groundwater storage, SWE and canopy water contents 
is defined as the TWS in the Noah-MP model (Kumar et al., 2019). 

2.2.2. Remotely sensed vegetation products 
The LC and LAI datasets have been obtained from the European 

Fig. 1. (a) Elevation (m) of the WRF model domains; (b) Location of the Tianshan Mountains, (c) default USGS land use, (d) CCI_LC (2015) land use, (e) land-cover 
types fraction, and (f) Multi-year averaged LAI from the WRF look-up table and GLASS dataset in d02. 
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Space Agency (ESA) Climate Change Initiative (CCI) project (https:// 
www.esa-landcover-cci.org/) and the Global Land Surface Satellite 
(GLASS) products (https://www.geodata.cn/), respectively, which 
were used to update the corresponding parameters in the WRF model. 
The CCI-LC consists of a series of global land cover maps (v2.0.7) at a 
300 m spatial resolution from 1992 to 2015 (ESA, 2017). The global 
overall accuracy of the CCI-LC product exceeds 75.4% (ESA, 2017). The 
CCI-LC 2015 was converted into the USGS-24 categories as the basis LC 
in the WRF according to Appendix Table A1 and resampled into a 1 km 
resolution with the nearest neighbour interpolation. The GLASS LAI 
generated from the Advanced Very High Resolution Radiometer 

(AVHRR) reflectance datasets (Xiao et al., 2016) provides the global 8- 
day LAI product at a spatial resolution of 0.05° × 0.05° from 1981 to 
the present. Previous studies demonstrated that the GLASS LAI data 
have higher quality than the other LAI products (Fang et al., 2019; Xiao 
et al., 2014). In order to daily update the real-time LAI in WRF for the 
inner domain, the 8-day GLASS LAI data from 2005 to 2015 have been 
linearly interpolated to a daily scale at a 9 km resolution via bilinear 
interpolation. 

Table 1 
The CMA and GSOD meteorological stations in the TS.             

ID Longitude (°E) Latitude Altitude ID Longitude (°E) Latitude Altitude     
(°N) (m)   (°N) (m)   

NTS 51,232 82.57  45.18 338 51,644 83.07  41.72 1,083   
51,238# 82.07  44.9 533 51,656 86.13  41.75 933   
51,288 90.53  45.37 1,655 51,701 75.4  40.52 3,507   
51,328 80.42  44.2 774 51,704 76.17  39.72 1,300   
51,329 80.85  44.05 641 51,705 75.25  39.72 2,178   
51,330# 81.02  44.97 1,354 51,707 76.73  39.5 1,211   
51,334# 82.9  44.62 321 51,708 75.95  39.15 1,325   
51,346# 84.67  44.43 478 51,709 75.98  39.47 1,291   
51,352 85.25  44.85 338 51,711# 78.45  40.93 1,986   
51,353 86.1  45.02 348 51,716 78.57  39.8 1,118   
51,356# 86.05  44.32 444 51,720 79.05  40.5 1,163   
51,357 85.62  44.33 523 51,730 81.05  40.5 1,013   
51,358 85.82  44.28 469 52,203 93.52  42.82 739   
51,359 86.2  44.32 473 368,210 76.27  44.83 396   
51,365 87.53  44.2 441 368,590 80.07  44.17 645 WTS  
51,367 86.82  44.13 524 368640* 75.25  43.53 743   
51,368# 87.43  44.02 579 369,110 75.28  42.83 817   
51,369 87.65  43.97 601 369740* 76  41.43 2,041   
51,377 87.92  44.17 548 369,820 78.23  41.88 3,639   
51,378 89.17  44.02 736 381,960 68.9  43.55 822   
51,379# 89.57  44.02 794 381,980 68.22  43.27 207   
51,430 81.15  43.83 604 382,220 73.78  43.7 456   
51,431# 81.33  43.95 663 383,280 69.7  42.32 640   
51,433# 82.57  43.8 1,106 383340* 70.3  42.48 808   
51,434 81.53  43.97 771 383,410 71.38  42.85 655   
51,435 82.23  43.47 777 383,430 72.75  42.95 683   
51,436# 83.3  43.45 929 383,450 72.22  42.52 1,218   
51,437# 81.13  43.15 1,855 383,530 74.53  42.85 760   
51,438 81.77  43.18 1,211 383,531 74.48  43.06 627   
51,463# 87.65  43.78 936 384,390 68  41.37 275   
51,465# 87.1  43.57 2,121 384,570 69.28  41.26 432   
51,467 86.3  42.73 1,740 384,620 70.37  41.9 1,258   
51,468 86.83  43.1 3,544 385,650 65.68  40.55 485   
51,469 87.11  43.27 1,930 385,790 67.83  40.12 345   
51,482 90.28  43.83 1,272 385,830 68.68  40.82 264   
52,101# 93  43.6 1,651 385,990 69.73  40.22 427   
51,542# 84.15  43.03 2,459 386,110 71.58  40.98 474  

