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Abstract

Context Spatial heterogeneity is scale-dependent.

Understanding the scaling rules of spatial features

across wide ranges of scale is a major challenge in

landscape ecology. The lack of scientific justification

in choosing proper scale may lead to unexpected

outcomes in landscape pattern analysis and result in

biases in subsequent process analysis.

Objectives The goal is to provide an extensive

analysis on scaling relationships for a variety of

landscape metrics as functions of grain size and extent.

Specific research objectives are to: (1) identify scaling

relationships of landscape metrics as functions of

grain size, (2) define scale domains of these scaling

relationships, and (3) explore how scaling relations of

landscape metrics with respect to grain size would

change with spatial extent.

Methods Expanding the approach of Wu and Hobbs

(Landsc Ecol 17:355–365, 2002) and Wu (Landsc

Ecol 19:125–138, 2004) using a much bigger dataset

and covering a wider range of scales, we examined the

patterns of scalograms of 38 landscape metrics within

96 sampled landscapes ranging from 25 to 221 km2 in

the conterminous United States. Scaling models were

derived from the scalograms as a function of grain

size, and the scale domains of these models were

identified as the critical scales along the dimensions of

grain size and spatial extent where the performance of

the models fell below a given error limit.

Results The responses of landscape metrics with

respect to changing resolutions fall into three cate-

gories: predictable across the whole spectrum of grain

size investigated (Type I), predictable in a limited

range of grain size (Type II), and unpredictable (Type

III). For Type II metrics, the critical aggregation

resolutions were identified based on the predefined

error limit, and scale-invariant power-law scaling

relationships were found between critical resolutions

and spatial extents. All the scaling exponents are

positive, suggesting that critical aggregation resolu-

tions can be relaxed as the spatial extent expands.

Furthermore, the coefficients of scaling relations for

Type I and II metrics vary with spatial extents, and

robust scaling functions between the coefficients and

the extent can be observed for some metrics.

Conclusions This study addresses a fundamental

scale issue in landscape ecology: how a particular

spatial pattern would change with scale and how

information could be adequately transferred from one
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scale to another. A variety of scaling relationships

exist on the spatial patterns of landscape metrics, and

they could provide guidance to researchers on how to

select an appropriate scale for a study of interest. In

addition, the findings support the empirical perception

that coarser grain size might be used for a larger spatial

extent.

Keywords Spatial heterogeneity � Landscape
metrics � Scale effect � Scale domain � Spatial
resolution � Geospatial extent

Introduction

Scale is a central but challenging concept describing

the hierarchical organization of the earth system

(McGarigal and Marks 1995; Marceau 1999). It refers

to spatial and temporal dimensions of the phenomenon

(Turner et al. 1989a; Wu and Qi 2000), and the spatial

dimension is most frequently characterized as grain

size (the finest spatial resolution of the dataset) and

extent (the size of the study area) in ecology and other

earth sciences (Wu et al. 2006). Scale issues princi-

pally deal with two fundamental questions. One is how

a particular spatial pattern or process would change

with scale and what is an appropriate scale for a study

of interest (Kotliar and Wiens 1990; With and Crist

1995; Keymer et al. 2000; Buyantuyev et al. 2010).

And the other is scaling, that is, how information could

be adequately and precisely transferred from one scale

to another (Wiens 1989; Schneider 2001; Spence

2009; Argañaraz and Entraigas 2014).

Landscape metrics for spatial pattern analysis have

been widely used in the measurement and interpreta-

tion of spatial heterogeneity, and the scale issue has

been explored through observing the behaviors of

landscape metrics with changing scales. Considerable

effort has been devoted to exploring scale effects

(Turner et al. 1989b; Qi and Wu 1996; Cain et al.

