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Climate change could alter plant aboveground and belowground resource allocation.
Compared with shoots, we know much less about how roots, especially root system
architecture (RSA) and their interactions, may respond to temperature changes. Such
responses could have great influence on species'acquisition of resources and their
competition with neighbors. We used a gel-based transparent growth system to in situ
observe the responses of RSA and root interactions of three common subtropical plant
species seedlings in Asia differing in growth forms (herb, shrub, and tree) under a wide
growth temperature range of 18–34°C, including low and supra-optimal temperatures.
Results showed that the RSA, especially root depth and root width, of the three species
varied significantly in response to increased temperature although the response of their
aboveground shoot traits was very similar. Increased temperature was also observed to
have little impact on shoot/root resource allocation pattern. The variations in RSA
responses among species could lead to both the intensity and direction change of root
interactions. Under high temperature, negative root interactions could be intensified and
species with larger root size and fast early root expansion had competitive advantages. In
summary, our findings indicate that greater root resilience play a key role in plant adapting
to high temperature. The varied intensity and direction of root interactions suggest
changed temperatures could alter plant competition. Seedlings with larger root size and
fast early root expansion may better adapt to warmer climates.

Keywords: root system architecture, root interaction, temperature change, root growth dynamics, root depth and
width, species competition
INTRODUCTION

Temperature is one of the most important variables that influence plant growth (Gray and Brady,
2016). According to the fifth assessment of the IPCC, the global mean air temperature is predicted to
increase by 0.3–4.8°C by the end of this century (Collins et al., 2013; Pau et al., 2018). The rapid
warming projected for the planet and the limited ability of plants to track climate changes mean that
species' survivorship under climate change critically depends on their thermal adaptation ability
(Zhu et al., 2012; Lambers, 2015; Urban, 2015). This aspect of adaptation has so far been extensively
explored through examining the plant growth response to temperature changes (Teskey and Will,
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1999). Variation of aboveground shoot traits, such as shoot
height, leaf morphology, and phenology, have been the focus
of concern and are observed to change with increasing
temperature (Chung et al., 2013; Meineri et al., 2014).
However, although the root system architecture (RSA) which
towards deploying roots in the soil that optimizes the acquisition
of water and nutrient has been thought to be able to minimize the
negative impact of temperature changes (de Dorlodot et al.,
2007), compared with shoot, few studies have investigated the
sensitivity in RSA response to temperature changes, because of
the difficulty in direct observation on underground growth
(Aidoo et al., 2016).

RSA describes the spatial configuration of the root system in
soil and is critical for plants to adapt to different environments
(Zhu et al., 2011; Bardgett et al., 2014). In highly heterogeneous
soil environments, RSA is considered more important than
morphology for nutrients and water uptake (Fitter, 1987). It
has been shown that RSA can facilitate plant adaption to water
and nutrition deficit conditions (Bell and Sultan, 1999), resist to
disease and insect pest infection (Roman-Aviles et al., 2004), and
mediate intra- and interspecific competition pressure (Tosti and
Thorup-Kristensen, 2010; Fang et al., 2013; Belter and Cahill,
2015). The variation in RSA resulting from global change will
impact not only plant performance by affecting nutrition
acquisition (de Dorlodot et al., 2007), but also competition
under field conditions by changing belowground interactions
(Caffaro et al., 2011).

RSA responses to increased temperature can be species-
specific, as different species often have different optimum
temperatures for root growth (Gray and Brady, 2016). Previous
studies show the effect of increasing temperature on root growth
of plant seedlings can be promotive (Domisch et al., 2001; Lahti
et al., 2005), inhibitive (Forbes et al., 1997), or first promotive
then inhibitive after an optimum temperature is reached (Seiler,
1998). Even for species sharing the same habitat, their RSA can
have species-specific responses to increased temperature
(Bardgett et al., 2014). The variations in RSA response to
increased temperature among species can also change
competition among plant communities (Weltzin et al., 2003).

A question of important significance to plant adaptation to
increasing temperature is how plant adjust belowground and
aboveground biomass allocation pattern and resource
acquisition traits to better adapt to the change in climate
(Aidoo et al., 2016). Analyzing the difference between shoot
and root traits in response to temperature changes will help
determine which process— carbon fixation or nutrition
acquisition— limits plant growth under increased temperature
(Lynch and St. Clair, 2004; Craine et al., 2005).