STS 51,559 86.4  42.32 1,110 386,130 72.95  40.92 765   
51,567 86.57  42.08 1,058 386,160 72.9  40.7 868   
51,573 89.2  42.93 37 386,180 71.75  40.37 604   
51,581 90.23  42.85 399 386,960 66.98  39.7 678   
51,627 79.23  41.22 1,397 388,120 65.72  38.8 376   
51,628 80.23  41.17 1,105 388,360 68.83  38.54 785   
51,633 81.9  41.78 1,230 388,380 68.35  38.05 563   
51,639 82.78  41.23 982 388,440 69.23  38.25 2,239   
51,642 84.25  41.78 978 389,270 67.31  37.29 313  

# represents the CMA station (ID begins with 5) including the snow water equivalent data. * represents the GSOD station (ID begins with 3) including the snow 
depth data. NTS, STS and WTS demonstrate the northern slope, southern slope and western part of the TS, respectively.  

Table 2 
Information of forest stations.        

Name Longitude (°E) Latitude (°N) Altitude (m) Period Position  

TSSAR  84.4  43.27 1776 2005-09-01-2015-08-31 Western Ili Valley 
TC  88.12  43.88 1935 2005-09-01-2015-08-31 NTS 
BYG  85.98  43.85 1547 2012-09-01-2015-08-31 ETS 
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2.3. Model configuration 

In this study, the snowpack simulations were performed by means of 
the WRF 4.01 (Skamarock and Klemp, 2008) coupled with the Noah-MP 
(Niu et al., 2011; Yang et al., 2011) model in the TS from August 2005 
to August 2015. The model was initialized at 00:00 UTC on 1st August 
each year and terminated on 31st August the next year. The initial 
August output was discarded as a model spin-up (Norris et al., 2018), 
hence the hydrological year (from September to August) retained 
output. The model output could include 10 full cold seasons during 
2005–2015. The realistic orographic precipitation processes could be 
revealed better when the resolution is smaller than 10 km (Norris et al., 
2015; Wrzesien et al., 2018). The WRF/Noah-MP was configured with 
the one-way double nested domains, where the outer and inner do-
mains have a spatial resolution of 27 km and 9 km, respectively, with 
35 vertical levels from the surface up to 50 hPa (Fig. 1a). The coarse 
Domain 1 (d01) had 317 × 145 grids in the west-east and south-north 
direction and the innermost Domain 2 (d02) was nested with 
304 × 133 grids. The ERA-Interim dataset has proved to perform very 
well in Central Asia (Hu et al., 2016, 2014) and has successfully been 
applied to the regional climate downscaling (Chen et al., 2019; Qiu 
et al., 2017). Therefore, the ERA-Interim (0.75° × 0.75°) reanalysis 
data that were updated every 6 h have been chosen as the initial and 
lateral boundary conditions for two domains (https://www.ecmwf.int/ 
en/forecasts/datasets/reanalysis-datasets/era-interim). The para-
meterization schemes followed the previous studies (Norris et al., 2017, 
2015) and are presented in Table 3: the Single-Moment 6-Class (WSM- 
6) cloud microphysical scheme (Hong and Lim, 2006), Yonsei Uni-
versity planetary boundary layer (YSU) (Hong et al., 2006), Rapid Ra-
diation Transfer (RRTM) longwave radiation model (Mlawer et al., 
1997), Dudhia shortwave radiation model (Dudhia, 1989), MM5 
Monin‐Obukhov surface layer (Monin and Obukhov, 1959), Kain- 
Fritsch Cumulus Scheme (Kain, 2004) and Noah-MP Land Surface (Niu 
et al., 2011). 

The land surface physics’ scheme has a significant influence on the 
accuracy of the snow simulation (Liu et al., 2019). As a new generation 
of the Noah land surface model, the Noah-MP model enhances the 
physical and multiple parameterization options for the different 
land–atmosphere interaction processes, which includes a multi-layer 
snowpack, multiple options for dynamic vegetation phenology, frozen 
soil and infiltration, groundwater and runoff (Fig. 2) (Niu et al., 2011; 
Yang et al., 2011). The three-layer snow structure could help to resolve 
the snowpack internal processes and to estimate the snow processes in a 
better way compared to the Noah LSM (Niu et al., 2011). Snow density 
is predicted by taking into account for the destructive metamorphism, 
melt metamorphism, and compaction due to the weight of the third 
snow layer and its overlying layers (Anderson, 1976; Sun et al., 1999). 
In addition, the dynamic vegetation model allows the assimilation of 
the multi-sources’ vegetation dataset, which plays a key role in the 

snow energy balance and snow interception (Gan et al., 2019). The 
main parameterization schemes in the Noah-MP are as follows (Niu 
et al., 2011): the Ball-Berry vegetation stomatal resistance (Ball et al., 
1987; Collatz et al., 1992, 1991), Monin-Obukhov surface layer drag 
coefficient, CLASS (Canadian Land Surface Scheme) ground surface 
albedo, the Noah soil moisture factor for stomatal resistance, Jordan’s 
scheme for precipitation partitioning between snow and rain (Jordan, 
1991), semi-implicit snow/soil temperature time scheme and two 
streams applied to the vegetated fraction for the radiative transfer op-
tion. 

