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Abstract
Climate anomaly has caused substantial shifts in phenology of mountain ecosys-

tems, but the underlying mechanism of phenological responses to climate change is

still not well understood. In essence, the abundance of vegetation communities

increases the complexity of phenology-climate relationships, leading to a certain

limitation in predictions of future dynamics among different vegetation types using

a unified model. In this study, we focused on the climatic constraints on spring

phenology in arid mountains (AMs) of China, and emphasis was laid on accurate

representation of mechanisms that control phenology across different vegetation

types. We Firstly explored spatio-temporal variations in satellite-derived estimates

of starting date of vegetation growing season (SOS) over the period 2000–2015
using moderate-resolution imaging spectro-radiometer (MODIS) normalized differ-

ence vegetation index (NDVI). Phenological models in response to climate vari-

ability were then established by using mixed-effect models based on satellite

observations and an extensive dataset of climatic measurements. Our results

showed that the climatic regulation on SOS varied greatly over vegetation types.

More climatic factors that regulate phenological development were found in grass-

land than forest and shrubland. At ecosystem level, two critical climate factors,

daily minimum temperature (Tmin) and precipitation, explained 74–95% of total

variability in predicted SOS. The observed sensitivity to Tmin is expected to be

closely linked with the risk of frost damage, while preseason precipitation deter-

mines water availability in spring. The varying ecosystem sensitivity revealed the

different resilience and adaptability to changing climate among vegetation types,

which have been linked to their eco-physiological characteristics (e.g., water use

efficiency) and environmental conditions (e.g., elevation). Overall, our results indi-

cate a strong dependence of spring phenology on Tmin and precipitation, and create

an opportunity for a more realistic representation of vegetation phenology and

growth of AM plants in China in land surface models.
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1 | INTRODUCTION

Alterations in the temporal niche of vegetation phenophases
as a consequence of climate change increase the uncer-
tainties of ecosystemic structure and functioning, because of
their strong controls of biochemical cycles, such as energy
exchange, water balance, and carbon sequestration (Menzel,
2002; Peñuelas and Filella, 2009; Richardson et al., 2013;
Keenan et al., 2014). Numerous studies in temperate, boreal,
and tropical regions have documented strong responses in
plant phenology, notably advances in the spring growth
onset coupled with patterns of temperature increases
(Walther et al., 2002; Borchert et al., 2005; Jeong et al.,
2011; Zhang et al., 2013; Fu et al., 2014; Ge et al., 2015).
As sensitive indicators of climate change, shifts in the timing
of plant phenology provide valuable information about the
responses of terrestrial vegetation, and potential feedbacks to
climate anomalies (Schwartz and Chen, 2002; Cleland et al.,
2007; Richardson et al., 2013). Thus, it is imperative to
develop a better knowledge of climatic controls on vegeta-
tion phenology to understand future ecosystem dynamics
(Badeck et al., 2004; Zhang et al., 2004; Pau et al., 2011).

However, the underlying mechanisms of plant phenologi-
cal responses to climate change are not well understood.
Generally, it has been accepted that temperature triggers the
visible progress in phenology; nevertheless, the modulation
of temperature is not invariable under environmental
changes, and temperature alone does not explain well vege-
tation phenological variation (Marchin et al., 2015). For
example, using the observation data in the European Alps,
Vitasse et al. (2018) reported that the tree leaf-out
onset along elevational gradient exhibited asynchronous
responses to global warming with the reduction of the
elevation-induced phenological shift over the past 50 years.
Moreover, recent studies revealed a gradual decrease of tem-
perature sensitivity of plant phenology in arid/semi-arid
areas where preseason water availability is often limited
(Chen et al., 2014; Forkel et al., 2015). Hence, Shen et al.
(2015) argued that precipitation controls spring water avail-
ability and, therefore, affects SOS in the Tibetan Plateau.
Cong et al. (2013) also found that the increase in preseason
precipitation enhanced the temperature sensitivity of vegeta-
tion spring phenology in temperate China. These findings
indirectly suggest an important cue of precipitation for phe-
nological development. Nevertheless, less attention has been
devoted to the dependence of plant growth on precipitation
(Chen et al., 2014; Forkel et al., 2015), probably due to lack
of clear association between phenology and precipitation
that are normally obtained with temporal analysis conducted
at regionally aggregated levels (Shen et al., 2015). Instead,
the real impacts of climate change on the SOS could be
benefited from a synthetical method, which may need spatial

response analysis to be involved (Liang and Zhang, 2016),
because the differences of some climatic variables like pre-
cipitation in space are often more obvious than interannual
variations. For example, Zhang et al. (2005) found that the
spatial variation in SOS closely tracked the onset of the rainy
season in Africa. Therefore, an essential step in enhancement
for accurately mechanistic understanding of the role of cli-
mate change on vegetation phenology is to focus on the syn-
thetical analysis of spatio-temporal responses, as that has
received insufficient attention in previous studies.