Different root responses to increased temperature may also
result in different root interactions with intra- and interspecific
plants. According to the stress-gradient hypothesis, adverse
living conditions caused by temperature change could
transform negative species interactions into positive species
interactions (He et al., 2013). Temperature might not only
affect the strength of root interactions but also change the
direction. Positive plant interactions describe beneficial
Frontiers in Plant Science | www.frontiersin.org 2
behaviors between plants, which widely exist in nature
(Callaway, 1995). In extreme environments where positive
plant interactions dominate, the presence of neighbors can
improve the soil environment (Gold and Bliss, 1995) and
provide nursery effect (Carlsson and Callaghan, 1991), thus
enhance the performance of focal species. Under climate
change, many studies have suggested that interaction, mainly
competition, could be the primary driver for species composition
and vegetation dynamics (Alexander et al., 2015; Ettinger and
HilleRisLambers, 2017). However, these findings are mostly
inferred from the aboveground growth of plants, leaving
belowground processes unexplored. In some circumstances, the
aboveground response could synergistically interact with
belowground changes (Belter and Cahill, 2015).

Previous studies on how temperature affects plant roots mainly
focus on traditional root growth metrics, such as root biomass and
length for seedlings (Lahti et al., 2005), and fine-root morphology for
mature trees (Valverde-Barrantes et al., 2017) by destructive sampling
without in situ observation andmeasurement. Key RSA traits such as
root depth and width are rarely studied, although they are important
in resource competition. In this study, to preciselymeasureRSA traits,
we grew plants in a newly invented three-dimensional (3D)
transparent solid growth system, from which in situ RSA of plant
seedlings can be dynamically observed (Fang et al., 2009).

This work addresses three questions: (1) Sensitivity of RSA
traits— for inferring plant seedling adaptation to warming climate:
Which RSA traits respond sensitively to temperature change and
how they change with temperature? (2) Comparisons between
root/shoot growth traits in response to increased temperature—
for understanding how plant seedlings coordinate root/shoot
responses to climate change: Do roots of plant seedlings respond
more strongly than shoots to change in temperature? (3)
Interspecific root interactions: How does an increase in
temperature change the intensity and the direction of root
interactions? To answer these questions, we studied RSA traits
of three plant species seedlings with different life forms for
understanding the responses of root traits to temperature change.
MATERIALS AND METHODS

Plant Materials and Experimental Design
Plant Materials
Three common subtropical plant species with different RSA from
Heishiding (HSD) Natural Reserve (N23.27°, E11.15°, Guangdong
province, China) were used in our experiment: Corchorus capsularis
L. (Tiliaceae),Mimosa sepiariaBenth. (Fabaceae,Mimosoideae), and
Ormosia glaberrimaY. C.Wu (Fabaceae, Papilionoideae). They have
different life forms.C. capsularis is an annual herb that preferswarm-
humid climate and is native to tropical Asia. M. sepiaria is a shrub
that usually grows in sunny habitats and originates from tropical
America, but is commonly found in Guangdong province.
O. glaberrima is a local evergreen tree species and fond of sunny
habitats. The seeds used in our experiment were all collected from
HSD Natural Reserve and we got the permission of the
administrative departments of the nature reserves. Dr. Han Xu
February 2020 | Volume 11 | Article 160

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Luo et al. High Temperature Intensify Root Interactions
from Research Institute of Tropical Forestry, Chinese Academy of
Forestry, China conducted the formal identification of the samples
and the voucher specimens were deposited in South Campus of Sun
Yat-senUniversity (N23.09°, E113.29°, Guangzhou city, Guangdong
province, China).

Temperature Treatments
To examine plant performance under a wide range of temperature,
we set five temperature levels: 18/13, 22/17, 26/21, 30/25, and 34/
29°C (day/night), and the length of day and night was set to 12 h for
all temperature regimes respectively based on our preliminary
experiment. 30/25°C was assumed to be the optimum temperature
for these three species according to the plant aboveground biomass
in a preliminary experiment. This “optimum” temperature was set
up according to the local observed mean day/night temperature
(31.1/26.5°C) of the hottest month (July) in HSD Natural Reserve.
18/13 and 34/29°C were regarded as the low and supra-optimal
temperatures, respectively.