2.4. Experimental design 

We designed two numerical control experiments so as to study the 
effect of the vegetation parameters (LC, LAI and FVEG) on the snow-
pack simulation in the TS (Table 4). Compared with CCI-LC 2015, 
USGS-LC showed a underestimation in the barren land (−16%), 
grassland (−4.5%), but a overestimation in shrubland (19.9%), crop-
land (1.4%) and forest (0.3%). The multi-year averaged LAI from 
GLASS in d02 exhibited a significant underestimation (−151.43%) 
than that from the WRF look-up table (Fig. 1f). The CCI-LC 2015 was 
selected as input land cover data in d02 for the EXP1. In addition, the 
daily GLASS LAI data and calculated FVEG were updated in d02. The 
LC, LAI and FVEG have used the default options from the WRF geo-
graphical dataset for the outer domain. The default USGS LC data, the 
monthly LAI and yearly maximum FVEG from the look-up table were 
carried out in both d01 and d02 for the EXP2. The LAI and FVEG in a 
cell grid were determined by the percentage of each land use type and 
its corresponding value. 

The calculated FVEG in the Noah-MP for EXP1 could be expressed 
as: 

= × +F e1veg
LAI SAI( 0.52 ( )) (1)  

where the LAI is the leaf area index and the SAI (equal to 0.1*LAI) 
stands for the stem area index. 

As one of the primary energy of snowmelt, the net longwave ra-
diation (LWa,v) in a cell grid in the Noah-MP model can be computed as 
below (Niu et al., 2011): 
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where εv and εsurf are the emissivity of vegetation and ground, re-
spectively. σ is the Stefan-Boltzmann constant (5.67 ∗ 10−8W/m2 ∗ K4). 

The emissivity of vegetation in the model is defined as the function 
of effective leaf area index (ELAI) and effective stem area index (ESAI) 
after burying by snow (Niu et al., 2011): 

= +e1v
ELAI ESAI µ( )/ ¯ (3)  

where μ fixed as 1 is the average inverse optical depth for longwave 
radiation. 

The snow cover fraction (fsnow) is determined by the snow depth, 
snow density and ground roughness length (z0) (Niu and Yang, 2007): 

= ( )f h

z
tanh

2.5
snow

snow
m

0
snow
new (4) 

where ρsnow and ρnew (100 kg m−3) are the bulk and fresh density of 
snow, respectively. z0 is equal to 0.01 m. m is the melting factor cali-
brated against observed fsnow or albedo in the melting season, here is 
1.0. hsnow is the SD, which is directly related to the interception and 
unload of the vegetation canopy. 

The maximum amount of water within vegetation canopy (Pmax) can 
be expressed as (Niu and Yang, 2004): 

Table 3 
Main physical parameterizations used in the numerical simulations.    

Simulation period 2005-09-01 to 2015-08-31  

Model Version: Version 4.01 
Nest: 2 
Horizonal resolution (innermost): 9 km 
Number of grids (innermost): 304*133 
Vertical Levels: 35 
Microphysics’ scheme: WSM-6 
Longwave radiation scheme: RRTM 
Shortwave radiation scheme: Dudhia 
Surface layer: Revised MM5 Monin‐Obukhov 
Planetary boundary layer: YSU 
Cumulus parameterization: Kain-Fritsch 
Initial/lateral boundary condition: ERA-Interim 
Land surface model: Noah-MP 

T. Yang, et al.   Journal of Hydrology 590 (2020) 125525

5

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim


= +Veg LAI SAI( ) ( )h o typemax max 2 (5) 

where Pmaxh2o is the maximum intercepted water determined by the 
each vegetation type (VEGtype). 

2.5. Evaluation method 

The output from the WRF model was assessed by the in-situ data 
and remote sensed data. The precipitation, near-surface air tempera-
ture, SD and SWE values from the nearest grid cells of the WRF model 
were compared with the in-situ observations on different time scales. 
The performance of the model with respect to the observations was 
quantified using the Correlation coefficient (R), Mean bias (MB), Root 
Mean Square Error (RMSE), and Nash-Sutcliffe efficiency (NSE) coef-
ficient and summarized in a Taylor diagram (Taylor, 2001). 
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where N is the total number of observed or simulated data, Sim(i) and 
Obs(i) are the simulated and observed values at timestep i, respectively, 
and Simmean and Obsmean are the mean of the simulated and observed 
values, respectively. 