Arid mountains (AMs) constitute a special geomorphic
unit that develops in arid/semi-arid climate zones at high
altitudes. The environmental components are affected by the
climate type of baseband, and exhibit characteristics of verti-
cal zonality (He et al., 2018). In AMs, ongoing occurrences
of climatic anomalies have become extraordinarily frequent
(Lin et al., 2017). For example, temperature records in
Qilian Mountains of China indicated an average rise of
0.26�C per decade during the past 50 years, with the violent
fluctuation of precipitation (Du et al., 2014). It is expected
to increase the frequency of droughts due to preseason
warming and precipitation reduction (Shen et al., 2016).
Drought-induced tree growth decline can be interpreted as
an early-warning signal of mountain forest vulnerability in
semi-arid environments (Tognetti et al., 2019). Moreover,
elevated spring temperature generally results in a shorter
snow cover period as well as earlier snowmelt (Clow, 2010),
which acts as a critical factor that regulate the spring onset
of growth and flowering in subalpine meadow ecosystem
(Inouye, 2008). Additionally, recent studies have reported a
reduction of the chilling accumulation to some tree species
in high-latitude and high-altitude ecosystems during excep-
tionally warm winters, leading to increasing forcing require-
ment and/or later dormancy break (Schwartz and Hanes,
2010; Vitasse et al., 2018). These climatic changes will
inevitably impose great environmental stresses on AM eco-
systems. Although climate warming is generally associated
with a lengthening of the growing season due to advances in
the spring onset of growth and/or delays in autumn senes-
cence (Wang et al., 2014b; He et al., 2015; Dai et al., 2018),
individual responses vary greatly over different vegetation
types (Ge et al., 2015). As observed in a recent study in the
Santa Catalina Mountains in the United States, phenological
sensitivity of annual forbs to a changing climate can differ
from that of woody plants by more than onefold (Crimmins
et al., 2010). Across a semi-arid mountain region in China,
Zhou et al. (2016) found varying degrees of correlation in
vegetation phenology with climatic factors among functional
groups, and different magnitude of sensitivity to temperature
increase. It follows that the individualistic responses of phe-
nology to climate change are likely to arise from different
mechanisms acting within AM biomes (He et al., 2015);
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therefore, the abundance of vegetation communities
increases the complexity of phenology-climate relationships
(Crimmins et al., 2010). Predicting the seasonal trajectory of
vegetation activities in AM ecosystems in a future climate
remains a great challenge, as it requires accurate representa-
tion of mechanisms that control phenology across a diverse
range of plant taxa.

In this study, we aimed to investigate the climatic con-
straints on spring phenology in an AM region of China, and
emphasis was laid on accurate representation of mechanisms
that control phenology across different vegetation types. To
that end, we retrieved satellite-based time series
(2000–2015) of the SOS dates from the normalized differ-
ence vegetation index (NDVI) records obtained from the
moderate-resolution imaging spectro-radiometer (MODIS).
We considered an extensive dataset of climatic observations
including the potential influencing factors reported previ-
ously in temperate zones. We examined the spatio-temporal
pattern of phenological changes and the associated climate
variability. The synthetical analysis of spatio-temporal
responses were then performed to unveil potential differen-
tial effects of climate factors on SOS for three vegetation
types, and the possible underlying mechanisms were further
elucidated.

2 | DATA AND METHODS

2.1 | Study area and biomes

The study area is the Qilian Mountains (QLMs) in north-
western China (Figure 1). The area covers 1.93 × 105 km2,
spanning a latitudinal range of 35.8�–40.0�N, and

