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Supplementing Synbiotic in Sows’
Diets Modifies Beneficially Blood
Parameters and Colonic Microbiota
Composition and Metabolic Activity
in Suckling Piglets
Cui Ma 1,2, Qiankun Gao 1, Wanghong Zhang 1,2, Qian Zhu 1,2, Wu Tang 1,2,
Francois Blachier 3, Hao Ding 1 and Xiangfeng Kong 1*
1 CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal 
Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in 
Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,
2 University of Chinese Academy of Sciences, Beijing, China, 3 Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 
Paris, France

Nutrients in the maternal diet favor the growth and development of suckling piglets 
and alter their gut microbiota composition and metabolic activity, thus affecting the 
hosts. The present study analyzed, in suckling piglets from sows receiving antibiotic 
or synbiotic supplements from pregnancy to lactation, several biochemical parameters, 
oxidative/anti-oxidative indices, inflammatory cytokines, and ingestion-related factor 
levels in plasma, as well as colonic microbiota composition and metabolic activity, and 
mucosal expression of genes related to the intestinal barrier function. Compared with 
the control group, maternal synbiotic supplementation decreased (P < 0.05) the plasma 
levels of glucose, AMM, TC, low-density lipoprotein-cholesterol (LDL-C), MDA, H2O2, 
ghrelin, CCK, PP, IL-1β, IL-2, IL-6, TNF-α, Ala, Cys, Tau, and β-AiBA, the levels of 
propionate and total short-chain fatty acids (SCFAs) in the colonic luminal content, 
and colonic abundances of RFN20, Anaerostipes, and Butyricimonas; while increased 
(P < 0.05) the plasma levels of urea nitrogen (UN), Ile, Leu, α-AAA, α-ABA, and 
1-Mehis, as well as colonic abundances of Sphingomonas, Anaerovorax, Sharpea, and 
Butyricicoccus. Compared with the antibiotic group, maternal synbiotic supplementation 
decreased (P < 0.05) the plasma levels of glucose, gastrin, and Ala, as well as 
abundances of Pasteurella and RFN20 and propionate level in the colonic content. 
Expression of genes coding for E-cadherin, Occludin, ZO-1, ZO-2, IL-10, and interferon-α 
were down-regulated in the colonic mucosa. The synbiotic supplementation increased 
(P < 0.05) the plasma levels of UN, Leu, α-ABA, and 1-Mehis, the abundances 
of Anaerovorax, Sharpea, and Butyricicoccus and expression of genes coding for 
E-cadherin, Occludin, ZO-1, ZO-2, IL-10, and interferon-α. Spearman correlation analysis 
showed that there was a positive correlation between colonic Anaerostipes abundance
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and acetate and SCFAs levels; whereas a negative correlation between Fusobacteria

and Fusobacterium abundances and acetate level. These findings suggest that synbiotic

Q13

supplementation in the maternal diet improved nutrient metabolism and intestinal barrier

permeability, reduced oxidative stress, and modified colonic microbiota composition and

metabolic activity in suckling piglets.

Q14Keywords: biochemical parameters, gut microbiota, metabolites, sows, suckling piglets, synbiotic

Q7

Q15

INTRODUCTION

Economic benefit in swine farm is directly affected by the survival
rate, growth and development, and health of suckling piglets (1).
The survival and health of suckling piglets are largely dependent 
on maternal milk quality (2). Maternal nutrition during lactation
is an important factor affecting the quality and quantity of the
maternal milk. Therefore, improving maternal nutrient level
could help to enhance sows lactating performance and promote
the growth and development of piglets.

Gut microbiota is involved in the metabolism, growth, and
development of the host (3). Short-chain fatty acids (SCFAs)
are products of some specific gut bacteria and could serve as
luminal energy substrates in colonocytes (4). In addition, SCFAs
exert an anti-inflammatory effect in the gut (5). Microbiota
colonization in infant gut begins from their mother’s wombs
(6) and is affected by diets and other environmental factors
(7). Exposure to antibiotics via oral administration as a kind
medicine (especially the broad-spectrum antibiotics) in newborn
animals has a major effect on gut microbiota composition (8).
Antibiotics was reported to promote nutrient absorption and
increase the piglet growth (9). However, antibiotic overuse leads
to drug residues in animals and their products, thus leading to
antibiotic resistance and affecting humans health (10). Synbiotics,
the mixed additive of prebiotics and probiotics, have shown
several beneficial effects in pig production. For instance, several
studies showed that dietary synbiotic supplementation improved
the intestinal microbiota and growth performance of weaned
piglets (11, 12). Therefore, we speculated that synbiotics in the
maternal diet could affect the offspring, notably by modifying the
gut microbiota and metabolic activity.