3. Results 

3.1. Performance of the model simulations 

3.1.1. Near-surface air temperature and precipitation 
The surface temperature and precipitation determine the snowfall 

amount. Therefore, we first evaluated the mean daily near-surface air 
temperature at 2 m (T2) and the total precipitation in the cold season, 
using the meteorological stations. Overall, the EXP1 showed less bias in 
precipitation and T2 than the EXP2 did (Table 5). The pattern of MB in 
T2 and precipitation for the EXP1 and EXP2 was displayed in Fig. 3. 
Almost all stations demonstrated a consistent cold bias in T2 (Fig. 3a 
and b). Low cold bias (smaller than −0.8 °C/day) values prevailed in 
the Ili Valley and the intersection between the Eastern and Northern TS. 
In contrast, large cold bias values (larger than −1.6 °C/day) were ob-
served in the Western and Central TS, especially in the high-altitude 
regions where the cold bias exceeded −5 °C/day. The cold bias of T2 
was smaller in the NTS than that in the STS and western part (WTS) on 

Fig. 2. Schematic diagram for the snow process in the Noah-MP model. SWin represents the incoming shortwave radiation; SWrefl represents the reflected shortwave 
radiation; LWatm represents the atmospheric longwave radiation; LWveg represents the longwave radiation emitted by vegetation; SWtrans represents the shortwave 
radiation transfer computed by a modified two-stream approximation scheme; αsurf represents the ground absorptivity; LWsurf represents the longwave radiation 
emitted by ground; Tsurf and Tveg represent the ground and vegetation temperature, respectively. 

Table 4 
Numerical control experiment in the WRF/Noah-MP model for d02.      

EXP1 EXP2  

Land use CCI_2015 default: USGS 
dynamic vegetation option Dveg = 8: Input GLASS LAI; Calculate FVEG Dveg = 4 (default): Monthly LAI from look-up table; FVEG = Yearly maximum FVEG 
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the daily and monthly scales (Table 5). Compared with the EXP2, the 
EXP1 had a smaller cold bias in T2. It was noted that both the EXP1 and 
EXP2 exhibited a significantly underestimated precipitation in the low- 
altitude regions (Fig. 3c and 3d), but overestimation was noticed over 
20 mm in the high-altitude regions during the cold season. The model 
had a larger bias spread of precipitation in the NTS than in the STS 
(Table 5). 

3.1.2. SD 
The performance of the snow simulation from the EXPs was dis-

played in Figs. 4–6. Generally, the Taylor diagram demonstrated that 
the EXP1 slightly improved the performance of SD simulation than the 
EXP2 did in the TS and its sub-regions on a daily and monthly scales 
(Fig. 4a). Both the EXP1 (NSE = 0.71) and EXP2 (NSE = 0.68) showed 
a high accuracy in the SD simulations (Fig. 6a), especially in the Ili 
Valley and the intersection of the Eastern and Northern TS where the R 
value exceeded 0.7 (Fig. 5a and b), but a general underestimation ex-
isted (Fig. 5e and 5f). In contrast, the model simulations showed a re-
latively poor performance (NSE = 0.33 and 0.30 for EXP1 and EXP2, 
respectively) in the STS with a general overestimation. It was noted that 
larger RMSE and MB values of the SD simulations on a daily scale for 
the EXP1 and EXP2 were seen in the NTS than that in the STS (Fig. 5c 
and d). The large (over 5 cm/day) and small (below 2 cm/day) RMSE 
values prevailed in the NTS and STS, respectively. Additionally, the SD 
values with low accuracy and large overestimation were seen in the 
high-altitude regions. Similarly, the RMSE values exceeding 9 cm/day 

were found in the high-altitude regions. 

3.1.3. SWE and TWS 
The SWE measurement is performed once every five days in a few 

meteorological stations (listed in Table 1) when the daily snow depth is 
exceeds 5 cm. The daily SWE averaged from all stations was exhibited 
in Fig. 6b. The EXP1 (NSE = 0.69) performed a higher accuracy in the 
daily SWE simulation than that the EXP2 (NSE = 0.67) did, but both 
EXPs exhibited a positive bias (MB: 2.3 and 0.66 mm/day, respec-
tively). 

Most meteorological stations are located near the city, which re-
sulted in difficulties to prove the performance of the EXPs in the forest 
and high-altitude regions. Therefore, the daily SD and 5-day SWE from 
the TSSAR station, daily SD from TC and BYG station, and GRACE 
monthly TWS anomaly product were chosen to validate the simulation 
results (Fig. 4b and c-f). Both the SD and SWE from the EXPs exhibited a 
good shape with the observations (Fig. 6c-f), but a significant under-
estimation was seen in the SD and SWE simulation. The Taylor diagram 
indicated that the daily SD simulation in the forest regions in the EXP1 
showed a better performance than that in the EXP2 (Fig. 4b). We 
compared the TWS from the EXPs to the GRACE TWS so as to in-
vestigate the role of the SWE in the TWS budget (Fig. 6g). Compared 
with GRACE, the EXP1 and EXP2 showed an overestimation in the TWS 
during the cold season except for 2005/2006 and 2006/2007. Although 
the MB of the EXP1 was slightly higher than that of the EXP2 in the 
TWS (Table 6). Overall, the smaller RMSE and larger R and NSE in the 
TWS demonstrated that the EXP1 showed a better estimation of snow 
mass during the cold season in the TS. 