longitudinal extent of 93.5�–104.0�E, with an average alti-
tude up to 3,660 m above sea level (a.s.l.) (Figure S1). Cli-
mate across the QLMs is characteristic of temperate
continental plateau in that it is cool and arid (Du et al.,
2014). According to observational records from meteorolog-
ical stations, the mean annual temperature across the QLMs
is 4.1�C (for years 2000–2015), and annual cumulative pre-
cipitation is 340 mm, mainly concentrated in May to
September. As one of the major AMs in China, QLM is the
source of three inland river basins (the Shiyang, Hei, and
Shule Rivers). Vegetation in the QLMs has an important
influence on regional ecological security, because of its role
in water conservation and regulation (He et al., 2012). A
rasterization map of vegetation types across QLMs was
extracted from 1:1000000 Vegetation Map of China
(Figure 1), which was produced by Chinese Academy of
Sciences from the land resource investigation (Hou, 2001).
We grouped the vegetation into forest, shrub, and grass
covers in our analysis. The cropland was not considered
because of intense human disturbance. To match the MODIS
NDVI products, the vegetation data were then resampled to
a spatial resolution of 1 km. Considering the possible classi-
fication errors caused by this downscaling method, we fur-
ther refined it with the help of Landsat images (http://www.
landcover.org/data/, Du et al., 2014). In this process, some
necessary preprocessing steps of remote sensing images are
involved, including image correction and radiation enhance-
ment. The purpose is to eliminate the influence of radiation
noises (such as cloud shadow, topographic effect) on image
interpretation. Through field sampling validation, the overall
classification accuracy of the final vegetation map is more
than 85%, which is acceptable for our analysis. To be

FIGURE 1 Location of the
QLMs and spatial distributions of
meteorological stations [Colour figure
can be viewed at
wileyonlinelibrary.com]
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specific, the forest is dominated by Qinghai spruce (Picea
crassifolia), and mainly distributed in the northern and east-
ern part of the QLMs, at a mean altitude of 3,160 m (a.s.l.) (-
Figure S1). Shrubland is primarily located in the subalpine
zones of the QLMs above the treeline. Common shrub spe-
cies are Salix gilashanica, Caragana jubata, and Potentilla
fruticosa (He et al., 2015). Grassland has a wide geographi-
cal distribution at altitudes ranging from 2,500 to 4,600 m.
Several constructive species, such as Stellera chamaejasme
Linn. and Potentilla multifida, are collectively present at
QLMs (He et al., 2018).

2.2 | In situ phenological monitoring

On-the-ground phenological data were collected at meteorolog-
ical stations in the QLM. There exists the case that spring phe-
nology of the three vegetation types around a meteorological
station was simultaneously observed. The temporal and spatial
coverage of green-up observations for each site is not in com-
plete accord with others, with time series length of at least
5 years since 2001 and ranging from 1 to 5 km2 in space area
(see He et al. (2015) for more descriptions of the observational
sites). In total, the observed phenology data from 20 sites for
forest, 22 sites for shrub, and 27 sites for grass, were available (-
Figure S2), with a combination of sequences of spring events
(e.g., bud burst, beginning of flowering, and full flowering)
from different dominant species. Unlike satellite-derived phe-
nology, ground observations of green-up date are based on the
survey at species scale. In spring, each site was visited every
2–5 days, and the developmental status of all dominant species
was recorded. The species-level green-up was defined as the
date when 50% of leaves have unfolded, as shown in previous
studies (e.g., Dai et al., 2014; Shen et al., 2016). For each vege-
tation type, the weighted average for green-up dates for domi-
nant species by the frequency of occurrence was calculated
annually in each site. Given the limited monitoring length
(of time) of ground data, the spatial correlation analysis was
conducted to compare with satellite-based phenology. Specifi-
cally, take the case of shrubland, we first calculated the mean
ground-based values for all monitoring years at each site. Like-
wise, the mean of satellite-derived SOS measures from 2000 to
2015 for shrubland pixels in the 20 km buffer around each site
was calculated. The spatial pattern of ground observations and
satellite-derived SOS measures was then compared by exploring
the Pearson's correlation coefficient between them across sites
(Wang et al., 2014a). Similar methods were used for the other
two vegetation types.

2.3 | Satellite NDVI data

NDVI, based on the differential reflectance of green vegeta-
tion in the infrared and near-infrared bands, has been widely

used in monitoring of vegetation dynamics and plant phenol-
ogy because it is strongly related to the strength of photosyn-
thetic activity and the amount of green-leaf productivity
(Pettorelli et al., 2005; Jeong et al., 2011). In this study, the
timing of SOS in the QLMs from 2000 to 2015 was
retrieved from a MODIS NDVI dataset. The 16-day
maximum-value composite MODIS NDVI data (product
MOD13A2) at a spatial resolution of 1 km were generated
from atmospherically corrected bi-directional surface reflec-
tances that had been masked for water, clouds, heavy aero-
sols, and cloud shadows (Zhang et al., 2013), and obtained
through the online Data Pool at the NASA Land Processes
Distributed Active Archive Center (LPDAAC) (http://
LPDAAC.usgs.gov).This dataset has been widely used and
tested in the retrieval of remote-sensing phenology across
diverse vegetation biomes and in different climatic regions,
and their robustness for SOS trend analyses were validated
(Zhang et al., 2004; Delbart et al., 2006; Kross et al., 2011).