Our previous study showed that dietary synbiotic
supplementation increased the piglet survival rate by
improving the glycolipids absorption and utilization and
altering the gut microbiota composition and abundances
of sows (13). The present study hypothesizes that maternal
synbiotic supplementation may modify beneficially blood
indices, gut microbiota composition and metabolic activity,
and the mucosal mRNA expression of genes related to the
intestinal barrier function. Therefore, the effects of synbiotic
supplementation in sows’ diets were measured on several
parameters in suckling piglets, including plasma biochemical
parameters, oxidative/anti-oxidative indices, inflammatory and
ingestion-related factors, and free amino acids. In addition,
colonic microbiota composition and metabolic activity were
measured in piglets, as well as expression of colonic mucosa
genes involved in epithelial barrier function and inflammation.

MATERIALS AND METHODS

Experimental Design
The animal experiment was conducted in Hantang Agriculture 
Co. Ltd., Shimen, Hunan, China. Forty-eight pregnant Bama 
mini-pigs were selected and randomly allocated into one of 
three groups (16 sows per group). The sows in the control 
group were fed a basal diet, those in the antibiotic group were 
fed a basal diet supplemented with 50 g/t virginiamycin, and 
those in the synbiotic group were fed a basal diet supplemented 
with 200 mL/d fermentation broth per animal and 500 g xylo-
oligosaccharides (XOS) per ton diet. The fermentation broth 
was provided by Hunan Lifeng Biotechnology Co. Ltd. and 
contained ≥ 1.2 × 108 CFU/g viable Lactobacillus plantarum 
B90 (BNCC1.12934) ≥ 1.0 × 108 CFU/g and Saccharomyces 
cerevisiae P11 (BNCC2.3854) ≥ 0.2 × 108 CFU/g. The XOS 
was provided by Shandong Longlive Biotechnology Co., Ltd., 
Shandong, China; and contained xylobiose, xylotriose, and 
xylotetraose at level ≥ 35%. The diet composition and nutrient 
levels for the sows met the Chinese pig local standard (NY-2004), 
and the premixes for pregnant and lactating sows met the NRC 
recommended requirements (NRC, 2012)(Supplementary Table 
1). The experimental period was from mating to weaning 
(postpartum 21 d). During the trial period, there were four sows 
returned to estrus in the control group, two sows returned to 
estrus in the antibiotic group, and three sows returned to estrus 
in the synbiotic group. The diets were fed twice daily (8:00 a.m. 
and 5:00 p.m.) fluctuating with the physical condition of the 
sows throughout the trail, and water was available freely.

Sample Collection and Preparation
At 21 day-old (weaned), the piglets from 12 litters were weighed 
after fasted for about 12 h and one piglet with middle body 
weight (BW) per litter was selected. Twelve piglets per group 
were exsanguinated after electrical stunning (120 V, 200 Hz). 
Each piglet per group was randomly chosen to collect blood 
samples from precaval vein into 10 mL heparin coated-tubes and 
plasma was separated by centrifuging at 3,500 g and 4◦C for 10 
min and stored at −20◦C for further analysis. Colonic contents 
(middle section) were collected in 10 mL sterile centrifuge tubes 
and stored immediately at −20◦C for subsequent analysis of 
microbiota composition and metabolites. After washing with 
cold physiological saline, the colonic mucosal tissues were 
sampled and immediately frozen in liquid nitrogen (∼2 g), and 
then stored at −80◦C for mRNA analyses.
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Determination of Plasma Biochemical
Parameters
The plasma levels of albumin (ALB), alkaline phosphatase 
(ALP), alanine aminotransferase (ALT), ammonia (AMM), 
aspartate aminotransferase (AST), glucose (GLU), high-density 
lipoprotein-cholesterol (HDL-C), low-density lipoprotein-
cholesterol (LDL-C), total cholesterol (TC), triglyceride 
(TG), total protein (TP), and urea nitrogen (UN) were 
determined using commercially available kits (F. Hoffmann-
La Roche Ltd, Basel, Switzerland) with the Roche automatic 
biochemical analyzer (Cobas c311, F. Hoffmann-La Roche Ltd, 
Basel, Switzerland).

Determination of Plasma
Oxidative/Anti-oxidative Indices,
Inflammatory Cytokines, and Ingestion
Related Factors
The plasma levels of catalase (CAT), hydrogen peroxide (H2O2), 
malondialdehyde (MDA), superoxide dismutase (SOD), and 
total antioxidant capacity (T-AOC), were determined as per 
commercially available kit directions (Suzhou keming, Co. Ltd, 
Jiangsu, China) with Multiscan Spectrum (Tecan, Infinite M200 
Pro, Switzerland).