3.2. Spatial distribution of the SD and SWE 

The maximum and monthly mean SD and SWE during the cold 
season for the EXP1 and EXP2 were shown in Fig. 7. Both the EXP1 and 
EXP2 showed a similar spatial distribution of the snowpack during the 
cold season. The maximum SD (Fig. 7a and b) and monthly mean SD 
(Fig. 7c and 7d) values in the WTS and the high-altitude regions of the 
Ili Valley exceeded 100 cm and 60 cm, respectively, correspondingly, 

Table 5 
The mean bias of the temperature and precipitation averaged from all station in 
the TS and its sub-regions during the cold season.         

EXPs TS NTS STS WTS  

Daily T2 (°C/day) EXP1 −2.76 −1.81 −3.89 −2.76  
EXP2 −3.06 −1.86 −3.96 −3.06 

Monthly T2 (°C/month) EXP1 −2.78 −1.83 −3.92 −2.74  
EXP2 −2.93 −1.88 −4.00 −3.07 

Precipitation (mm/cold season) EXP1 −1.65 −4.27 0.64   
EXP2 −1.68 −4.29 0.63  

Fig. 3. The mean bias of the daily mean T2 (°C) (a and b) and total precipitation (mm) (c and d) during the cold season between the EXPs and the meteorological 
observations. 
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the peak SWE reached 300 mm (Fig. 7e and f) and 150 mm (Fig. 7g and 
h). In addition, the values of SD and SWE decreased from north to 
south, and from west to east. 

3.3. Differences of the LAI, FVEG and SWE between the EXP1 and EXP2 

In order to examine the impact of vegetation parameters on the 
snowpack simulation, the differences between the EXP1 and EXP2 in 
the mean LAI, FVEG, and SWE during the snow accumulation 
(November-January) and melting (February-March) season were shown 

Fig. 4. Taylor diagram comparing in-situ snow depth with WRF simulations. (a) Averaged snow depth from all stations in the TS, NTS, and STS on a daily and 
monthly time scales, and (b) daily SD at the forest region. Values closer to the reference point indicate a higher correlation and smaller differences in variances. 

Fig. 5. Spatial distribution of the correlation coefficients (a and b), root‐mean-square error (cm/day) (c and d) and mean bias (cm/day) (e and f) between the daily SD 
from the EXPs and the observed SD. 
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in Fig. 8. Both the mean LAI (m2/m2) (Fig. 8a and b) and FVEG (%) 
(Fig. 8c and d) during the snow accumulation and melting season in the 
EXP1-EXP2 exhibited a consistent underestimation. However, the un-
derestimation of LAI in the snow melted season (−0.017 m2/m2/ 
season) was larger than in the snow accumulated season (−0.008 m2/ 
m2/season). In addition, highly underestimated values prevailed in the 
WTS and the high-altitude regions of the Ili Valley. Significantly over-
estimated values were only sporadically noticed in the low-altitude 
regions. In contrast, the SWE difference displayed an opposite dis-
tribution. Compared with the SWE in the EXP2, the EXP1 demonstrated 
a significant overestimation during the cold season in the TS (Table 7). 
These significantly overestimated SWE values were concentrated in the 
WTS and the high-altitude regions of the Ili Valley (Fig. 8e and 8f). In 
addition, the magnitude of the overestimation in the melting season 
(−3.75 mm/season) was larger than that in the accumulation season 
(−1.94 mm/season). 

4. Discussion 

4.1. Impact of the vegetation parameters on the snow simulation 

The performance of the EXP1 and EXP2 in the TS indicated that 
accurate vegetation parameters could improve the estimation of the SD 
and SWE in the WRF/Noah-MP (Fig. 4 and Table 6). It has been re-
ported that a difference in vegetation parameters could cause a sig-
nificant variability in the snow process through the association with the 
snow surface energy and snow interception (Kumar et al., 2019; Todt 
et al., 2019). The impact of the vegetation on the snow mass depends on 
the vegetation density, climate type and meteorological conditions, 
which play a significant role in the vegetation temperature, atmo-
spheric shortwave and longwave through the whole snowmelt season 
(Pomeroy et al., 2009; Sicart et al., 2004). More dense vegetation ca-
nopy could increase the intercepted snowfall (Fig. 9c and d). The sub-
limation could reach up to 50% of the intercepted snowfall and reduce 
the ground snow mass (Martin et al., 2013; Zheng et al., 2019). Com-
pared with the EXP2, the widely significant underestimation of the LAI 
and FVEG in the EXP1 (Fig. 8a–d) could enhance the snow surface re-
flection and reduce the absorption of the solar radiation (Rutter et al., 
2009; Webster et al., 2016), which caused a significant albedo increase 
(Table 7, Fig. 9e and f). 