2.4 | Climate data

To comprehensively investigate the correlation between
SOS dynamics and climate change, the potential climatic
drivers of phenology were considered in our analysis,
including variations in preseason temperatures (Richardson
et al., 2013), winter chilling (WC) (Clark et al., 2014), snow
melt (SM) (Clow, 2010), and preseason precipitation
(P) (Shen et al., 2015). Thus, an extensive dataset of daily
climatic observations at 31 national meteorological stations
(26 inside of the study area and 5 outside, but in the immedi-
ate vicinity of the boundary) from 2000 to 2015 was
obtained from the China Meteorological Data Sharing Ser-
vice System (http://cdc.cma.gov.cn) (Figure 1 and
Table S1). As the length of the phenologically relevant
period (preseason) for temperatures (including Tmax, Tmean,
and Tmin) and precipitation could vary at different sites and
among vegetation types, we did not use a fixed period.
Instead, the preseason period length was determined sepa-
rately with an optimization method based on a partial corre-
lation analysis. Here, we calculated partial correlation
coefficients between SOS time series and each variable (set-
ting others as control factors) during different preseason
lengths preceding the 2000–2015 average SOS. This proce-
dure used a step of 10 days when changing the preseason
length to smooth potential extreme values (Shen et al.,
2015). Then the optimal preseason length for the four cli-
matic parameters for different vegetation types at each sta-
tion was identified by exploring the largest partial
correlation coefficient (Wang et al., 2016), and the
corresponding preseason temperature and precipitation were
determined. When we computed the winter chilling accumu-
lation necessary for triggering leaf-out, an alternative model
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was used to calculate the time period of days during which
temperatures were below a base threshold (Dantec et al.,
2014), following Equation (1):

WCreq tð Þ=
Xtsos

t0

1,Tt≤Tb ð1Þ

where tsos was the day of vegetation green-up (day of year,
DOY), t0 was the starting date for chilling accumulation
(DOY), and Tb was the base threshold value. Most previous
studies have reported that temperatures slightly above freez-
ing are the most effective in satisfying the chilling require-
ment and suggested a temperature of 5�C as the base
threshold (Schwartz and Hanes, 2010; Polgar and Primack,
2011). Hence, we fixed the starting day on the date as first
September in the previous year (Dantec et al., 2014). As for
the timing of snowmelt, we did not have adequate observa-
tions. Nevertheless, since land surface temperature is closely
associated with observed snowmelt (Høye et al., 2007), we
estimated the timing of snowmelt as the date when daily
mean temperature at ground level rose above 0�C for seven
consecutive days (Wang et al., 2015b). A comparison
between simulated and observed snowmelt dates at some of
the meteorological stations validated the efficacy of this
method, with average absolute error of 3 days. In this study,
we did not take photoperiod into account because photope-
riod, mainly determined by latitude and time of year, is
expected to be insensitive to climate change. Moreover, the
maximum difference in spatio-temporal pattern of sunshine
duration was only 0.4-hour across the QLM (Wang et al.,
2015a).

2.5 | Retrieval of remote sensing SOS

Before retrieval of remote sensing SOS, typical
preprocessing procedures were used with the time series of
NDVI values. First, the effect of snow cover on NDVI was
eliminated for each pixel; snow cover in winter and early-
spring often depresses NDVI values, possibly leading to
biases of the seasonality reconstruction in vegetation green-
ness (Delbart et al., 2006). With the support of the flag file
(snow free records from MOD13A2 dataset) for data quality,
we identified pixels where snow cover possibly existed, and
interpolated values by the spline method on the basis of
uncontaminated pixels. If negative outliers in the time series
remained, we further applied the median-filter method for
each pixel using the nearest-interpolation algorithm. Addi-
tionally, clouds and poor atmospheric conditions in the
course of vegetative growth can also result in abnormally
high or low NDVI values. To remove these spikes, the
Savitzky–Golay filter with a five-point moving window was
used in each NDVI cycle (e.g., Shen et al., 2015).