The plasma levels of gastrin, ghrelin, cholecystokinin (CCK), 
interleukin (IL)-1β, IL-2, IL-6, IL-10, interferon (IFN)-α, insulin-
like growth factor (IGF)-1, leptin (LEP), pancreatic polypeptide 
(PP), peptide YY (PPY), and tumor necrosis factor (TNF)-α 
were measured according to the Meimian ELISA kit directions 
(Jiangsu Yutong Biological Technology, Co. Ltd., Jiangsu, China) 
on Multiscan Spectrum (Tecan, Infinite M200 Pro, Switzerland).

Determination of Plasma Free Amino Acids
Approximately 1.00 mL plasma sample was added into 1.00 mL 
8% salicylic acid solution, mixed thoroughly and overnighted at 
4◦C, and then centrifuged at 8,000 r/min for 10 min to obtain

the supernatant. The processed samples were filtered through a
0.45-µmmembrane prior to analysis of free amino acids with an
automatic AA analyzer (L8900, Hitachi, Tokyo, Japan).

DNA Extraction and 16S rRNA Gene
Sequencing
The total genomic DNA of colonic content samples was
extracted using the Fast DNA SPIN extraction kits (MP
Biomedicals, Santa Ana, CA, USA). The DNA concentration
was determined using NanoDrop ND-1000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). The V3-V4
regions was amplified using the primer 338F (5′-GCACCTAA
YTGGGYDTAAAGNG-3′) and 806R (5′-TACNVGGGTATCTA
ATCC-3′). The protocol of PCR amplification was conducted
according to our previous study (13). The PCR products were
successfully separated using 1.2% agarose gel electrophoresis,
purified using Agencourt AMPure Beads (Beckman Coulter,
Indianapolis, IN), and further quantified using the PicoGreen
dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA) according
to the manufacturer’s instructions. Purified amplicons were then
subjected to paired-end (2 × 300) sequencing on an Illumina
MiSeq platform (Illumina, San Diego, USA) using the MiSeq
Reagent Kit v3 (600 cycles) according to the standard protocol,
which was performed by Shanghai Personal Biotechnology Co.
Ltd., Shanghai, China. The raw Illumina pair-end read data for
all samples are available in the NCBI Sequence Read Archive with
accession number PRJNA609410.

Determination of Metabolites in Colonic
Contents
The SCFAs in colonic contents were measured with gas
chromatography (Agilent Technologies 1206, Santa Clara, CA,
USA) according to the previous description (14). The levels of
bioamines, indole, and skatole in colonic contents weremeasured
using reverse phase-high performance liquid chromatography

FIGURE 1 | Effect of maternal synbiotic supplementation on plasma biochemical parameters of suckling Bama mini-piglets. C, A, and S present the control group,Q5

Q6 antibiotic group, and synbiotic group, respectively. The same as below. Data represent the means ± SEM. *indicates statistically significant (P < 0.05). n = 8 per group.
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(Agilent Technologies, Santa Clara, CA, USA) according to a
previous study (14).

Determination of mRNA Expression of
Genes Related to Intestinal Health
The primers for target genes and reference gene β-actin (listed
in Supplementary Table 2) were designed using Primer-BLAST.
RNA extraction and real-time polymerase chain reaction (RT-
PCR) analyses were conducted as a previous report (15). The
relative expression level of each target gene was determined
by RT-PCR with performing on a 480II system (Roche,

LightCycler R© 480II, Switzerland) and calculated by the 2−11Ct

method (16).

Statistical Analysis
The plasma indices, colonic metabolite levels, and colonic
microbiota alpha diversity were analyzed using one-way
analysis of variance (ANOVA) followed by Duncan’s multiple
range post hoc test with SPSS 22. The microbial community
structural variation among samples was performed by the
beta diversity analysis (PERMANOVA) (17) and was showed
using the partial least squares-discriminant analysis (PLS-DA).
The colonic microbiota abundance and overall composition at

FIGURE 2 | Effect of maternal synbiotic supplementation on plasma oxidative/anti-oxidative levels in suckling Bama mini-piglets. Data represent the means ± SEM. 
*indicates statistically significant (P < 0.05). n = 8 per group.