The difference in the monthly mean SWE (Fig. 8e) during the snow 
accumulation period was mainly caused by the difference in intercepted 
snowfall (Fig. 9c) and precipitation (Fig. 9a). The overestimation of the 

Fig. 6. Comparison of time series observations and simulations of the daily SD (a) and SWE (b) averaged from all station, the daily SD averaged from stations in the 
NTS (c) and STS (d), the daily SD (e) and SWE (f) at TSSAR station, and the daily SD at TC (g) and BYG (h) station. (j) Comparison of the TWS anomaly between 
GRACE and the simulations. 

Table 6 
The correlation coefficient, root‐mean‐square error (mm/month) and mean bias 
(mm/month) of the monthly TWS anomaly and GRACE monthly TWS anomaly 
during the cold season in the TS for the EXP1 and EXP2.         

R RMSE (mm/month) MB (mm/month) NSE   

EXP1  0.43**  56.2  0.45 −0.19  
EXP2  0.40**  56.7  0.43 −0.21  

** Significant on the 0.01 level.  
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precipitation and more intercepted snowfall during the snow accumu-
lation period indicated more snow in the ground in EXP1 than that in 
EXP2 (Table 7). More vegetation in the plain of WTS (Fig. 8a) could 
induce the evapotranspiration enhancement to increase the atmo-
spheric water vapor content, which was beneficial to enhance the cloud 
cover and increase precipitation in the mountainous regions by the 
large-scale moisture transport (Piao et al., 2020; Teuling et al., 2017). 
In addition, the enhanced cloud cover could cause an overestimation of 
the net longwave radiation (Forsythe et al., 2015; Pritchard et al., 
2019), and enhanced the ground heat flux and T2 (Table 7). Mean-
while, turbulent mixing between the snow surface and the vegetation 
canopy could be suppressed by the dense canopy to act as a sink for cold 
air (Marks et al., 2008; Varhola et al., 2010), bringing about a lower T2 
(Link and Marks, 1999; Webster et al., 2016). The aboved reasons may 
contribute to the higher T2 in the EXP1 than that in EXP2 during the 
snow accumulation period (Fig. 9g). However, the temperature was 

significantly lower than the melting point, indicating that the over-
estimation of the T2 could not result in significant snowmelt changes 
(Fig. 9i). 

During the snow melting period, the energy of snowmelt under the 
canopy mainly originates from the longwave radiation emitted from the 
vegetation canopy due to the vegetation reflection and absorption for 
the shortwave radiation (Pomeroy et al., 2009; Sicart et al., 2004). The 
significant underestimation of the LAI indicated a lower vegetation 
emission in the EXP1 (Eq. (3)). Consequently, a significantly reduced 
energy release from the vegetation was noticeable and resulted in a 
small probability of snowmelt during the melting period (Ma et al., 
2019). Lower LAI regions, such as the Ili Valley and WTS (Fig. 8a), 
emitted less longwave radiation to the surface ground and decreased 
the sensible heat flux (Table 7), which could reduce the net longwave 
radiation at the surface ground and lead to a lower near-surface tem-
perature (Fig. 9h). In addition, the overestimated precipitation during 

Fig. 7. Climatology (2005–2015) of maximum SD (a and b), monthly mean SD (c and d), peak SWE (e and f), and monthly mean SWE (g and h) in the cold season for 
the EXP1 and EXP2. 
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the cold season (Fig. 9a and b) also caused an overestimation of the 
SWE in both the WTS and high-altitude regions of the Ili Valley during 
the snow ablation period, which contributed to an increase in reflection 
of the incoming shortwave radiation and amplified the generally cold 
bias in the snow ablation period (Pritchard et al., 2019). Consequently, 
a lower air temperature tended to a low snowmelt rate (Fig. 9h), de-
creasing the amount of melted snow and maintaining more SWE (Fig. 8f 
and j), vice versa. Other studies also demonstrated that improving the 
related vegetation schemes and parameters could better estimate the 
snow under the canopy environment in the LSMs (Kumar et al., 2019; 
Ma et al., 2019; Todt et al., 2019). For example, the assimilation of LAI 
into Noah-MP model contributed to the increase in snow mass by im-
proving the dry bias over the continental United States (Kumar et al., 
2019). An improving vegetation emissivity scheme in the Community 
Land Model (CLM) exhibited a better performance in snow simulation 
through the stronger longwave radiation and less interception loss in 
low and medium canopy density regions (Ma et al., 2019). Additionally, 
the corrected sub-canopy in the longwave radiation scheme in the CLM 
could reduce the sub-canopy longwave radiation and delay the snow-
melt in the Northern Hemisphere (Todt et al., 2019). The diverse ca-
nopy structure descriptions in the Flexible Snow Model (FSM2) could 
capture the small-scale forest snow pattern and prevent overly rapid 
snowmelt during the melting season (Mazzotti et al., 2020). 