Plant Growth
Besides monoculture growth of each of the three species (Figure 1),
C. capsularis and M. sepiaria each was also grown in species-pair
Frontiers in Plant Science | www.frontiersin.org 3
combinations, under the above five temperature levels to explore
temperature effects on root interactions (Supplementary Figure S1).
In total, there were five species-pair combinations (C. capsularis-C.
capsularis, M. sepiaria-M. sepiaria, C. capsularis-M. sepiaria, C.
capsularis-O. glaberrima, M. sepiaria-O. glaberrima). Since
contamination in 3D transparent solid growth system could limit
root visibility in situ and affect plant growth,we set each combination
6–12 independent replicates under each temperature treatment to
make sure each combination at least has three independent
biological replications at harvest without contamination.

The species-pair combination between O. glaberrima-O.
glaberrima seedlings cannot be detected by RSA, because they
give priority to the tap root growth and then there are not
enough lateral roots developed, which lead to less competitive
interactions. Therefore, we do not consider O. glaberrima-O.
glaberrima here.

The C. capsularis seeds were surface-sterilized with 30% H2O2

for 4 h, and the M. sepiaria seeds sterilized with 20% H2O2 for
1 h. The O. glaberrima seeds were treated with concentrated
H2SO4 for 30 min and rinsed with sterile water to destroy the
outer hard layer of the seeds to promote germination, then
sterilized with 15% H2O2 for 30 min. The seeds were then
FIGURE 1 | Root system architecture changes under different temperatures on the 84th day. (A) C. capsularis, (B) M. sepiaria, (C) O. glaberrima.
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rinsed with sterile water and sown in petri dishes in the dark at
32°C to germinate.

The germinated seedlings were then transplanted to
transparent cylinders, 20 cm in height and 10 cm in diameter,
filled with 1.2 L transparent solid growth medium made from
half-strength Hoagland solution and 0.2% Phytagel TM (Sigma-
Aldrich, German, pH = 5.8) (Figure 1, Supplementary Figure 1).
Differing from the soil or sand-based growth systems, ours allows
3D observation andmeasures of root growth while having similar
RSA with those under soil condition (Clark et al., 2011). In
the interaction experiment, the distance between the seeds of the
two plants was 2 cm. Foil was used to cover the surface of the
growth medium and wrap the containers to create a dark
environment for root growth (Fang et al., 2011). After
transplantation, the containers were moved to plant growth
chambers of the same light and humidity conditions, except for
temperature treatment.

Trait Measurement
All the plants were harvested 12 weeks (84 days) after germination
beforemost of roots touching the cylinder bottom to avoid container
effect (a few individuals of M. sepiaria were inevitably touch the
bottom of the cylinder for their fast growth). Few contaminated
replications were not used after harvest. In total, 117 individuals of
C. capsularis, 141 individuals of M. sepiaria, and 24 individuals of
O. glaberrima were used (details in sample size showed in
Supplementary Table 1). Root analysis software, WinRHIZO (Pro
2013a, Regent Instrument Inc.), was used to measure the RSA
parameters, including total root length, root surface area, root
volume, average root diameter, and number of root tips. Root
branching intensity was recorded as the ratio of number of
root tips and total root length (Kramer-Walter et al., 2016). We
also measured stem length. The aboveground, belowground, and
leaf biomass was measured after drying in an oven at 75°C for 48 h.
Most importantly, root width and depth and their growth dynamics
weremeasured in situ through imaging every week from the 3rd day
after germination, for a total of 13 root image sessions for each plant.
The root width was recorded as themaximumhorizontal distance of
lateral roots. The root depth was the maximum vertical root length,
including root length on the bottom of containers if the roots have
already touched the bottom of the container. We also obtained leaf
area (cm2) from the scanned images. The dynamic images of roots all
were analyzed by Image J (Version 1.49, National Institutes
of Health).

The seven RSA traits obtained broadly describe the entire root
system responses to temperature. They play different
physiological functions and can be roughly divided into four
categories. (1) Nutrient/water uptake traits (total root length,
surface area, and volume) which are correlated and directly
reflect plant nutrient uptake and competition ability (Casper
and Jackson, 1997). (2) Resource occupancy traits (root width
and depth) which reflect plant horizontal and vertical soil
resource occupancy ability, respectively (Belter and Cahill,
2015). (3) Nutrient transport traits (average root diameter)
which are associated with multiple functions, including
nutrient transport, soil penetration and anchorage (Kong et al.,
2014). (4) Nutrient foraging traits (root branching intensity)
Frontiers in Plant Science | www.frontiersin.org 4
which are critical for nutrient foraging and play an important
role in the response of roots to nutrient patches (Kong et al.,
2014; Kramer-Walter et al., 2016). Higher root branching
intensity usually results in a thinner root diameter (Kaspar and
Bland, 1992). The nutrition absorption and resource occupancy
associated RSA traits both are size-related metric (Belter and
Cahill, 2015).