FIGURE 3 | Effect of maternal synbiotic supplementation on plasma inflammatory cytokine levels in suckling Bama mini-piglets. Data represent the means ± SEM. 
*indicates statistically significant (P < 0.05). n = 8 per group.
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FIGURE 4 | Effect of maternal synbiotic supplementation on plasma ingestion-related factor levels in suckling Bama mini-piglets. Data represent the means ± SEM. 
* indicates statistically significant (P < 0.05). n = 8 per group.

phyla and genus levels were analyzed using Metastats (http://
metastats.cbcb.umd.edu/) (18). The graph preparation was 
performed using GraphPad Prism ver7.0 (San Diego, CA, USA). 
Spearman’s correlation between colonic microbiota abundances 
and metabolite levels was analyzed with t  he R package. All data were 
presented as means ± SEM. Differences were c onsidered statistically 
significant at P < 0.05.

RESULTS

Plasma Biochemical Parameters of Piglets
As shown in Figure 1, compared with the control group, 
maternal synbiotic supplementation increased (P < 0.05) plasma 
UN level while decreased (P < 0.05) plasma GLU, AMM, TC, and 
LDL-C levels. Maternal synbiotic supplementation decreased (P 
< 0.05) plasma ALT and GLU levels, increased (P < 0.05) UN 
level, and showed an increased trend in TG level (P = 0.074), 
when compared with the antibiotic group.

Plasma Oxidative/Anti-oxidative Indices,
Inflammatory Cytokines, and Ingestion
Related Factors of Piglets
As shown in Figure 2, compared to the control group, 
maternal synbiotic supplementation decreased (P < 0.05)

plasma MDA and H2O2 levels and antibiotic supplementation 
decreased (P < 0.05) plasma MDA level. However, the plasma 
T-AOC, SOD, and CAT indices did not reach statistical 
significance (P > 0.05).

As presented in Figure 3, maternal synbiotic supplementation 
decreased (P < 0.05) plasma levels of IL-1β, IL-2, IL-6, and TNF-
α; and antibiotic supplementation decreased (P < 0.05) plasma 
levels of IGF-1, IL-1β, IL-2, IL-6, and TNF-α, when compared 
with the control group.

As listed in Figure 4, maternal synbiotic supplementation 
decreased (P < 0.05) plasma ghrelin, CCK, and PP levels and 
had a decreased trend in LEP level (P = 0.05); and maternal 
antibiotic supplementation decreased (P < 0.05) plasma gastrin, 
ghrelin, CCK, PP, LEP, and SS levels, when compared with the 
control group. Maternal synbiotic supplementation decreased 
plasma gastrin (P < 0.05) and LEP (P = 0.05) levels relative to 
the antibiotic group.

Plasma Free Amino Acid Levels of Piglets
As shown in Table 1, synbiotic supplementation decreased (P < 
0.05) plasma Ile, Leu, α-AAA, α-ABA, and 1-Mehis levels and 
antibiotic supplementation decreased (P < 0.05) plasma Hypro 
level, when compared with the control group. The plasma Leu, 
α-ABA, and 1-Mehis levels in the synbiotic group
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TABLE 1 | Effects of maternal synbiotic supplementation on plasmaQ6

concentrations of free amino acids in suckling Bama mini-piglets (µg/mL; n = 8).