4.2. Limitations of the model and forcing data 

An accurate estimation of the solid precipitation directly decides on 
the accuracy of the SD and SWE (Jennings et al., 2018). In the most 
LSMs and hydrological models, the near-surface air temperature 
threshold method has been widely applied to distinguish the snowfall 
and rainfall from the precipitation, but it brings about underestimated 
snowfall in the dry regions (Li et al., 2018a; Wang et al., 2019). In 
addition, the accuracy of the forcing data plays a significant role in 
precipitation and temperature simualtions (Ma et al., 2019). Compared 
with the meteorological observations, the WRF exhibited a significant 
overestimation and underestimation in the precipitation at the high and 
low-altitude regions, respectively, and with a general cold bias in 
temperature (Fig. 3). Since the inherent performance of the forcing data 
and the underestimation of measured precipitation from the meteor-
ological observations, the overestimated precipitation in the alpine 
region may be aggravated (Bonekamp et al., 2018). The snowdrift, 
snow sublimation and undercatch of snowfall in the pluviometer may 
contribute to the overestimated precipitation in high-altitude regions 
during the cold season (Liu et al., 2018; Ye et al., 2005). Moreover, 
previous studies indicated that the precipitation of ERA-Interim had a 
significant overestimation in the mountainous area with a widely cold 
bias (Hu et al., 2016, 2014; Liu et al., 2018). The results of the WRF 

Fig. 8. Differences (EXP1-EXP2) in LAI (a and b), FVEG (c and d) and monthly mean SWE (e and f) between the EXP1 and EXP2 during the cold season (the left side is 
the snow accumulation season, the right side demonstrates the snow melting season). The black dots in Fig. 8 indicate that the differences are significant (Student’s t- 
test: significance level 0.05). 
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downscaling demonstrated a similar pattern in the TS using the ERA- 
Interim dataset as forcing data (Chen et al., 2019; Qiu et al., 2017). The 
solid precipitation is highly sensitive to the cloud microphysics on a 
complex terrain (Liu et al., 2011). The relatively sophisticated cloud 
microphysics’ scheme, such as the Thompson microphysics’ scheme, 
exhibited a relatively high performance in snowfall simulation in the 
mountainous area (Fernández-González et al., 2015; Norris et al., 
2015). The WSM6 microphysics’ scheme could save computing re-
sources, but also resulted in a large uncertainty in snowfall estimation 
(Yu, 2013). Additionally, the higher spatial resolution could contribute 
to a more plausible amount and pattern of precipitation in the moun-
tainous area (Bonekamp et al., 2018), but the EXPs with a 9 km re-
solution has a limited ability to capture the feature of precipitation in 
the micro-scale regions, especially in the alpine area. 

The snow simulation in the Noah-MP is also highly sensitive to the 
parameterization schemes, especially in the snow melting period (You 
et al., 2020b). The fresh snow density in the WRF/Noah-MP was much 
higher than that observed in the TS (minimum 40 kg/m3) (Chen et al., 
2011). The overestimation of fresh snow density and underestimation 
of precipitation could underestimate SD in the low-altitude regions of 
the TS (Fig. 5e and 5f). The land data assimilation system and global 
reanalyses’ product almost showed a consistent underestimation of the 
SWE due to the predicted larger melting of the SWE at nearly freezing 
temperatures (Broxton et al., 2016). However, the overestimated pre-
cipitation and the cold bias caused generally overestimated SWE in the 
high-altitude TS regions. This was coherent with the performance of the 
global SWE product in high mountain Asia (Bian et al., 2019). 

4.3. Uncertainties and future research 

The LC type determined the vegetation parameters in the default 
options of the WRF/Noah-MP, significantly affecting the land surface 
energy exchange and precipitation (Cao et al., 2019; Woldemichael 
et al., 2012). Although the EXP1 updated LC, the conversion from the 
CCI-LC into the USGS-LC category also brought uncertainty in climate 
simulation due to the mapping error of the different classification 
strategies and methods, interpolation, and user criteria (Di Vittorio 
et al., 2018; Gómez et al., 2016). The generally underestimated LAI in 
the arid and semi-arid areas during the cold season might affect the 

snow accumulation and ablation in the LSMs (Fang et al., 2019; Wang 
et al., 2016). In addition, the measured errors of in-situ observation due 
to the constant human disruption such as urban encroachment, sensor 
upgrade, and station relocation could lead to the bias in model eva-
luation (Feng et al., 2004; Fiebrich et al., 2010). A point-scale in-situ 
observation could not fully represent the characteristics of snowpack 
dynamic compared with a gird from simulations (81 km2), especially in 
complex topography, due to spatial heterogeneity (Kumar et al., 2019). 
The GRACE TWS product was used to evaluate the TWS anomalies 
caused by the snow accumulation or ablation in the TS, and the TWS 
from the EXP1 and EXP2 demonstrated a slight overestimation (Fig. 6g 
and Table 6). However, the TWS anomalies during the cold season did 
not represent all changes in SWE, because the variations of water mass 
in soil, glacier, groundwater, lakes and reservoirs were also included in 
the GRACE measurements (Wrzesien et al., 2018). Moreover, the ac-
curacy of GRACE is also influenced by the gain factors and spatial re-
solution (Landerer and Swenson, 2012). It is noted that the perfor-
mance of the WRF/Noah-MP exhibited a big uncertainty in the high- 
altitude regions and WTS where the lack of sufficient meteorological 
observations resulted in difficulties to assess the snow simulation. 