Statistical Analysis
Temperature Response Analysis
Tukey-Kramer HSD multiple comparison method (DTK
packages) was used to make comparisons of trait parameters
under different temperature treatments.

Root Interaction Analysis
The relative interaction intensities (RII, equation 1) (Armas et al.,
2004) were calculated to describe the direction and intensity of
root interactions and show how they change with temperature.

RII = (VD − VA)=(VA + VD) (1)

where VA is the trait value of plants growing alone, and VD is the
trait value of focal species when growing with other species.

We used type III two-way ANOVA to examine whether the
effects of root interactions on focal species growth (in the form of
total biomass accumulated) were affected by neighbor identity,
temperature, and their interaction. Then a one-sample t-test was
used to examine the significance of root interactions.

RSA Dynamics Analysis
O. glaberrima usually has only one short tap root, sometimes
with a few tiny, short lateral roots at the seedling stage. Thus, we
modeled only root width and depth of C. capsularis and M.
sepiaria as a function of plant age using the three-parameter
asymptotic model proposed by Paine et al. (2012). The root
width expansion of the two species was well fitted by a
monomolecular model (equation 2), whereas root depth
expansion was well fitted by the three-parameter logistic model
(equation 3).

Mwidth = K − e−rt(K −M0) (2)

Mdepth =
M0K

M0 + (K −M0)e−rt 
(3)

AERwidth =
dMwidth

dt
= re−rt(K −M0) (4)

AERdepth =
dMdepth

dt
=

rM0Ke
−rt(K −M0)

(M0 + e−rt(K −M0))
2 (5)

Where M is accumulated growth, M0 is initial size, K is
asymptotic size, r is rate parameter, and t is time.

To compare and visualize the difference of root width and depth
growth dynamics among temperature treatments, we compiled the
root width and depth growth data of each species in monoculture
and fitted root width and depth expansion grouped by temperature
February 2020 | Volume 11 | Article 160
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treatment and obtained the function-derived absolute expansion
rate (AER) (equation 4 and 5), which was similar to the absolute
growth rate (AGR) proposed by Paine et al. (2012).

All of the above analyses were conducted by R software (R
Core Team, 2016).
RESULTS

RSA Responses to Temperature Changes
The three species differed in RSA responses to increased
temperature from low (18°C day/13°C night) to high
temperature (34/29°C) (Figures 1 and 2). At 18/13°C,
C. capsularis plants were all dead while the other two species
survived. Interestingly, at 22/17°C, only 4°C above the fatal low
temperature, the root depth and width of C. capsularis reached
the largest value, which was significantly larger than that at 30/
25°C and 34/29°C, whereas there were no significant differences
in C. capsularis total root length, surface area and volume among
the four temperature treatments (Figures 1A and 2A–E). ForM.
sepiaria, total root length, root depth, and root width all
increased with increasing temperature (Figures 1B and 2I–K),
but there were no significant temperature effects on root surface
area and root volume (Figures 2L, M). O. glaberrima seedlings
usually have only the tap root, sometimes with a few tiny, short
lateral roots (Figure 1C). Except for root width, no significant
responses of other RSA traits triggered by temperature changes
were detected for O. glaberrima (Figures 1C and 2Q–X).

In addition to the above root size-associated RSA traits, high
temperature (34/29°C) significantly affected the nutrient foraging
and transport-associated RSA traits of M. sepiaria (Figures 2N,
O), but only transport-associated RSA traits of C. capsularis
(Figure 2F). The high temperature significantly increased the
branching intensity of C. capsularis (Figure 2F) and M. sepiaria
(Figure 2N), and decreased the average root diameter of M.
sepiaria (Figure 2O).

RSA Dynamics Responses to Temperature
Changes
During the whole experimental period, the root depth and width
expansion of C. capsularis and M. sepiaria first gradually
increased with time and then reached an asymptote with no
further expansion. However, among temperature treatments, the
steepness (which is quantified by the duration of the expansion-
increasing phase) and asymptotic value of root expansion were
different. Those differences can be best explained by changes in
absolute expansion rate (AER) over time (Figure 3).