Items Control group Antibiotic group Synbiotic group

Ala 29.58 ± 2.90a 28.04 ± 2.83a 13.64 ± 1.5b

Ans 0.87 ± 0.17 0.51 ± 0.03 0.57 ± 0.08

Arg 18.44 ± 1.55 16.06 ± 0.56 18.60 ± 1.60

Asp 2.45 ± 0.54 2.48 ± 0.24 1.96 ± 0.21

Car 7.18 ± 0.36 8.37 ± 0.72 5.86 ± 0.44

Cit 9.28 ± 0.58 8.93 ± 0.66 10.91 ± 0.83

Cys 0.85 ± 0.15a 1.69 ± 0.37ab 1.95 ± 0.21b

Cysthi 3.43 ± 0.33 3.31 ± 0.13 4.12 ± 0.31

EOHNH2 0.56 ± 0.39 1.29 ± 0.56 3.10 ± 0.24

Glu 39.12 ± 9.02 27.93 ± 3.12 21.61 ± 1.97

Gly 31.35 ± 1.92 35.56 ± 2.24 31.80 ± 1.06

His 10.27 ± 0.52 10.74 ± 0.55 11.10 ± 0.69

Hypro 10.52 ± 0.85b 12.88 ± 0.57a 12.08 ± 0.7ab

Ile 15.73 ± 1.98b 16.44 ± 1.5ab 21.23 ± 1.53a

Leu 19.66 ± 1.79b 20.76 ± 1.96b 26.94 ± 1.92a

Lys 20.25 ± 1.69 22.22 ± 2.17 23.60 ± 0.79

Met 3.90 ± 0.46 3.80 ± 0.37 3.97 ± 0.21

Orn 6.76 ± 0.61 7.32 ± 0.65 6.62 ± 0.44

Phe 13.88 ± 0.93 14.68 ± 0.64 15.58 ± 0.40

Pro 16.35 ± 1.14 16.48 ± 1.10 18.37 ± 0.88

Sar 1.09 ± 0.23 1.42 ± 0.43 1.30 ± 0.33

Ser 11.92 ± 1.02 12.47 ± 1.06 10.96 ± 0.82

Tau 9.97 ± 0.36a 9.42 ± 0.75ab 8.16 ± 0.42b

Thr 17.31 ± 1.10 16.7 ± 1.21 15.56 ± 1.20

Tyr 11.31 ± 1.38 11.28 ± 1.00 10.66 ± 0.53

Val 32.45 ± 4.11 32.73 ± 3.56 37.71 ± 2.38

α-AAA 6.86 ± 0.84b 7.86 ± 0.93ab 9.80 ± 0.73a

α-ABA 3.55 ± 0.39b 3.43 ± 0.51b 4.94 ± 0.32a

β-AiBA 0.25 ± 0.04a 0.18 ± 0.02ab 0.40 ± 0.16b

β-Ala 1.00 ± 0.12 1.11 ± 0.14 1.20 ± 0.22

1-Mehis 0.38 ± 0.04b 0.55 ± 0.11b 1.21 ± 0.22a

3-Mehis 2.29 ± 0.12 2.05 ± 0.12 2.23 ± 0.17

Data in the same row with different superscripts differ significantly (P < 0.05). Asp:

Asp + Asn; Glu: Glu + Gln; α-AAA, L-alpha-aminoadipic acid; α-ABA, DL-alpha-amino-

n-butyric acid; β-AiBA, DL-beta-aminoisobutyric acid; β-Ala, beta-alanine; 1-Mehis,

L-1-methylhistidine; 3-Mehis, L-3-methylhistidine.

was higher (P < 0.05) while plasma Ala level was lower (P < 0.05)
compared with the antibiotic group.

Diversity of Colonic Microbiota in Piglets
Total 993,960 high-quality reads were generated from 48 colonic
content samples, and each sample contained an average of 41,415
reads (range from 31,377 to 57,987). As shown in Figure 5, the
Chao1, ACE, Simpson, and Shannon indices showed no 
difference among the three groups (P > 0.05). PLS-DA showed
that samples from the three groups tended to exhibit a distinct
clustering of microbiota composition although there was a
partial overlap between the antibiotic group and synbiotic group.

Composition and Abundance of Colonic
Microbiota in Piglets
As shown in Figure 6, the top five dominant phyla were
Firmicutes (80.7%), Proteobacteria (7.3%), Bacteroidetes (6.3%),
Spirochaetes (2.8%), and Fusobacteria (1.4%), which account
for > 98% of total colonic bacteria. At phylum level, only
Fusobacteria relative abundance in the antibiotic group was
higher (P < 0.01) than that in the control group.

At genus level, Lactobacillus (23.2%), p-75-a5 (3.4%),
Herbaspirillum (3.3%), Treponema (2.5%), and Oscillospira
(2.5%) were the top dominant genera of colonic microbiota with
a clear classification status (Figure 7). Further, the abundances
of colonic microbiota with a clear classification status of
20 most abundant bacterial genera were analyzed. Relative
to the control group, maternal synbiotic supplementation
increased (P < 0.05) the abundances of p_Proteobacteria;g_
Sphingomonas, p_Firmicutes;g_Anaerovorax, p_Firmicutes;
g_Holdemania, p_Firmicutes;g_Sharpea, p_Firmicutes;
g_Butyricicoccus, and p_Firmicutes;g_Anaerostipes; while
decreased (P < 0.05) the abundances of p_Firmicutes;
g_Facklamia, p_Firmicutes;g_RFN20, p_Actinobacteria;
g_Arcanobacterium, and p_Proteobacteria;g_Brevundimonas.
Maternal antibiotic supplementation decreased (P <

0.05) the abundances of p_Proteobacteria;g_Acinetobacter,
p_Firmicutes;g_Facklamia, p_Firmicutes;g_Streptococcus, and
p_Proteobacteria;g_Brevundimonas while increased (P < 0.05)
p_Fusobacteria;g_Fusobacterium abundance. Compared with the
antibiotic group, maternal synbiotic supplementation decreased
(P < 0.05) the abundances of p_Proteobacteria;g_Pasteurella
and p_Firmicutes;g_RFN20, while increased (P < 0.01) the
abundances of p_Firmicutes;g_Anaerovorax, p_Firmicutes;
g_Holdemania, p_Firmicutes;g_Sharpea, and p_Firmicutes;
g_Butyricicoccus.