1997; Saura 2002; Alhamad et al. 2011), hierarchy or

scale breaks (Wu 1999; Rutchey and Godin 2009;

Wheatley 2010), and scaling (Wiens and Milne 1989;

Costanza and Maxwell 1994; Nikora et al. 1999; Shen

et al. 2004). It has been generally accepted that spatial

data tends to lose details when coarsen the grain size,

and the response of landscape metrics with changing

scales can be grouped into predictable and

unpredictable types. Scalograms are often used to

capture how landscape metrics respond to changing

resolution or extent. Previous studies (e.g. Wu et al.

2002; Wu 2004; Alhamad et al. 2011) have found that

the responses of landscape-level metrics fall into three

categories as predictable (i.e., simple scaling rela-

tions), stair-like and erratic types for real landscapes.

The responses of class-level metrics present pre-

dictable and unpredictable behaviors. Furthermore,

scaling relations are more consistent and pre-

dictable with changing grain size than with changing

extent for both-level metrics. Similar patterns have

also been found for simulated landscapes (Shen et al.

2004).

The multi-scale perspective allows us to observe

the scale-dependence of spatial heterogeneity,

whereas our ability is still limited in determining

whether a spatial resolution is proper to a study of

interest. In practice, the spatial resolution is usually

chosen based on grain size of the spatial dataset. The

lack of scientific justification in the choice of scale

may lead to unexpected outcomes in landscape pattern

analysis and result in further biases in subsequent

process research. As multiple aspects of the landscape

structure respond to changing scale in different ways,

there is no single ‘optimal’ scale for the representation

of the landscape features (Wu 2004). However, it is

possible to obtain specific scaling relations for some

spatial characteristics with respect to changing scales.

The scaling relation suggests that the multiscale

characteristics of landscape pattern could be quanti-

fied in a precise and concise way, presenting practical

implication in spatial analysis (Wu 2004).

However, the scaling functions of landscape met-

rics have not been examined thoroughly. First, we

have limited knowledge about the scope of the scaling

functions. If some landscape metrics present simple

scaling relations, more understanding is needed

around whether regression functions fit well over the

whole spectrum or limited range of scale. Second,

there is a lack of quantitative understanding of the

interactive effects between resolution and extent,

covering a wider range of scales, with the goal of

identifying some general guiding principles for study

design. Most previous efforts on examining the

behaviors of landscape metrics have emphasized the

effect of changing grain size while keeping the same

extent, or changing extent with grain size remained the

same. To explore the generality of the scaling
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functions across different landscapes with various

extents, the scaling functions should be disclosed so

that we can understand if the function type would

change with scale, or how the parameters of the

functions would change if the functions type remains

the same across scales.

To address the issues raised above, we expanded

the approach of Wu et al. (2002) andWu (2004) in this

study with much wider ranges of grain size and extent

to explore and quantify the scaling behaviors of the

landscape metrics. Specifically, we explored the scale

effects of landscape pattern metrics in 96 landscapes

across the conterminous United States with various

extents ranging from 25 km2 to 221 km2 along with a

wide spectrum of resolutions. The aims of this study

were to address the following research questions:

(i) what are the scaling relationships of landscape

metrics as functions of grain size for landscapes with a

certain extent? (ii) how do scaling relations of

landscape metrics with respect to grain size change

with the spatial extent? (iii) how can the aggregation

domain of the scaling relationships be identified?

Data and methods

Study area

The study area is the conterminous United States

(CONUS), covering an area of about 8,059,023 km2.

A total of 96 sub-regions varying in size were sampled

across CONUS with areas ranging from 25 km2

upwards to 221 km2 (Fig. 1). All sampled landscapes

were square in shape, and six samples of each size

were chosen except for the extents of 220 and 221 km2

of which only four and two could be sampled,

respectively, due to their large sizes. The 90 sub-

regions with extents ranging from 25 to 219 km2 were

sampled non-overlappingly to capture various spatial

patterns and increase the generality of results.