Since previous studies illustrated that the light-absorbing im-
purities, such as dust and black carbon deposit on the snowpack, in-
creased the absorption of the shortwave radiation and enhanced the 
snowmelt rate (Skiles et al., 2018; Zhang et al., 2018). Most RCM LSMs 
neglect this process, which might cause overestimated SWE and a cold 
bias, particularly in the high-altitude areas. The role of wind compac-
tion and blowing snow also should be considered in the RCM LSMs, 
which could cause the large snow density and redistribution of snow-
pack (Fang and Pomeroy, 2009; Jafarov et al., 2014). The accurate 
forcing data could reduce the bias in snow simulation in the RCM LSMs 
(Liu et al., 2019; Terzago et al., 2020), but the WRF model downscaling 
with the ERA-Interim data has a large deviation in this study (Fig. 5). 
Recently, representing the new generation of the ERA-Interim re-
analysis dataset, the ERA5 has proven to reduce the bias of precipita-
tion and temperature and shows more potential for hydrological ap-
plications (Albergel et al., 2018; Nogueira, 2020). Additionally, both 
the integration of remote sensing albedo products and a more advanced 
albedo scheme could be applied to decrease the cold bias and improve 
the performance of the snow process in the LSMs (Kumar et al., 2020; 
Meng et al., 2018; Wang et al., 2020). Therefore, further research is also 
required to consider the ERA5 as the initial and lateral boundary con-
ditions and to assimilate the real-time albedo product for the WRF/ 
Noah-MP. 

5. Conclusions 

This study investigated the impact of the vegetation parameters on 
the snow simulation in the Tianshan Mountains from 2005 to 2015 
through real-time updated remotely sensed leaf area index, green ve-
getation fraction, and land cover products in the WRF/Noah-MP. Two 
experiments were conducted including EXP1 with the updated real-time 
remote sensed data and EXP2 with the default parameter data from the 
WRF/Noah-MP. Main findings of the study include the following :  

1. The peak snow depth (over 100 cm) and snow water equivalent 
(over 300 mm) values were observed in the Western Tianshan 
Mountains and high-altitude regions of the Ili Valley. In addition, 
the snow mass values were significantly larger in the northern slope 
than that in the southern slope, and the values in western part were 
larger than that in the eastern part.  

2. Both the snow depth and snow water equivalent of the EXP1 and 
EXP2 showed a general underestimation in the low-altitude regions 
of the northern slope of the Tianshan Mountains, but an over-
estimation was found in the high-altitude regions. 

3. More realistic vegetation parameters could improve the perfor-
mance of the snow simulation, especially in the forest regions. The 

Table 7 
Differences of the LAI, FVEG, surface climate and energy balance parameters 
between the EXP1 and EXP2 during the cold season.     

Variables Accumulation season 
(November-January) 

Melting season 
(February-March)  

LAI (m2/m2) −0.08** −0.17** 
FVEG (%) −13.39** −12.94** 
Ground surface albedo (%) 2.41** 2.37** 
Downward longwave 

radiation (W/m2) 
0.32 −1.16** 

Outgoing longwave radiation 
(W/m2) 

−0.28 −0.05 

Downward shortwave 
radiation (W/m2) 

−0.24 0.56** 

Ground heat flux (W/m2) 0.09* −0.14 
Latent heat flux (W/m2) −0.02 −0.11 
Sensible heat flux (W/m2) −2.31** −3.53** 
Net longwave radiation (W/ 

m2) 
0.08 0.45** 

Ground temperature (°C) 0.04** −0.16 
T2 (°C) 0.14 −0.09 
Melted snow (mm) −0.09 −1.29** 
Canopy water (mm) −0.09** −0.06** 
Mean SWE (mm) 1.94** 3.75* 
Precipitation (mm) 2.55 −0.12 

** and * represent significant values on the 0.05 and 0.1 level, respectively 
(Student’s t-test). Net longwave radiation is defined as the surface ground po-
sitive towards the atmosphere.  
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Fig. 9. Differences (EXP1-EXP2) in precipitation (a and b), canopy water (c and d), ground surface albedo (e and f), T2 (g and h) and melted snow (i and j) between 
the EXP1 and EXP2 during the cold season (the left side shows the snow accumulation season, the right side represents the snow melting season). The black dots in  
Fig. 9 indicate that the differences are significant (Student’s t-test: significance level 0.05). 
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integrated remote sensing vegetation parameter products caused an 
increased albedo and less snow interception, particularly in the 
snow ablation period, and less vegetation density could reduce the 
longwave radiation emitted from the canopy at the surface, causing 
the lower near-surface temperature and slower snowmelt rate. Less 
intercepted snowfall and melted snow contributed to more snow 
mass on the ground, such as in the Western Tianshan Mountains and 
the high-altitude regions of the Ili Valley. 
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