Metabolite Levels in Colonic Contents of
Piglets
As shown in Figure 8, compared with the control group, the
levels of propionate, straight-chain fatty acids, and SCFAs were
decreased (P < 0.05) and spermidine level showed a decreased
trend (P = 0.055) in the synbiotic group. Moreover, maternal
synbiotic supplementation decreased (P < 0.05) the propionate
level and increased (P = 0.055) spermidine level compared
with the antibiotic group. The differences in other determined
metabolites among the three groups did not present statistically
significant (P > 0.05) (Supplementary Figure 1).

Correlation Between Microbiota and
Metabolites in Colonic Content of Piglets
As shown in Figure 9, p_Firmicutes;g_Butyricicoccus abundance
was positively correlated (P < 0.05) with isovalerate and
branched-chain fatty acid (BCFA) levels, as well as p_Firmicutes;
g_Anaerostipes abundance with acetate and SCFAs levels.
However, a significant negative correlation (P < 0.05)
was observed between p_Fusobacteria and p_Fusobacteria;
g_Fusobacterium abundances and acetate level. In addition, there
was a negative correlation (P < 0.05) between p_Firmicutes;
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Q22FIGURE 5 | Effect of maternal synbiotic supplementation on alpha diversity of colonic microbiota in suckling Bama mini-piglets. (A–D) The microbial diversity 
is estimated by Chao, ACE, Shannon, and Simpson indices. (E) Partial least squares discrimination analysis (PLS-DA) of the colonic microbial community. 
Data represent the means ± SEM. The data were analyzed by One-way analysis of variance and Duncan’s multiple range test. n = 8 per group.

g_Facklamia abundance and tryptamine level, as well as 
p_Actinobacteria;g_Arcanobacterium abundance and tryptamine 
and skatole levels.

mRNA Expression of Genes Related to
Intestinal Health in Piglets
As shown in Figure 10, maternal synbiotic supplementation up-
regulated (P < 0.05) the mRNA expression of colonic E-cadherin, 
Occludin, ZO-1, ZO-2, IL-10, and IFN-α compared with the 
antibiotic group. Compared with the control group, maternal 
synbiotic and antibiotic supplementation failed to affect the 
expression of determined genes.

DISCUSSION

The present study explored the effects of synbiotic 
supplementation in the maternal diets from pregnancy 
to lactation on the intestine health of suckling piglets by 
determining colonic microbiota composition, metabolite levels, 
and mucosal gene expression, as well as plasma parameters. 
We found that maternal antibiotic supplementation is counter-
productive for the intestinal health based on the 
measurement of parameters related to the intestinal barrier 
permeability, whereas synbiotic supplementation improved 
parameters related to nutrient metabolism and intestinal health.

The piglets utilize efficiently dietary fat when blood TC level 
decreases. LDL-C transports TC synthesized by the liver to 
extrahepatic tissue, thus preventing excessive lipid deposition 
in the liver (19). In the present study, maternal synbiotic 
supplementation decreased plasma TC and LDL-C levels,

suggesting that dietary fat was highly utilized by piglets to favor
their growth. Shakeri et al. (20) reported that supplementing
synbiotics reduced the blood TC level by altering gut microbiota
metabolism. UN is a metabolite of amino acid and/or protein
(21), plasma level of which reflects the profiles of protein
absorption and utilization in the animal body (22). AMM
reflects the liver function and the decrease of plasma AMM
level indicates the increase of liver ability for synthesizing
urea (23). The present study showed that plasma UN level
increased while AMM level decreased in the synbiotic group,
suggesting that maternal synbiotic supplementation promoted
protein utilization of suckling piglets. These findings suggest
that maternal synbiotic supplementation, but not antibiotic
supplementation, would enhance the nitrogen metabolism of
suckling piglets.