Data

The land cover maps for CONUS were derived from

the National Land Cover Database (NLCD) created by

the Multi-Resolution Land Characteristics Consor-

tium (Homer et al. 2012). We used the land cover

product NLCD 1992 at a resolution of 30 m with a

21-class land cover classification scheme for our

study. The NLCD 1992 product includes four forest

classes (deciduous, evergreen, mixed forest and

woody wetlands) covering about 32.1% of the total

area, agricultural lands (pasture/hay, row crops, small

grains, fallow and orchards/vineyards) with a cover-

age of about 26.4%, and urban areas (low and high

intensity residential, commercial/industrial/trans-

portation) occupying a small fraction (approximately

3%) of the total area (Vogelmann et al. 2001).

Methods

Resampling of input data

To investigate the effect of changing grain size, the

original datasets were systematically resampled from

a resolution of 30 m (i.e., one-pixel size) upwards to

60 m (two-pixel size), 90 m (three-pixel size) and so

on till the coarsest possible within a given extent. The

largest grain size should be the same as the spatial

extent. However, the number of rows or columns of

the spatial data could not always be wholly divided by

the grain size. In this case, the size of resampled data

for the same extent would change as the grain size

coarsened progressively. In this study, the coarsening

of grain size didn’t continue for a certain extent once

the change rate of extent size for the resampled data

exceeded 10%.

Two widely used resampling approaches, the

nearest neighbor and majority algorithms, were both

used in this study to compare their performances. The

nearest neighbor resampling assigns the value of the

center cell within the filter window to the new one,

while the majority resampling determines the value of

the cell based on the most popular value in the

window. The resampling was accomplished in ArcGIS

Spatial Analyst.

Methods for investigating the scale effect

We chose 38 landscape-level metrics to quantify the

effects of changing grain size on landscape patterns

(Table 1). The metrics were calculated from the

computer software program FRAGSTATS version

4.2 using an eight-neighbor rule for patch delineation

(McGarigal et al. 2012). The calculations were applied

to each extent with different grain sizes and repeated

over all 96 extents, and were performed using the

workstations with CPU processors (32 GB RAM, up
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to 3.9 GHz). Due to the memory constraint of

FRAGSTATS (McGarigal et al. 2012), the spatial

pattern analysis began from 30 m for the landscapes

with extents smaller than 218 km2, 60 m for the

landscapes with extents of 218 and 219 km2, 90 m for

the landscapes with extents of 220 km2, and 120 m for

the landscapes with extents of 221 km2.

Scalograms were used to show the behaviors of

landscape metrics in response to changing grain size,

and regression analysis was performed to model their

scaling functions. Based on previous studies (Wu et al.

2002; Wu 2004; Alhamad et al. 2011), we chose five

potential functions including linear, exponential I

(y = aebx, a[ 0) and II (y = aeb/x, a[ 0), logarith-

mic, and power law functions and used the Corrected

Akaike Information Criterion (AICc) to measure the

goodness of fit for the models. AICc is a correction of

AIC (Akaike information criterion) for small sample

sizes (Cavanaugh 1997) and has been widely used in

statistical model selection. The model with the lowest

AICc was selected as the optimal one.

Methods for investigating the dependence of scaling

functions on grain size and extent

To investigate whether there exist critical resolution

thresholds for scaling functions during aggregation,

we examined the performance of the model with

respect to changing resolutions. As scaling functions

vary with grain size (Argañaraz and Entraigas 2014),

we first obtained scaling relations from metric-scalo-

grams starting with 15 input data points (e.g. grain

sizes ranged from 30 to 450 m for landscapes with the

extent smaller than 218 km2), and the scaling relations

were re-examined by extending the scaling resolution

scope gradually to 480 m (resulted in a total of 16

input data points), 520 m (a total of 17 input points) till

the coarsest. The behaviors of goodness of fit (R2) with

respect to changing resolution scope were examined.

To identify the critical aggregation resolution at

which the scaling relationship breaks, the relative

difference was first estimated between the observed

and predicted values as follows:

Fig. 1 Locations of the 96 square-shaped landscapes in this study. The spatial extent ranges from 25 km2 upwards to 221 km2. The sub-

regions are sampled randomly to capture various landscape patterns, and they cover almost the entire conterminous United States
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/i ¼
Cscaling � Ci

�
�

�
�

Cij j � 100%;

where /i is the relative bias in percentage, Ci is the

observed value of landscape metrics at given resolu-

tion i (i = 30 m, 60 m, 90 m, …), and Cscaling is the

predicted value based on the specific scaling function.

