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Abstract: In spectral-spatial classification of hyperspectral image tasks, the performance of
conventional morphological profiles (MPs) that use a sequence of structural elements (SEs) with
predefined sizes and shapes could be limited by mismatching all the sizes and shapes of real-world
objects in an image. To overcome such limitation, this paper proposes the use of object-guided
morphological profiles (OMPs) by adopting multiresolution segmentation (MRS)-based objects as
SEs for morphological closing and opening by geodesic reconstruction. Additionally, the ExtraTrees,
bagging, adaptive boosting (AdaBoost), and MultiBoost ensemble versions of the extremely
randomized decision trees (ERDTs) are introduced and comparatively investigated for spectral-spatial
classification of hyperspectral images. Two hyperspectral benchmark images are used to validate
the proposed approaches in terms of classification accuracy. The experimental results confirm the
effectiveness of the proposed spatial feature extractors and ensemble classifiers.

Keywords: MPs; OMPs; ERDT ensemble of ERDTs (EERDTs); ExtraTrees; multiresolution
segmentation (MRS); hyperspectral; spectral-spatial classification

1. Introduction

Due to the technical evolution of optical remote sensors over the last few decades, now the
remote sensing (RS) community can obtain diverse data sets with rich spatial, spectral and temporal
information. In particular, hyperspectral sensors can provide detailed spectral information with
hundreds of spectral wavelengths and can increase the possibility of more accurately discriminating
materials of interest. Furthermore, the high (5.0 m ≤ spatial resolution ≤ 10.0 m) and very high (spatial
resolution < 5.0 m) spatial resolution (HR, VHR) of some of these sensors enables the analysis of small
spatial structures with unprecedented detail. However, the high dimensionality of hyperspectral
images may lead to the Hughes phenomenon, in which the classification accuracy will be downgraded
in case of the limited number of training samples and the classification method is not capable of
handling high-dimensional data [1]. Additionally, while HR and VHR data solve the problem of
being able to “see” structure objects and elements, they do not help in focusing on the extraction
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procedure [2]. Therefore, solutions of spectral dimensionality reduction via feature selection (FS)
and feature extraction (FE), and design of specific spectral-spatial classifiers have been identified for
hyperspectral image classification in recent years [3,4].

In contrast with the works of using supervised, semi-supervised and unsupervised FS and FE
methods for hyperspectral dimensionality reduction, the design of specific spectral-spatial classifiers
has gained more interest from the fields of HR/VHR hyperspectral image processing. Especially
when considering improvements on classification accuracy brought by spatial features. Hence, spatial
contextual information has been widely incorporated into advanced machine learning (ML)-based
classifiers such as support vector machines (SVMs) [5], extreme learning machines (ELMs) [6],
ensemble learning methods such as AdaBoost [7], random forests (RaF) and rotation forests (RoF) [8,9],
ExtraTrees [10], XGBoost [11], and deep neural networks (DNNs) [12], for multispectral, hyperspectral
and full polarimetric synthetic aperture radar (PolSAR) image classification.

According to their underlying model, spatial contextual information extraction approaches can
be categorized into: (1) structural filter-based spatial processing methods using a fixed or adaptive
structural element, such as edge-preserving filtering [13], local harmonic analysis [14–16], adaptive
multidimensional Wiener filtering [17,18] and superpixel based filtering [19]; (2) random field models
using a crisp neighborhood system, such as Markov random fields (MRF) [20,21], conditional random
fields (CRF) [22] and discriminative random fields (DRF) [23]; (3) mathematical morphology (MM)-based
approaches, such as morphological profiles (MPs) and extended MPs (EMPs) [24], object based MPs
(OMPs) [25], attribute profiles (APs) [26], MPs with partial reconstruction (MPPR) [27], maximally stable
extreme region guided MPs (MSER_MPs) [10] and its extended version EMSER_MPs [11]; (4) those
based on image segmentation techniques [21,28,29]; (5) sparse representation based classification [30,31];
and (6) deep learning (DL)-based approaches [11,32–34]. Among these, MM-based approaches are
likely the most widely used methods in the last ten years in the context of HR/VHR hyperspectral
image processing [3,10,11,27].