For C. capsularis, the peak AER of root depth and width first
increased with temperature and then decreased after reaching the
optimum temperature. Both root depth and width of C.
capsularis had an optimum temperature around 26/21°C for
AER. At 26/21°C, the timing to reach peak AER was nearly the
shortest (Figures 3C, D; Supplementary Table 2). For M.
sepiaria, the peak AER of root depth and width increased with
increasing temperature (Figures 3G, H; Supplementary Table
Frontiers in Plant Science | www.frontiersin.org 5
3). The timing to peak root width AER was shortened with
increasing temperature (Figure 3H; Supplementary Table 3).
Inconsistent with root width, the timing to peak root depth AER
was first extended and then shortened after reaching its
maximum at 26/21°C (Figure 3G; Supplementary Table 3).

Shoot Traits and Shoot/Root Ratio
Responses to Temperature Change
Shoot traits of the three species showed high sensitivity to
temperature changes (Figure 4). Although shoot trait
responses to temperature change differed in their details, the
response trends were similar. All the three species had an
optimum temperature for aboveground biomass at 30/26°C
(Figures 4A, F, K), a decrease in leaf biomass and area at 34/
29°C (Figures 4B, G, L, D, I, N), an increasing trend for stem
length with increasing temperature (Figures 4C, H, M).
Furthermore, there was no significant change in shoot/root
biomass ratio of the three species when increasing temperature
from 22/17 to 34/29°C (Figures 4E, J, O). Low temperature (18/
13°C) significantly decreased shoot/root biomass ratio of M.
sepiaria (Figure 4J).

Root Interaction (Intensity and Direction)
Responses to Temperature
Results of type III two-way ANOVA analysis showed that forM.
sepiaria as the focal species, the effect of root interaction on its
growth was significantly influenced by temperature (P < 0.0001),
neighbor identities (P = 0.0343), and the interaction between
temperature and neighbor identities (P = 0.0221). However, for
C. capsularis as the focal species, the root interaction effect on its
growth was significantly influenced by temperature (P = 0.0002)
and the interaction between temperature and neighbor identities
(P < 0.0001), but not neighbor identities (P = 0.310) (Table 1).

The intensity and direction of root interactions were affected
by temperature change for both C. capsularis and M. sepiaria as
the focal species (Figures 5 and 6). The growth of C. capsularis
and M. sepiaria was significantly inhibited when grown with
conspecies under all the temperature treatments with different
intensities (Figures 5A and 6A). Growth promotion was mainly
observed in mixture with other species under some temperature
treatments. Significant total growth in C. capsularis was
accompanied by significant increase in root biomass, total
length, surface area, volume, width, and average diameter
(Figure 5), whereas only total root length accompanied
significant growth in M. sepiaria (Figure 6). For C. capsularis,
growing with O. glaberrima significantly facilitated its growth at
26/21°C (Figure 5A). For M. sepiaria, growing with O.
glaberrima facilitated its growth under all the temperature
treatments except for a weak growth inhibition at 30/25°C,
whereas a significant increase was only observed at 22/17°C
(Figure 6A). However, we did not observe root interactions
significantly promoted plant growth at 18/13, 22/17, or 34/29°C.
Conversely, the greatest growth inhibition of C. capsularis was
observed when it was planted with M. sepiaria at 34/29°C
(Figure 5A).
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DISCUSSION