We define the critical aggregation resolution (i.e., the

threshold or the bounds of the scale domain) as the

resolution beyond which a given scaling relationship

does not hold anymore at a given error limit (e.g.,

Table 1 List of 38

landscape metrics used in

the study

The definition and

algorithm of each metric

can be found in

FRAGSTATS HELP. For

the landscape distribution

statistics, mean (MN), area-

weighted mean (AM) and

standard deviation (SD)

were selected

Group name Name Acronym

Aggregation Aggregation Index AI

Contagion CONTAG

Division Index DIVISION

Euclidean Nearest Neighbor Distance

distribution

ENN_MN

ENN_AM

ENN_SD

Interspersion Juxtaposition Index IJI

Landscape Shape Index LSI

Number of Patches NP

Splitting Index SPLIT

Proportion of Like Adjacencies PLADJ

Area–edge metrics Patch Area distribution AREA_MN

AREA_AM

AREA_SD

Radius of Gyration distribution GYRATE_MN

GYRATE_AM

GYRATE_SD

Largest Patch Index LPI

Total Edge TE

Diversity Patch Richness PR

Shannon’s Diversity Index SHDI

Shannon’s Evenness Index SHEI

Shape metrics Related Circumscribing Circle distribution CIRCLE_MN

CIRCLE_AM

CIRCLE_SD

Contiguity Index distribution CONTIG_MN

CONTIG_AM

CONTIG_SD

Fractal Dimension Index distribution FRAC_MN

FRAC_AM

FRAC_SD

Perimeter-Area Fractal Dimension PAFRAC

Perimeter-Area Ratio distribution PARA_MN

PARA_AM

PARA_SD

Shape Index distribution SHAPE_MN

SHAPE_AM

SHAPE_SD
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/i = 10%, 15% and 20%, respectively) in

aggregation.

To further investigate whether the responses of

landscape metrics to changing grain size would be

influenced by the spatial extent of the dataset, the

above analysis was repeated over the 96 sampled

extents. The scaling functions were obtained based on

the first 15 values (e.g. the grain size ranges from 30

m to 450 m for landscapes with the extent smaller

than 218 km2). The scaling parameters and critical

aggregation thresholds were calculated, so that their

relationship with the spatial extent could be observed.

Results

Effects of changing grain size

The spatial patterns of the landscapes differ greatly in

composition and configuration at the original resolu-

tion (i.e., 30 m). Six randomly-selected diverse land-

scapes (L1–L6) corresponding to the extent of 215 km2

(Fig. 2) were used to illustrate the impact of grain size

on landscape metrics. As the grain size coarsens,

detailed spatial features in land cover map lose

gradually (Fig. 3) and landscape metrics change

dramatically. Here we take Aggregation metrics as

examples to show the selection of the regression

model for the scalograms of the 38 metrics when the

data was resampled from the grain size of 30 m to

450 m by the nearest neighbor algorithm (Table 2).

The behaviors of AI, CONTAG, ENN_MN,

ENN_AM, ENN_SD, LSI, NP, and PLADJ exhibit

specific scaling functions among the six landscapes.

The R2 for the models amounts to 1, which indicates

perfect fit of the scaling relationship. No specific

scaling function can be found for DIVISION, IJI, and

SPLIT among different landscapes, and unstable R2

implies bad fit of the selected function.