Indeed, the advantages of MPs, EMPs, APs and MPPR in extracting spatial information from
HR/VHR imagery has been clearly reported in many studies. However, being connected filters,
they have the following limitations: (1) structural elements (SEs) with user-specified shape and size
are inefficient for objects with diverse characteristics such as size, shape and homogeneity; (2) attribute
filters (AFs) still suffer from the problem of leakage; and (3) limited numbers of SEs with specified
sizes and shapes are unable to perfectly match all the sizes and shapes of the objects in a given
image [3,10,27,35].

Inspired by the works in [25] and our previous work of [35], we adopt multiresolution segmentation
(MRS)-based objects [36] as SEs for MPs extraction as an alternative solution. In particular, the original
image is first segmented with the MRS technique as we demonstrated in [35]; in this procedure,
multiscale values are provided for the purpose of multiscale spatial information extraction. Then,
multiscale objects are exploited to extract OMPs by means of the basic principle of MM. Moreover,
to avoid possible side effects from unusual minimum or maximum pixel values within objects,
the OMPsM approach that contains additional mean pixel values within regions is proposed.
Additionally, extended OMPs (EOMPs) and extended OMPsM (EOMPsM) are proposed by applying
OMPs on the first three components after a principal component analysis (PCA) transformation
executed on the spectral data. In contrast with OMPs in [25], we adopt MRS instead of arbitrary
segmentation algorithm (ASA) for the image segmentation process, and shape and context features of
objects are not considered in our MRS object-guided MPs. In contrast with our previous work in [35],
object profiles such as roundness, compactness, rectangularity, density, asymmetry, border index, shape
index, elliptic fit, minimum, maximum and standard deviation vales are not considered as well. At last,
both works in [35] and [25] were conducted on multispectral imageries.

Following the quality of input features and a big enough set of training samples, the classifier
robustness is the third component that affects the classification performance [8,37]. The extremely
randomized decision tree (ERDT), a new tree induction algorithm that selects both attribute and
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cut-point splits, either totally or partially performed at random, and the ExtraTrees ensemble version
were proposed for use in both classification and regression problems [38]. In our previous work,
ERDT and ExtraTrees were investigated for their ability to classify three VHR multispectral images
acquired over urban areas, and compared against decision tree (DT, C4.5), bagging, RaF, SVM and RoF
in terms of classification accuracy and computational efficiency [10]. However, the performance of
other ensemble versions (e.g., bagging, AdaBoost and MultiBoost) of ERDT for RS, particularly for
hyperspectral image classification tasks using OMP and OMPsM features, has not yet been investigated.
Hence, another contribution of this letter is to introduce and investigate the performance of bagging,
AdaBoost and MultiBoost versions of ERDT in a hyperspectral image classification task.

2. Methods

2.1. Object-Guided MPs

Generally, morphological operators act on the values of the pixels by considering the neighborhood
of the pixels determined by an SE with a predefined size and shape, based on two basic operators:
dilation and erosion. In grayscale morphological reconstruction, two images and one SE are involved.
One image, the marker f, contains the starting points for the transformation, while the other image,
the mask g, constrains the transformation. According to the definitions from MM, morphological
opening by reconstruction (OBR) of grayscale images can be obtained by first eroding (returning
the minimum values of f contained in the specified SE) the input image and using it as a marker,
while closing by reconstruction (CBR) can be obtained by complementing the marker image f, obtaining
the OBR, and complementing the subsequent procedure [10,11,24,34,35]. In general, the object-guided
morphological OBR can be obtained by first eroding the input image using segmented objects (where
JλS represent the numbers (S) of objects from MRS procedure with scale λ) in the SE approach and by
using the result as a marker in geodesic reconstruction by a dilation phase [35]:

OObj
R ( f ) = RD

f

[
( f � (∃Jλi∈S ∈ JλS ))

]
(1)

Similarly, we have
CObj

R ( f ) = RE
f

[
( f ⊕ (∃Jλi∈S ∈ JλS ))

]
(2)

where the object-guided CBR, obtained by complementing the image, contains the object-guided OBR
(OOBR) using ∃J′i∗ ∈ J′∗ as SEs and complements the resulting procedure:

CObj
R ( f ) = RDC

f

[
( fC � (∃Jλi∈S ∈ JλS ))

]
(3)