The key finding of this study is that RSA parameters, especially root
width and root depth, are highly sensitive to temperature change.
Species from the same community may have adapted to similar
Frontiers in Plant Science | www.frontiersin.org 6
habitats, but theydonot showaconsistentanddirectional response in
RSA to temperature changes. However, compared with RSA,
responses of shoots are conserved across the three species. The
variations in RSA responses among species also increased the
intensity and changed direction of root interactions in response to
FIGURE 2 | Temperature effects on seven root architecture traits and belowground biomass. TRL, total root length; RD, root depth; RW, root width; ARD, average
root diameter; RBI, root branching intensity; RSF, root surface area; RV, root volume; BB, belowground biomass. (A–H) C. capsularis, (I–P) M. sepiaria, (Q–X) O.
glaberrima. Error bars represent standard error (±SE). Different letters denote significant level at P < 0.05.
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FIGURE 3 | Temperature effects on the dynamics of two root size-related metrics and their absolute expansion rate (AER) of two species under different
temperature treatments. Graphs show predicted values with 95% confidence intervals (gray curves) for (A–D) C. capsularis, (E–H) M. sepiaria.
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FIGURE 4 | Temperature effects on shoot traits and the ratio of shoot biomass to root biomass. (A–E) C. capsularis, (F–J) M. sepiaria, (K–O) O. glaberrima. Error
bars represent standard error (±SE). Different bar annotations denote significant differences (P < 0.05).
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temperature changes. Although our experiments were conducted in
very artificial conditions, a previous study conducted by Clark et al.
(2011)have showedplants ingelhavingsimilarRSAwith thoseunder
soil condition. These results thus are important to understand the
complicated effect of increasing temperature on the performance and
competition of plants at the early/establishment stage in
natural environment.

Our results show that the three species vary in their RSA
responses to temperature changes, especially root depth and root
width. C. capsularis had a larger root system under low
temperature, whereas the size of M. sepiaria roots generally
increased with increasing temperature and O. glaberrima had
the largest root size around the optimum temperature (Figures 1
and 2B–C, I–K, Q–S). A larger root system could help acquire
more soil resources and increase nutrient uptake (de Kroon et al.,
2003). The differences in root size of C. capsularis andM. sepiaria
to temperature change suggest that C. capsularis may adapt
better to relative low temperatures, whereas M. sepiaria may be
better adapted to high temperatures. Although total root length
can also be a measure of root size, increase in total root length
but no changes in root depth and width can result in self-
competition and reduce nutrient absorption efficiency (Kaspar
and Bland, 1992). Besides, increased temperature was usually
accompanied by decreases in water availability (Nord and Lynch,
2009), and deep root systems could ameliorate water deficit by
increasing plant water uptake under warmer weather (Mueller
et al., 2013). M. sepiaria might be better adapted to water deficit
which comes after higher temperature with deeper roots.

Root branching intensity and average root diameter also
exhibited high sensitivity to temperature change. High
temperature significantly increased root branching of C. capsularis
and M. sepiaria (Figures 2F, N), which is consistent with previous
reports in crops (Nagel et al., 2009). This phenomenon might be
caused by high temperature significantly accelerating the root
meristem cell division, thus the development of lateral root
primordium (Francis and Barlow, 1988). Kaspar and Bland (1992)
reported that high root branching intensity usually results in thin
root diameter. However, for C. capsularis, no significant change in
the average root diameter was observed following root branching
increase under elevated temperature (Figures 2F, G). Furthermore,
warming experiments conducted on a temperate species, Lactuca
sativa, suggested that increasing average root diameter under high
temperature inhibited root nutrient acquisition under high
Frontiers in Plant Science | www.frontiersin.org 9
temperature (Qin et al., 2007). In this study, decrease in the
average root diameter of M. sepiaria under high temperature may
improve root nutrient acquisition, suggesting that M. sepiaria is a
better warm-adapted species (Figure 2O).

The responses of the root traits to temperature changes are also
significantly different from shoot traits, reflecting the different
effects of temperature on the aboveground and the belowground
growth and resource allocation (Skarpaas et al., 2016). Root
systems have narrow optimal growth temperature ranges, being
extremely sensitive to environmental change and weak in adapting
to harsh environments (Aidoo et al., 2016). In our experiment,
although changes in temperature seemed to have no significant
effect on root biomass of C. capsularis or M. sepiaria (Figure 2),
RSA exhibited high sensitivity to temperature stress. For all the
three species studied here, high temperature showed to increase
stem length, resulting from the high demand for light (Meineri
et al., 2014; Skarpaas et al., 2016), but reduced leaf area, because
high temperature can increase photosynthetic rate which make
leaves less important (Skarpaas et al., 2016). Meanwhile, increasing
temperature had little impact on shoot/root resource allocation
pattern (Figure 4). Plants usually allocate more resources to the
organs that suffer more selection pressures and constraints
(Husáková et al., 2018). The carbon fixation and nutrient
acquisition can both limit plant growth under increased
temperature. Moreover, our study found that the root expansion
dynamics of C. capsularis andM. sepiaria had an asymptotic value
for expansion and unimodal AER curve (Figure 3). These
phenomena were also found in aboveground plant growth
(Paine et al., 2012), which may be a growth strategy that plants
take to respond to temperature change by balancing shoot and
root growth or resource acquisition (Willaume and Pages, 2006).