Subsequently, a logistic model was employed to fit the tem-
poral variation of the filtered NDVI data for an annual
growth phase. The logistic model function has the form
(Zhang et al., 2004):

y tð Þ= c
1+ea+bt +d ð2Þ

where y(t) was NDVI at time t, the parameters a and
b controlled the shape of the curve, c and d determined the
amplitude values in a single year, and d represented the ini-
tial background NDVI value. Finally, the date of vegetation
SOS was retrieved from the pre-processed NDVI data by
using two different algorithms, the inflection point-based
method (βmax), and the relative threshold method (R20). Both
methods have been described and widely tested across
diverse vegetation biomes and in different climatic zones,
and their robustness in extracting phenological metrics were
validated (e.g., Studer et al., 2007; Yu et al., 2010). In the
βmax method, the first derivative (β) of the fitted logistic
function was calculated, and the date of SOS was defined as
the time when NDVI increases at the first local maximum of
β. In the R20 method, the SOS was considered to be the day
on which NDVI values increased to 20% of the seasonal
amplitude (i.e., subtraction from the maximum and mini-
mum values) in late spring. The threshold value was deter-
mined according to the leaf unfolding date observed in situ
to obtain the lowest absolute error with remote-sensing
derived phenology (Shen et al., 2015). Since a comparison
of satellite-based SOS calculated from the two methods rev-
ealed a general consistency (Figure S3), these results were
ultimately averaged before being used for subsequent
analysis.

2.6 | Phenology-climate analysis

The phenology-climate analysis was conducted on pixels
found in the 20 km-buffer area around meteorological sta-
tions. Remote sensing SOS of these pixels was further aver-
aged in accordance with the station-level meteorological
observations. Spatio-temporal shifts of remote sensing-based
SOS were examined using mixed-effect models in relation
to variation in climatic measurements. We used the mixed
model in this analysis because our data was the repeated
observations of multiple points in chronological sequence,
which involve two dimensions of time series and cross sec-
tion. The mixed model can not only overcome the trouble of
multi-collinearity in time series analysis, but also consider
the spatial response relationship (Freyermuth et al., 2010).
In the mixed model procedure, the following fixed effects
were specified: vegetation types, and climatic factors includ-
ing Tmax, Tmin, Tmean, P, WC, and SM; the meteorological
sites were declared as random effects. Restricted maximum
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likelihood was applied to compute the estimates of coeffi-
cients for models (Nakagawa and Schielzeth, 2013). To
compare the climatic constraints on the timing of SOS across
vegetation types, mixed models were separately constructed
for forest, shrub, and grassland biomes with the same
response variables. These procedures were performed in SAS
9.2 (SAS Institute Inc., Cary, NC).

Before modelling analysis, the SOS dates and all climatic
variables except Tmin were transformed via the square root
algorithm to normalize distribution or to improve

homogeneity of variances. Thus, the transformed data were
used in the following model specification. To check whether
there was multi-collinearity among explanatory predictors,
variance inflation factors (VIFs) were also calculated
through collinearity diagnostics. Generally, variables with
VIF less than 4 represent weak collinearity (O'Brien, 2007).
To quantify the performance of mixed models, we calculated
the adjusted coefficient of determination (R2

adj) for goodness

of fit. All significance levels given were derived from Type
III tests. Normality of the residuals was checked with Q-Q

FIGURE 2 Interannual variation in satellite-derived SOS in the QLMs (a) and for different vegetation types (b–d) from 2000 to 2015 based on
the MODIS datasets [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Spatial patterns of temporal change rate in satellite-derived SOS (a) and the significance levels (b) from 2000 to 2015 based on
MODIS data. The top right inset shows the frequency distributions of corresponding trends and significance levels [Colour figure can be viewed at
wileyonlinelibrary.com]
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plots, and homogeneity of variances with a scatterplot of
standardized residuals and predicted values. In our analysis,
we started from a null model that had no fixed predictors.

Improvement in model fit was examined by adding the fixed
predictors to null model using −2 log likelihood estimation,
Akaike information criterion (AIC) (Nakagawa and
Schielzeth, 2013). Additionally, to identify the relative con-
tributions of the different regressors, decomposition of the
predicted variance (DOV) was performed (Huang
et al., 2014).