In MM, the erosion of f by b at any location (x, y) is defined as the minimum value of all the pixels
in its neighborhood defined by b (∃Jλi∈S ∈ JλS in our case). In contrast, dilation returns the maximum
value of the image in the window outlined by b. Then, the erosion and dilation operators can be
defined as follows: [

f � (∃Jλi∈S ∈ JλS )
]
(x, y) = min

(s,t)∈JλS

{
f (x + s, y + t)

}
[

f ⊕ (∃Jλi∈S ∈ JλS )
]
(x, y) = max

(s,t)∈JλS

{
f (x + s, y + t)

} (4)

Finally, if the structuring elements ∃Jλi∈S ∈ JλS are specified by objects, the OMPs of an image f can
be defined as:

OMPs( f ) =
[
OObj

R ( f ), f , CObj
R ( f )

]
(5)

To avoid possible side effects from unusual minimum or maximum pixel values within objects,
OMPsM are proposed by using extra mean pixel values that are contained within regions in an
object-oriented manner:

OMPsM( f ) = [OMPs( f ), OOmean( f )] (6)
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Although the use of MPs can help in creating an image feature set that has more discriminative
information, the redundancy is still evident in the feature set, particularly for hyperspectral images.
Therefore, feature extraction can be used to find the most important features first; then, morphological
operators are applied [24]. After PCA is applied to the original feature set, EOMPs and EOMPsM can
be obtained by applying the basic principles of OMPs and OMPsM described above to the first few
(typically three) features.

2.2. ExtraTrees

The ERDT approach is a new decision tree (DT) induction algorithm that selects attribute and
cut-point splits, either completely or partially at random, whereas the ExtraTrees algorithm is an
ensemble version of unpruned ERDT, which follows by introducing the random committee-based
ensemble criterion [38]. By comparing ExtraTrees with other DT-based ensemble methods such as
bagging, boosting and RaF, the main differences can be outlined: (1) this new algorithm splits nodes
by choosing cut points (which are responsible for a significant part of the error rates of tree-based
methods) fully at random in the tree induction phase, which makes the tree structures independent of
the target variable values of the learning samples, and (2) it uses the entire set of learning samples,
rather than a bootstrap replica sample (typically adopted by the other DT methods), to grow trees.

Let X = {xτ}lτ=1 denote a labeled training set with Y =
{
yτ

}l
τ=1 as the labels, K represents the

number of attributes randomly selected at each node, and η is the minimum sample size for splitting
a node. An ERDT can be built by following the steps described in Algorithm 1.

Algorithm 1 Algorithmic steps to build an extremely randomized decision tree (ERDT) [38].

1. Inputs: labeled training set X, K and η.
2. Build_ERDT(X, Y, K, η) as follows:

(1) Return a leaf labeled by class frequencies in X if (1) |Xl| < η or (2) all candidate attributes are
constant in X, or (3) the output variable is constant in X.

(2) Otherwise:

3. Randomly select K attributes {a1, . . . , aK}without replacement among all candidates attributes;
4. Generate K splits {s1, . . . , sK}|si = [a < ac],∀i = 1, . . . , K, where a is numerical attribute and ac is a

cut-point uniformly drawn from
[
aX

min, aX
max

]
, which denote the minimal and maximal values of a in

X, respectively;
5. Select a split s∗ = max

i=1,...,K
{si, X};

6. Split X into subsets Xl and Xr according to s∗;
7. Build single ERDT tERDT

f and tERDT
r from subsets Xl and Xr, respectively;

8. Create a node with the split s∗, and attach tERDT
f and tERDT

r as left and right subtrees of this node;

9. Output: return the final resulting tERDT.

Thereafter, the ExtraTrees ensemble algorithm can be built exploiting the random committee
ensemble learning (EL) criterion, i.e., an ensemble of randomizable base classifiers is built using a
different random number seed, and the final prediction is the average of the predictions generated
by the individual base classifiers [10,38]. Similarly, bagging, AdaBoost and MultiBoost versions of
ERDT can be realized following the corresponding ensemble construction criteria. Bagging, also called
bootstrap aggregating, trains each model in the ensemble using a randomly drawn subset of the
training set, and then votes with equal weight [39]. AdaBoost, an abbreviation for adaptive boosting,
incrementally builds an ensemble in the sense that subsequent weak learners are tweaked in favor of
those instances misclassified by previous classifiers [40]. MultiBoost can be viewed as a combination
of AdaBoost with bagging, which can harness both AdaBoost’s bias and variance reduction with
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bagging’s superior variance reduction to produce a committee with lower error, also offering, as an
advantage over AdaBoost, the suitability to parallel execution [41].