Furthermore, the effectiveness of root response to competing
neighbors depends not only on its extent but also its rapidity in
response (Fitter, 1994; Bell and Sultan, 1999). In our experiments, the
growth-promoting effect on C. capsularis at 26°C/21°C when
interacting with M. sepiaria and O. glaberrima might result from
its optimal root growth with large root sizes and earlier and faster
root expansion (Figures 1A, 2B–C, 3A–D and 5A; Supplementary
Table 2). He et al. (2013) suggested that adverse living conditions
caused by climate change might force negative species interactions
into positive species interactions. Interestingly, at the supra-optimal
temperature, we found only a weak growth-promoting effect on C.
capsularis when interacting with O. glaberrima, but an intensified
TABLE 1 | ANOVA for the effects of root interactions on focal species growth.

Parameters C. capsularis M. sepiaria

Sum Sq Df F value Pr(>F) Sum Sq Df F value Pr(>F)

Intercept 0.387 1 22.64 <0.0001 0.0584 1 4.27 0.0416
Temperature 0.363 3 7.09 0.0002 0.448 4 8.17 <0.0001
Neighbors 0.0406 2 1.19 0.310 0.0957 2 3.49 0.0343
Temperature× Neighbors 0.754 6 7.36 <0.0001 0.261 8 2.38 0.0221
Residuals 1.38 81 1.32 96
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FIGURE 5 | Temperature effects on root relative interaction intensity (RII) with focal species C. capsularis. Graphs show RII measured by (A) Total biomass, (B) BB,
belowground biomass, (C) TRL, total root length, (D) RSF, root surface area, (E) RV, root volume, (F) RD, root depth, (G) RW, root width, (H) ARD, average root
diameter and (I) RBI, root branching intensity. The bars are grouped by species-pair combination treatments and different bars represent different temperature
treatments. Asterisks indicate one-sample t-tests for the difference from zero. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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FIGURE 6 | Temperature effects on root relative interaction intensity (RII) with focal species M. sepiaria. Graphs show RII measured by (A) Total biomass, (B) BB,
belowground biomass, (C) TRL, total root length, (D) RSF, root surface area, (E) RV, root volume, (F) RD, root depth, (G) RW, root width, (H) ARD, average root
diameter and (I) RBI, root branching intensity. The bars are grouped by species-pair combination treatments and different bars represent different temperature
treatments. Asterisks indicate one-sample t-tests for the difference from zero. *, P < 0.05; **, P < 0.01; ***, P < 0.001..
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growth-inhibiting effect when interacting with M. sepiaria (Figure
5A). This result may be caused by the larger root system with earlier
and faster expansion of M. sepiaria roots at the supraoptimal
temperature (Figures 1B, 2I–K, and 3E–H; Supplementary Table
3). Our results further support the idea that species with a warmer
thermal niche will increase in abundance under a warmer climate
(Elmendorf et al., 2015), suggesting that species with greater root
resilience have a competitive advantage.
CONCLUSIONS

At the early/establishment stage, plants usually give priority to the
root growth for nutrient uptake and physical support, especially in
tropical regions for the intense competition (Radville et al., 2016). In
summary, our study showed understanding the effect of warming
on root systems of plant seedlings, especially the spatial distribution
of root systems, is necessary to predict plant seedling performance
and community regeneration in future climate warming. Our
findings suggest that the RSA of the three plant seedlings from
the same habitat show inconsistent responses to temperature
changes. The variation of belowground responses to temperature
change can be greater than the responses of the aboveground
among species, suggesting that the differences in plant seedling
adaptability to increased temperature are likely, at least partly,
determined by belowground adaptive responses. Furthermore, the
variation can also be an explanation for the direction and intensity
of the change in plant interaction under climate warming, which
also important for the success of seedling establishment. We suggest
future studies should move on to field studies and compare the
differences in RSA between artificial and natural conditions, and
study the allocation of nutrients, such as nitrogen and phosphorus,
between roots and shoots under climate warming, for better
understanding how plants coordinate root/shoot growth and
getting insight in tree seedling nurseries under climate change.
Frontiers in Plant Science | www.frontiersin.org 12
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