3 | RESULTS

3.1 | Variability in the onset date of spring
green-up

A comparison of satellite-based SOS with ground observa-
tions revealed a general consistency, with a high correlation
coefficient of 0.92 (Rp) in average for the three vegetation
types (Figure S2). Averaged over the entire period of
2000–2015, the onset dates of green-up over QLMs occur
between DOY 120 and 191 (for 95% confidence interval),
with the mean value of DOY 161 corresponding to July 10.
The relatively late SOS was found at the central regions,
whereas early SOS was mainly in the eastern part of QLMs
(Figure S4). This spatial distribution of SOS date appears to
be elevation dependent, suggesting temperature being the
primary controlling factor. Meanwhile, it shows that the spa-
tial pattern of SOS is roughly coupled with the pattern in
SOS trend during the past 16 years. Although there was no
statistically significant temporal trend at a regional scale
(with the slope of −0.24 day per year, p = .287) (Figure 2a),
9.4% of the pixels of the study area, concentrated in central
QLMs, displayed a significant shift in SOS toward an earlier

TABLE 1 Mixed model of the effects of climatic variables on
vegetation SOS in the QLMs

Predictive
variables

Estimated (×10−2)
[95%CI] p

DOV
(%)

Intercept (β0) 1,193.89 [1,143.83,
1,243.96]

.000

Tmax (β1) −16.33 [−23.05, −9.60] .000 9.33

Tmin (β2) −4.96 [−6.18, −3.74] .000 29.51

Tmean (β3) —a —a

P (β4) −3.64 [−4.33, −2.95] .000 17.11

WC (β5) 6.53 [3.81, 9.24] .000 4.97

SM (β6) 3.18 [1.13, 5.22] .002 1.18

Type (G) (β7) 22.27 [13.51, 31.04] .000 37.90

Type (S) 13.98 [4.64, 23.33] .004

Type (F) 0

−2 log likelihood 932.56

AIC 938.56

R2
adj .69 .000

Abbreviations: Tmax, the maximum air temperature; Tmin, the minimum air
temperature; Tmean, the mean air temperature; P, precipitation; WC, winter
chilling; SM, snowmelt; G, grass; S, shrub; F, forest; AIC, Akaike Information

Criterion; R2
adj, the adjusted coefficient of determination for goodness of fit; β0,

β1, … and β7, the fitted parameters; DOV, the decomposition of the predicted
variance.
aThe Tmean was screened out of predictive variables in mixed modelling, because
of a high multi-collinearity with other predictors (VIFs > 4).

FIGURE 4 Spline-interpolated
surface plot showing the relationships
between the predicted SOS and Tmin

and precipitation in the QLMs for
different vegetation types [Colour
figure can be viewed at
wileyonlinelibrary.com]
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date (p < .1) (Figure 3). On the contrary, the advance of
phenology in response to climate change was slackened or
even inverted to delay in the eastern part of QLMs. When
interannual variability in vegetation SOS was analysed for
different vegetation types, the similar temporal trend was
observed (Figure 2b-d).

3.2 | Onset date of spring green-up in relation
to climate

The mixed model results showed that the dynamics of vege-
tation SOS were closely related to the changes in climate
variables (Table 1), suggesting that multiple climate factors
act their respective roles in triggering the visible progress of
spring phenology in the QLMs. However, such climatic reg-
ulation of timing of spring green-up varied with vegetation
type. For example, in addition to Tmin and precipitation, ear-
lier snowmelt was significantly related to an advancement in
the spring onset of growth for shrubland and grassland eco-
systems at high altitudes (Tables S2a and 2b). Moreover,
winter chilling conditions also served as an important cue
for grassland phenology, with fewer chilling days
corresponding to earlier SOS (Table S2a and Figure S5). For
forest ecosystems at lower elevations, shifts in preseason
maximum and minimum temperatures and cumulative pre-
cipitation were significantly and negatively correlated with
changes in SOS, indicating that these variables were critical
regulators of spring phenological responses to climate
change in these systems.

To further quantify how much variance in the predicted
SOS can be attributed to climatic predictors, a decomposi-
tion of the predicted variance was performed. We found that
vegetation type accounted for 37.9% of the predicted vari-
ability, and ranked as a primary factor for consideration in
forecasting of climate change impacts on plant phenology
over entire QLMs (Table 1). The remaining variability was
explained by Tmin (29.5%), followed by precipitation
(17.1%), Tmax (9.3%), winter chilling (5.0%), and snowmelt
(1.2%). At the level of ecosystem type, Tmin and precipita-
tion were two critical climate factors, which explained
74–95% of the total variability in predicted SOS (Table S2a-
c). As shown in Figure 4, the SOS generally advanced when
both preseason Tmin and precipitation increased.