3. Data Sets

The first hyperspectral image was acquired by the Reflective Optics System Imaging Spectrometer
(ROSIS) optical sensor, which provides 115 bands with a spectral range coverage ranging from 0.43 µm
to 0.86 µm. The main objective of the ROSIS project is the detection of spectral fine structures especially
in coastal waters. This task determined the selection of the spectral range, bandwidth, number of
channels, radiometric resolution and its tilt capability for sun glint avoidance. However, ROSIS can
be used just as well for the monitoring of spectral features above land or within the atmosphere.
The image shown in Figure 1a depicts the Engineering School of Pavia University (Pavia, Italy) with
the geometric resolution of 1.3 m. The image has 610 × 340 pixels with 103 spectral channels, where 12
very noisy bands were discarded manually after the data acquisition. The validation data refer to nine
land cover classes (as shown in Figure 1). This scene was provided by Professor Paolo Gamba from the
Telecommunications and Remote Sensing Laboratory, Pavia University (Pavia, Italy).
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Figure 1. Pavia University data set: (a) color composite of the scene; (b) training set; (c) test set.

The second hyperspectral image was acquired at a spatial resolution of 2.5 m by the National
Science Foundation (NSF) -funded Center for Airborne Laser Mapping (NCALM) over the University
of Houston campus and the neighboring urban area, on 23 June 2012 (Figure 2). The 15 classes of
interest selected by the Institute of Electrical and Electronics Engineers Geoscience and Remote Sensing
Society (IEEE GRSS) Image Analysis and Data Fusion Technical Committee for organizing the 2013 Data
Fusion Contest (DFC) are reported for both the training and validation sets [42]. Originally, this image
has 349 × 1905 pixels with 144 spectral bands in the spectral range between 380 and 1050 nm. In our
experiment, dense cloud-covered area at the right part and total of nine blank pixel lines at the upper
and lower image edges were removed, which result in subset image with the size of 340 × 1350 pixels.
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Figure 2. GRSS-DFC2013 data set: (a) color composite of the scene; (b) training set; (c) test set.

4. Results

4.1. Experimental Configuration

The free parameters of ERDT, where K represents the number of the attributes set, are the same
as the default for the C4.5 algorithm used in bagging and RaF. The overall accuracy (OA) and kappa
statistic are used to evaluate the classification performances of these methods. In the case of multiclass
classification, OA is usually calculated by dividing the sum of diagonal numbers, which represent
correctly classified instances, by the total number of reference instances in the confusion matrix:

OA =

N∑
i

Tpi

N∑
i

Tni

(7)

where Tpi represents numbers of the correctly classified instances for class i, Tni represents the total
number of instances from class i, and there are a total of N classes.

To generate MPs and MPPR, we apply a disk shape SE with n = 10 openings and closings
by conventional and partial reconstructions, ranging from one to ten with a step-size increment of
one. This choice results in a total of 2163 = 103 + 103 × 10 × 2 and 3024 = 144 + 144 × 10 × 2
dimensional stacked data sets using original spectral bands and a total of 70 = 10 + 3 × 10 × 2 and
67 = 7 + 3 × 10 × 2 dimensional stacked data sets using PCA-transformed features, for Pavia University
and GRSS-DFC2013, respectively. Note that only the first ten and seven PCA-transformed features
from Pavia University and GRSS-DFC2013, respectively, are considered in the experiments. For fair
comparison purposes, we set a total of ten scales for MRS in the image segmentation phase. For instance,
the scale parameter is increased from 10 to 55 by a step-size of five to produce a total of 10 scale
segmentation results. The segmentation result, which is crucial for guiding MPs, typically relies on the
scale parameters that are highly dependent on the spatial resolution and geometrical complexity of the
image under consideration. Hence, in the next experiment, we examine the performance of OMPs,
OMPsM, EOMPs and EOMPsM with different scale sets. Note that OMPsM and EOMPsM also contain
the mean pixel values within objects that produce 3193 = 103 + 103 × 10 × 3, 4464 = 144 + 144 × 10 × 3,
100 = 10 + 3 × 10 × 3 and 97 = 7 + 3 × 10 × 3 dimensional stacked data sets using the original spectral
bands and PCA-transformed features for Pavia University and GRSS-DFC2013, respectively.