Amino acids (AAs), apart for being an important component
of tissue protein, play several important roles in protein
metabolism in animals (24). Weanling piglets use branched-
chain amino acids (including Ile, Leu, and Val) to maintain
their growth and development, especially Leu which contributes
to regulate protein synthesis and tissue growth of animals
(25). In the present study, maternal synbiotic supplementation
increased the plasma Ile and Leu levels in suckling piglets.
In addition, previous studies showed that Tau and Cys, main
products of Met metabolism, play a vital role in the growth
and health of piglets (26). Ala is the main substrate for
glucose synthesis in the liver, which can play a role in the
body’s immune function (27). Tau, mostly found at a high
level in animal tissues, has been shown to improve animal
lipid metabolism (28). The present study showed that maternal
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Q21 FIGURE 6 | Effect of maternal synbiotic supplementation on the colonic microbial community structure in suckling Bama mini-piglets. Colonic microbiota distributed 
at the phylum level (A) and all phyla were listed. A comparison of relative abundances at the phylum level (B) was analyzed by Metastats analysis, and the discrepancy 
of the top 10 colonic microbiota was listed. Phyla with proportion < 0.001 were grouped in others. **P < 0.01. n = 8 per group.

FIGURE 7 | Effect of maternal synbiotic supplementation on the colonic microbial community structure in suckling Bama mini-piglets. Colonic microbiota distributed at 
the genus level (A) and only the top 20 genera were listed. A comparison of relative abundances at the genus level (B) was analyzed by Metastats analysis. The 20 most 
abundant bacterial genera with a clear classification status were presented and compared. *P < 0.05; **P < 0.01. n = 8 per group.

synbiotic supplementation decreased the plasma levels of Tau,
Cys, and Ala in piglets, suggesting that dietary synbiotics
may modify amino acid metabolism in the offspring. These
above-mentioned findings suggested that maternal synbiotic
supplementation affects the protein synthesis by altering plasma
amino acids levels.
Plasma MDA level reflects lipid peroxidation in the body tissues

(29). H2O2 is a reactive oxygen species (ROS) that

can increase the oxidative stress in tissues (30). A previous
study showed that piglets may produce excessive reactive
oxygen species thus leading to oxidative stress, which may
lead to intestinal barrier dysfunction in weaned piglets (31).
Interestingly, we found that maternal synbiotic supplementation
decreased plasma MDA and H2O2 levels, suggesting that
the synbiotics could relieve the oxidative stress exposure to
suckling piglets. Among prebiotics, XOS produces SCFAs which
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FIGURE 8 | Effect of maternal synbiotic supplementation on colonic short-chain fatty acids levels in suckling Bama mini-piglets. The data were analyzed by Duncan’s 
multiple range test using One-way analysis of variance. Data represent the means ± SEM. *P < 0.05. n = 8 per group.

may reduce ROS production (32), Lactobacillus reduces MDA
production (33), and synbiotic addition reduces the MDA level
and relieves oxidative stress in tissues (29).

Gut microbiota is involved in nutrient utilization and affects
the growth and development of the host (34). Maternal nutrition
during pregnancy and lactation modified the gut microbiota
composition and health of offspring (35). Gut microbiota

diversity was closely related with the host’s health (36). The α-
diversity of microbiota is decreased, which may be associated
with a higher occurrence of low-grade inflammation and some
metabolic diseases (37). In the present study, after maternal
antibiotic or synbiotic supplementation, the α-diversity of
colonic microbiota in piglets did not change, whereas the
microbiota composition and abundances changed markedly,
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FIGURE 9 |  Correlation between colonic microbiota and t  heir metabolites in suckling Bama mini-piglets. Spearman (  r) correlations were used, and *  means 
that t  he correlation is significant. SCFAs: short-chain fatty acids; BCFA: branched-chain fatty acid.

suggesting that maternal synbiotic might not exert a negative 
effect on suckling piglets.

In the animal gut, the dominant phyla usually includes 
Firmicutes, Bacteroides, Proteobacteria, and Fusobacterium 
(38). In the present study, the abundances of Firmicutes, 
Bacteroides, and Proteobacteria accounted for 94.3% of the total 
sequences. Firmicutes plays a vital role in the degradation of 
polysaccharides and oligosaccharides (39), which involves some 
key metabolic conversions by the gut microbial community 
(40). In addition, maternal synbiotic supplementation increased 
the abundances of Butyricicoccus and Sharpea belonged to 
Firmicutes. Butyricicoccus can reduce the production of pro-
inflammatory cytokines to inhibit the host’s inflammation 
(41). We found that maternal synbiotic supplementation 
increased Butyricicoccus abundance, which might reduce the 
inflammation occurrence of suckling piglets via altering gut 
microbiota composition and abundance. Sharpea promotes 
SCFAs (especially butyrate) and lactate production (42). Our 
study showed that maternal synbiotic supplementation increased 
Sharpea abundance in the offspring, which may favor inhibition 
of the proliferation of potential pathogenic bacteria by reducing 
the gut pH value. Additively, Fusobacterium can use glucose 
as a carbon source, the abundance of which is increased by 
polysaccharide degradation (43). Several studies reported that 
Fusobacterium might be a contributing factor for inflammation 
(44), the abundance of which increased in neonatal piglets with 
diarrhea (45). In the present study, the Fusobacterium abundance 
showed a decreased trend in the synbiotic group, implying that 
maternal synbiotic supplementation reduced this potential 
pathogenic bacteria.