4 | DISCUSSION

4.1 | Responses of spring green-up onset dates
to climate change

Our analysis of satellite NDVI records showed that over the
past 16 years, there was no clear trend in SOS shifts for eco-
systems in the QLMs, which generally agreed with the

findings of previous studies (Cong et al., 2013; Wang et al.,
2014b; Zhou et al., 2016). For example, although most of
the temperate China experienced an overall advancing trend
in SOS since the 1980s, such advancement SOS signals
became weak after 2000 (Cong et al., 2013). Zhou et al.
(2016) argued that the recent shift to a delay in SOS, espe-
cially since 2008, resulted in a deceleration of the advancing
trend, as was indicated by the findings in the present study.

Phenological variability is considered to agree well with
the signals of climate change (Cong et al., 2013; Richardson
et al., 2013; Clark et al., 2014; Dai et al., 2014). In this
study, most of the shifts in SOS could be explained by the
variation in spring temperatures (Tmax and Tmin), preseason
precipitation, winter chilling days, and the timing of snow-
melt. Our results show that several climatic factors control
spring onset of growth in AM plants. At ecosystem level,
the common feature across the biomes was the leading con-
trol of Tmin and precipitation on spring vegetation activity.
However, the climatic regulation of other variables on SOS
varied greatly over vegetation types. For example, we found
that shift in grassland SOS was significantly and positively
associated with winter chilling accumulations; in contrast,
the timing of green-up onset for shrubs and forests exhibited
relatively little dependence on chilling conditions. This vary-
ing response of ecosystems to chilling may be derived from
a trade-off between decreasing the winter chilling accumula-
tion and minimizing the risk of freezing injury with climate
warming. Theoretically, warming-related reductions in chill-
ing days could impede the fulfilment of chilling require-
ments, which may delay spring phenology (Yu et al., 2010;
Clark et al., 2014; Dantec et al., 2014). Meanwhile, the
decreased amount of exposure to cold temperatures could
also decrease the risk of freezing injury to the sensitive
growing tissues of AM plants, and thus promote green-up
onset (Inouye, 2008; He et al., 2018). Our results may imply
a balance between impediment and promotion of accumu-
lated chilling reduction to spring green-up for forests and an
imbalance toward to promotion for grasslands. Alternatively,
our results of a shift to an earlier SOS of grassland indicated
that the winter climatic conditions under the current state of
warming can still meet the chilling requirement, and that the
AM plants may have a relatively low chilling requirement.

Additionally, we found that in addition to Tmin, the Tmax

also has an important contribution in explaining the total
variance in predicted SOS in Qilian Mountains, especially
for forest ecosystems. Although the individual influence of
one of the two variables has been reported in several studies
as well as the asymmetric effects of Tmax versus Tmin on veg-
etation SOS (e.g., Peng et al., 2013; Piao et al., 2015), the
synergistic effect of both factors on vegetation growth is
rarely involved. The possible mechanism of co-regulation by
Tmin and Tmax in green-up onset in this study may work via
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higher night time temperatures helping to mitigate the risk of
frost and promoting spring thaw; this increases soil water
availability for plant photosynthesis during the daytime
(Shen et al., 2016). Further, more energy available from
higher daytime temperatures and insolation in turn enhances
the ability of plants to withstand the freezing injury and
water stress at night time (Piao et al., 2015).

4.2 | Dependence of spring phenology on Tmin
and precipitation

In most high-latitude and high-altitude ecosystems, tempera-
ture has been unequivocally implicated as a major cue for
spring onset of growth and flowering (De Beurs and
Henebry, 2005; Vitasse et al., 2009; Chen et al., 2014).
Likewise, our results provided evidence for minimum tem-
perature triggering of phenological development in AM
plants. In a recent study of alpine vegetation in the Tibetan
Plateau, the strong control by preseason Tmin on vegetation
green-up date was also indicated by Shen et al. (2016), who
found that the increase in Tmin significantly advanced green-
up date (by 4 days �C−1) and enhanced greenness in sum-
mer. The observed sensitivity of phenology to Tmin was
expected to be closely linked with the risk of frost damage
in spring (Inouye, 2008; Augspurger, 2013). Fu et al. (2003)
pointed out that the number of days when frost occurred in
the QLMs was roughly the same as that when Tmin reached a
specific criterion (e.g., ≤2.0�C). Frost has been shown to
cause severe damage to sensitive growing tissues of moun-
tain plants (Inouye, 2008; Polgar and Primack, 2011; He
et al., 2015), especially in evergreen woody species whose
flushing shoots often have low resistance to frost (Langvall
et al., 2001). To minimize the danger of freezing injury at
low temperatures, plants may slow or postpone phenological
processes, and thus retard spring green-up and the onset of
new growth (Richardson et al., 2013). In addition, minimum
temperature also affects the course of soil thawing, altering
the conditions for nutrient absorption and water availability,
which, in turn, influence the start of vegetation activity in
spring (Shen et al., 2016). Therefore, higher Tmin helps in
removing the constraints of dormancy release in AM plants,
and thus advance the SOS. In this study, the dependence of
forest phenology on Tmin was greater than in other ecosys-
tems, given that 50.2% of variance in the predicted SOS was
explained by Tmin (Table S2c). This result indicated that for-
ests in AMs were the most sensitive of biomes to variations
in minimum temperature.