4.2. Results and Analysis

Figure 3 shows the examples of OBR, opening by partial reconstruction (OBPR), and the proposed
OOBR with different parameter sets using the second principal component of the Pavia University data.
The range of disk shape SEs in OBR and OBPR were set between 6 to 10, while the scale parameters of
MRS and OOBR were set between 60 to 100 empirically. A comparison of the results in the first row
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indicates that OBPR is more capable of modeling the attributes of different objects than OBR from a
sequence of SEs, in accordance with the finding in [12]. However, many large objects and boundaries
between different objects that should have appeared were removed at a very small scale after OBPR.
In contrast, OOBR maintains the object information between boundaries exactly as in the original by
affecting only the brightness or darkness of the objects with different scale parameters. In other words,
effects from the scale parameter of OOBR are much smaller than effects from the scale of OBPR.
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In Figure 4, we present the results for various spatial feature extractors with different parameter
sets using an SVM with an radial bias function (RBF) kernel to evaluate the performance of EOMPs
and EOMPsM on the considered data sets. A total of 10 rounds were executed for each experiment for
the purpose of an objective evaluation.
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Figure 4. Mean overall accuracy (OA) values versus different sizes of structural elements (SEs)
and segmentation scale sets in morphological profiles (MPs), morphological profiles with partial
reconstruction (MPPR), extended object-guided morphological profiles (EOMPs) and EOMPs with
mean values (EOMPsM) on raw spectral (a,b,e,f) and principal component analysis (PCA)-transformed
(c,d,g,h) features from Reflective Optics System Imaging Spectrometer (ROSIS) university (row 1) and
GRSS-DFC2013 (row 2) data sets using an support vector machine (SVM).
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The graphs confirm the superiority of the proposed feature extraction methods in contrast to
MPs and MPPR, specifically with the best improvements obtained by EOMPsM, and this is valid for
both data sets (Figure 4c,d,g,h). However, the effects of the segmentation scale parameter in MRS
are different for the considered data sets using the original spectral and the PCA-transferred features.
For instance, the best OA curves are achieved by OMPs using the original spectral bands of ROSIS
university data with the MRS scale ranges set as 40 to 400 with 40 sequence steps (see Figure 4a).
In contrast, the best OA curves are achieved by OMPsM using the original spectral bands with the
MRS scale range set from 310 to 400, with 10 sequence steps (see Figure 4b).

Interestingly, the superiority of the larger scale set relative to the smaller one is no longer true when
using the original spectral features, because some noise corrupted bands mislead partial reconstruction
in MPs and MPPR and the image segmentation procedures in OMPs and OMPsM (see Figure 4a,b,e,f).
Additionally, EOMPsM with a larger scale set could limit and even degrade the classification accuracy,
whereas a single mean value was assigned to different targets contained in single large segmented
objects (see Figure 4c,d,g,h). Summarizing these results, OMPs and EOMPs are more suitable to
accommodate the original spectral and PCA-transformed features for a larger MRS scale range set
with a larger sequence step, while OMPsM and EOMPsM are more suitable for a larger MRS scale
range but with a smaller sequence step.

Figure 5 shows the OA values with respect to the number of trees in bagging, RaF and ExtraTrees,
and with respect to the number of iterations in AdaBoost and MultiBoostAB ensemble classifiers.
According to these graphs, there are no prominent improvements or decreasing trends for a tree
size greater than 100 in most of the cases, a result consistent with the findings in other studies [8,10].
Moreover, it is clear that the bagging ensemble of ERDT (Bag(ERDT)) is uniformly better than the
bagging ensemble of the conventional C4.5 approach (Bag(C4.5)) in all classification scenarios in terms
of classification accuracy. Instead, the performance of the MultiBoostAB and AdaBoost ensemble of
ERDT (MB(ERDT) and AB(ERDT)) are not constantly superior to the MultiBoostAB and AdaBoost
ensemble of C4.5 (MB(C4.5) and (C4.5)) using different features on the two data sets. Specifically,
MB(C4.5) and AB(C4.5) show better OA values than MB(ERDT) and (ERDT) using MPs and MPPR but
show lower OA values using OMPs features for considered data sets, and similar OA values shown
by using OMPsM features of Pavia University data set but lower values by using OMPsM features
from the GRSS-DFC2013 data set. MB(ERDT) and AB(ERDT) show better results using OMPs and
OMPsM features but lower results using MPs and MPPR features, which can be explained by the fact
that: (1) fewer, but harder to be correctly classified, instances are those focused on by the MultiBoostAB
and AdaBoost criteria, which could further weaken ERDT and lead to an overly abundant diversity
that hindered the construction of an improved ensemble scenario, (2) however, this shortage could be
overcome by exploiting advanced discriminative features. Other solutions for this limitation could
be either (1) early stopping of the ensemble or (2) critical tuning of the parameters of ERDT in each
iteration step.