Colonic SCFAs can exert crucial effects on intestinal function
and health of the host before and after absorption in the blood
(46). In addition of providing 60–70% of total energy to colonic 
cells (47), the SCFAs are associated with the reduction of the 
host’s inflammation (48) and the relieving symptoms of other
metabolic diseases (49). Among them, propionate reduces the
serum cholesterol level and liver lipogenesis of rats (50). Our
study showed that maternal synbiotic supplementation
decreased propionate level in the colonic content. These findings
suggested that maternal synbiotic supplementation increased
certain gut microbiota species and promoted the production of 
specific metabolites. In addition, colonic
p_Firmicutes;g_Anaerostipes abundance was positively correlated
with acetate and SCFAs levels; and Fusobacteria and
p_Fusobacteria;g_Fusobacterium abundances were negatively
correlated with acetate level, suggesting that Anaerostipes might
promote the SCFAs production while Fusobacteria and
Fusobacterium would diminish them by a underlying mechanism
that needs to be determined.

Cytokines can regulate the systemic inflammatory response of
the body. The SCFAs promote the migration of leukocytes to the
inflammatory site and production of several anti- and pro-
inflammatory cytokines, including TNF-α, IL-1β, IL-2, IL-6, and
IL-10 (51). Acetate, propionate, and butyrate reduce the
production of TNF-α (52), IL-1β, and IL-6 (53). Interestingly, we
found that maternal synbiotic supplementation decreased the
plasma levels of TNF-α, IL-1β, IL-2, and IL-6 in offspring piglets,
suggesting that dietary synbiotics might reduce inflammation in
piglets via modifying several bacterial metabolite productions.
Additionally, cytokines have the function of regulating immune
and inflammatory responses and maintaining barrier integrity
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FIGURE 10 | Effect of maternal synbiotic supplementation on mRNA expression of colonic mucosal genes related to the intestinal barrier function in suckling Bama 
mini-piglets. The data were analyzed by Duncan’s multiple range test using One-way analysis of variance. Data showed the means ± SEM. *P < 0.05. n = 8 per group.

(54). In the present study, maternal synbiotics up-regulated
the mRNA expression of colonic mucosal IFN-α, suggesting
that the synbiotic addition in the maternal diets enhances
the immune response of suckling piglets via regulating gut
microbiota composition and metabolic activity as previously
proposed (55).

The SCFAs can modulate hormone secretion (e.g., Leptin)
(56) and are involved in modulating the production of Ghrelin
(57). CCK can suppress the appetite by acting on the central
nervous system (58). Ghrelin can act on appetite (59) and satiety
by regulating the gut microbial community of the host. The
PP secretion can be stimulated by dietary fat (60). Our study
showed that maternal synbiotic supplementation decreased the
plasma levels of Ghrelin, CCK, and PP of piglets, suggesting
that maternal synbiotic addition might affect plasma hormone
secretion of suckling piglet by mediating gut microbiota and
their metabolites.

When the intestinal mucosal barrier is damaged, the
permeability of which would increase, thus causing intestinal
inflammation or other diseases due to harmful substances
invading the body tissues (55). Compared with the antibiotic

group, dietary synbiotic supplementation up-regulated the
mRNA expression of colonic mucosal E-Cadherin, Occludin,
ZO-1, and ZO-2, suggesting that the maternal synbiotic
administration might improve tight-junction integrity of colonic
intestinal epithelial cells via colonic microbiota. Shi et al.
(61) found that the mixture of Lactobacillus species increased
the colonic mucosal tight-junction proteins and relieved
inflammation in antibiotic-supplemented mice by modulating
their microbiota structure. Yin et al. (62) also showed that
dietary XOS supplementation improved the intestinal barrier by
up-regulating ZO-1 expression. Further work is required to
explore the dose of synbiotic supplementation in maternal diets
presenting an impact on the intestinal permeability in piglets.

In conclusion, maternal synbiotic supplementation from
pregnancy to lactation may improve glycolipid and protein
metabolism, reduce oxidative stress level, and improve the
intestinal health of suckling piglets. Notably, these findings
provide a new perspective for manipulating gut microbiota
with synbiotic addition to improve the nutrient metabolism
and intestine health of offspring. The changes in maternal
milk composition after maternal synbiotic supplementation need
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