Further, we also found that preseason precipitation
explained a substantial portion of the variability in predicted
SOS, indicating an important role of precipitation in driving
shifts in phenology. Compared to the well-known control of
temperature in triggering SOS, the potential impact of

preseason precipitation was often ignored (Chen et al., 2014;
Forkel et al., 2015). Generally, variation of preseason pre-
cipitation is not as obvious on the interannual timescale as in
space range. Hence, correlations between phenology and
precipitation that are normally obtained with temporal analy-
sis conducted at regionally aggregated levels, often failure to
elucidate the real impacts of precipitation on the SOS (Shen
et al., 2015). In this study, we used the mixed models to
incorporate the analyses of both temporal and spatial
responses. The results indicated a spatial variation in SOS
over the climatic precipitation gradient. For example, SOS
was delayed in areas with less precipitation, from DOY
146 at an average precipitation of 500 mm, to DOY 155 at
100 mm (Figure S6). Moreover, the importance of precipita-
tion for AM plants can be reflected in their geographic
distributions. Forests and shrubs typically grow on shaded
(north-facing) or semi-shaded (east-facing) slopes where
sunshine intensity and duration is limited, while only some
herbs vegetate on sunny slopes where soil moisture is often
suboptimal due to intense evapotranspiration (Jin et al.,
2009; Du et al., 2014). Water availability is thus an impor-
tant determinant of plant growth and development responses
to climate change (He et al., 2012). Precipitation during the
preseason period largely determined water availability in
spring, and therefore affected SOS. This may constitute a
potential mechanism that could account for the ranking of
the contribution of precipitation to the total variability in
predicted SOS (Tables 1 and S2a-c). Across the biomes
examined, the shrubland ecosystem was found to be the
most sensitive to preseason precipitation. Low water reten-
tion in shrubs after rainfall resulted in water stress, because
the growing environment of shrubs was characterized by
steep inclines with thin soil and high soil porosity (He et al.,
2018). Lack of shrub adaptability to such water deficits may
contribute to the peak hydroclimatic sensitivity.

5 | CONCLUSIONS

An accurate understanding of the response of vegetation
phenology to climate on regional scales is critical to the
evaluation of the biochemical cycles (i.e., carbon, water,
energy, and nutrient) under recent environmental changes.
By taking into account the effects of potential climatic fac-
tors, this study was the first to quantify climate forcing in
spring phenology objectively for major ecosystems in AMs
in China. Although the climatic regulation on SOS varied
greatly over vegetation types, our results indicate a strong
dependence of spring phenology on Tmin and precipitation.
Moreover, our results imply that a reduction in chilling units
does not necessarily lead to phenological delays, suggesting
that the winter climatic conditions under the current state of
warming can still meet the chilling requirement, and that the
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AM plants may have a relatively low chilling requirement. If
the conclusions obtained from this study are transferable to
other mountains in arid or semi-arid regions of the earth,
vegetation is anticipated to respond strongly to future fluctu-
ations in both preseason Tmin and precipitation, given their
restrictive effects on plant phenology. Regional climate pro-
jections have indicated a trend toward warmer and wetter
conditions throughout the AMs in China (Shi et al., 2007).
The concomitant increases in Tmin and precipitation seem to
be a positive sign of an extension in the length of the active
growing season as a result of advances in green-up dates.
However, extreme climate events associated with Tmin and
precipitation, such as droughts and heat waves, need to
receive more attention, because influences of these extreme
changes may exceed the ability of species to adapt to new
conditions through phenotypic plasticity and result in a
decrease in fitness (Siegmund et al., 2016). Further studies
are thus needed to investigate how extremes specifically
impact the timing of spring phenological phases.
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