Finally, Figures 6 and 7 present the best classification maps corresponding to the highlighted
values in Tables 1 and 2, with OA and the kappa statistics for MPs, MPPR, OMPs and OMPsM features
extracted from the original raw bands or the PCA-transformed features.
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Once again, all classifiers uniformly and clearly confirm the effectiveness of the proposed MRS
OMPs over the conventional MPs and MPPR approaches. For instance, the best classification results,
with the highest OA (98.75%) and kappa statistic (0.98) values, were achieved by MultiBoost(C4.5)
using EOMPsM features on the ROSIS university data, and by AdaBoost(ERDT) using OMPsM features
on GRSS-DFC2013 data (OA = 96.59%, kappa statistic = 0.96). If we compare the ensemble versions
of ERDT, it is clear that ExtraTrees is better than Bag(C4.5) and is comparable to RaF(C4.5), and that
the best improvement in OA values is achieved by either AdaBoost or MultiBoost ensemble (see the
numbers in bold in Tables 1 and 2). Additionally, regarding EOMPs, the superiority of EOMPsM over
EMPs is clear, its performance is comparable to the one by EMPPR, or even better in some cases.
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Table 1. The best OA and kappa statistics for considered classifiers using MPs, MPPR, OMPs and OMPsM features from PCA-transformed features of Pavia University
data (F1: MPs, F2: MPPR; F3: OMPs; F4: OMPsM).

Ensemble Method Classifier Raw: +F1 +F2 +F3 +F4 PC10: +F1 +F2 +F3 +F4

None
C4.5 65.76,0.58 77.42,0.71 82.60,0.77 83.51,0.80 91.89,0.89 73.17,0.66 78.45,0.73 80.34,0.74 92.05,0.90 95.84,0.95

ERDT 64.66,0.57 79.61,0.74 81.72,0.76 83.62,0.79 91.74,0.89 62.42,0.54 71.83,0.65 73.39,0.66 90.15,0.87 95.06,0.94
SVM 80.49,0.76 87.31,0.84 87.24,0.83 96.26,0.95 92.24,0.90 81.51,0.77 84.61,0.80 83.79,0.79 91.49,0.89 91.13,0.89

Bagging C4.5 72.18,0.66 79.90,0.74 86.74,0.82 95.94,0.95 91.15,0.88 76.36,0.70 79.90,0.74 86.74,0.82 95.26,0.94 97.75,0.97
ERDT 71.42,0.65 84.63,0.80 88.74,0.85 87.76,0.84 95.01,0.93 78.56,0.73 80.97,0.76 82.42,0.77 95.95,0.95 98.43,0.98

AdaBoost
C4.5 74.18,0.68 92.44,0.90 88.94,0.86 93.80,0.92 91.41,0.89 76.99,0.71 92.21,0.90 87.93,0.84 94.48,0.93 98.66,0.98

ERDT 73.67,0.68 88.84,0.84 89.35,0.86 91.15,0.88 97.09,0.96 77.40,0.72 88.42,0.85 86.28,0.82 97.05,0.96 98.29,0.98

MultiBoost
C4.5 73.91,0.68 92.66,0.90 88.80,0.85 94.89,0.93 90.52,0.87 77.49,0.72 92.01,0.89 88.18,0.84 94.52,0.93 98.75,0.98

ERDT 72.79,0.66 88.15,0.84 89.97,0.87 90.56,0.87 94.22,0.92 77.63,0.72 83.96,0.79 84.92,0.80 96.71,0.96 98.51,0.98
Random Forest C4.5 71.08,0.64 85.65,0.81 87.88,0.84 90.93,0.88 92.94,0.91 76.31,0.70 82.83,0.78 85.06,0.80 94.29,0.92 97.66,0.97

ExtraTrees ERDT 72.70,0.66 86.58,0.82 84.09,0.79 88.54,0.85 94.96,0.93 76.09,0.70 85.23,0.81 84.60,0.80 95.24,0.94 97.80,0.96

Table 2. The best OA and kappa statistics for considered classifiers using MPs, MPPR, OMPs and OMPsM features from PCA-transformed features of GRSS-DFC2013
data (F1: MPs, F2: MPPR; F3: OMPs; F4: OMPsM).

Ensemble Method Classifier Raw: +F1 +F2 +F3 +F4 PC10: +F1 +F2 +F3 +F4

None
C4.5 80.07,0.78 88.93,0.88 88.48,0.87 89.76,0.89 91.43,0.91 83.51,0.82 86.54,0.85 83.97,0.83 88.64,0.88 91.59,0.91

ERDT 78.74,0.77 88.35,0.87 85.27,0.84 89.07,0.88 92.39,0.92 81.40,0.80 86.98,0.86 83.90,0.82 88.16,0.87 89.41,0.88
SVM 90.19,0.89 94.19,0.94 90.42,0.90 93.13,0.93 96.46,0.96 89.72,0.89 93.61,0.93 91.42,0.91 93.51,0.93 95.18,0.95

Bagging C4.5 84.90,0.84 90.73,0.90 79.44,0.78 90.87,0.90 94.06,0.94 86.59,0.85 90.26,0.89 85.98,0.85 94.18,0.94 96.30,0.96
ERDT 86.24,0.85 93.50,0.93 92.06,0.91 92.59,0.92 94.71,0.94 89.78,0.89 90.90,0.90 91.75,0.91 93.91,0.93 96.13,0.96

AdaBoost
C4.5 85.94,0.85 91.44,0.91 89.78,0.89 92.75,0.92 94.04,0.93 88.36,0.87 91.72,0.91 91.54,0.91 91.91,0.91 94.61,0.94

ERDT 86.50,0.85 94.29,0.94 92.64,0.92 92.91,0.92 94.80,0.94 89.41,0.88 90.81,0.90 92.03,0.91 94.42,0.94 96.59,0.96

MultiBoost
C4.5 86.16,0.85 91.54,0.91 89.73,0.89 92.65,0.92 94.34,0.93 88.45,0.87 91.98,0.91 91.27,0.90 93.77,0.93 96.06,0.96

ERDT 86.58,0.85 93.68,0.93 91.78,0.91 93.05,0.92 94.86,0.94 90.23,0.89 91.87,0.91 91.99,0.91 93.98,0.93 95.66,0.95
Random Forest C4.5 85.25,0.84 93.61,0.93 91.30,0.91 92.93,0.92 94.65,0.94 88.95,0.88 89.86,0.89 91.63,0.91 92.15,0.91 95.76,0.95

ExtraTrees ERDT 86.91,0.86 93.20,0.93 92.36,0.92 92.68,0.92 95.06,0.95 89.28,0.88 90.19,0.89 91.70,0.91 93.13,0.93 95.26,0.95
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5. Conclusions

In this study, we propose the concept of OMPs for spatial feature extraction in high-resolution
hyperspectral images, by using multiscale objects after multi resolution segmentation as the SEs.
Additionally, ExtraTrees, bagging, AdaBoost, and MultiBoost ensemble versions of the ERDT
algorithm are introduced and comparatively investigated on two benchmark hyperspectral data
sets. The experimental results confirm the effectiveness of the proposed OMPs, OMPs(M) and their
extended versions. In addition, the superiority of EOMPsM over the conventional MPs and MPPR is
reported. In the evaluation of the adopted classifiers, the bagging ensemble of ERDT is better than the
bagging version of C4.5, and ExtraTrees is better than Bag(C4.5) but comparable to RaF(C4.5). The best
improvements are reached by the AdaBoost or MultiBoost ensemble of ERDT using OMPsM extracted
from the original bands, or EOMPsM extracted from the PCA-transformed features.

Future works will focus on the role of self-adaptive segmentation scale selection for multiscale
segmentation in the usefulness of OMPs and EOMPsM. The early steps and self-adaptive parameter
tuning of individual ERDT in the AdaBoost and MultiBoost ensemble framework will also
be investigated.
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