The 26 metrics from the Aggregation, Area-Edge

and Shape groups exhibit specific scaling functions

among all landscapes, and the other 12 metrics behave

staircase-likely or erratically. Figures 4, 5 and 6

illustrate the scaling functions for metrics in each

group. The scaling functions could be summarized

into three types: increasing power-law relation,

decreasing power-law relation, and decreasing loga-

rithmic relation. Although scaling functions are not

identical for two resampling approaches, the responses

of the metrics to changing grain size have similar

scaling patterns and regression model types. However,

the scaling functions of some metrics start at 60 m

instead of 30 m, and a rise from 30 to 60 m can be

observed for the majority algorithm. These metrics

include AI, CONTAG, and PLADJ in the Aggregation

group, and CIRCLE_MN, PAFRAC, CONTIG_MN,

CONTIG_AM, and CONTIG_SD in the Shape group.

Performance of the scaling function with respect

to changing grain size

As shown in Figs. 4, 5 and 6, the scaling performance

becomes unstable with increasing grain size, and the

regression function varies with the number of input

data. The behaviors of the goodness of fit (R2) with

respect to coarsening resolutions present two types in

general, and Fig. 7 shows the Aggregation metrics as

an example. As the resolution coarsened, R2 of the

scaling model for ENN_MN, LSI, and NP remains

almost 1, indicating that the scaling functions fit well

on the whole spectrum of spatial resolutions, whereas

R2 values for AI, CONTAG, ENN_AM, ENN_SD,

and PLADJ decrease as the resolution scope extended,

suggesting deterioration of the scaling models.

Based on the scaling performances (i.e., whether

regression functions are robust on the whole spectrum

or limited range of resolution), we group the behaviors

of the 38 metrics into three types (Table 3). Type I are

those showing consistent scaling relations across the

whole spectrum of scale, that is, the scaling relations

do not show abrupt change. There are 13 metrics in

Type I. Type II metrics have specific functions fitting

well only in a limited range of resolution, and beyond

the range (i.e., resolution thresholds) the responses

change erratically. A total of 13 metrics falls into this

group. Type III metrics respond to changing grain size

either staircase-likely or erratically, and no consistent

scaling relationships could be identified for them.

Specifically, CIRCLE_SD and SHAPE_SD perform

erratically when the spatial data is resampled using the

majority algorithm.

Identification of the critical resolution for Type II

metrics

Although most landscape metrics are sensitive to

changing grain size, the scaling function makes it

possible to extrapolate spatial features across
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scales (Wu 2004). As Type II metrics tend to

exhibit scaling relationships in a limited range of

grain size, it indicates more variation or disorder

in the scaling relationships as the resolution

coarsened. The identification of the critical aggre-

gation resolution is therefore important to the

Fig. 2 Maps of the six landscapes with extent of 215 km2 in this study
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understanding of the scaling of the spatial

patterns.

To identify whether there exists critical resolution

of the scaling function, regression functions were

obtained from the metric scalograms, and relative

differences were estimated between the observed and

predicted values. Here we take the metric AI as an

example to illustrate the derivation of the critical

resolution within a given error limit of 20% during

aggregation. The scaling function was first obtained

from 15 input data with resolutions ranging from 30 m

to 450 m. As is shown in Fig. 8b, the predicted value

agrees well with the observed value when AI is higher

than 50, and biases tend to be obvious at coarser grain

sizes. The grain size constraining the error within 20%

is 9930 m (Fig. 8c). Furthermore, as the fitted curve

varies with the selection of input data, the number of

data points for modeling fitting was gradually and

sequentially increased to examine the behavior of the

fitted model. From Fig. 8d, we can see that the

goodness of fit of the scaling relationship declines as

more values at coarser resolutions are included for

modeling. The equations for curve fitting demonstrate

no significant change and the corresponding relative

differences remain about the same when the number of

input data was\ 350 (i.e., the maximum grain size is

about 10 km) (Fig. 8d). Although the critical resolu-

tion constraining the error within 20% can be relaxed

to around 13,500 m if more data at coarser resolution

are included for regression, the overall performance of

the model becomes poorer. Here we identify the

critical scaling resolution as 9930 m when R2 is high

to ensure the selected scaling model has better fit for

most data in smaller grain sizes. The identification of

critical aggregation resolution was processed for

the 13 metrics in Type II. The existence of critical

resolution in scaling indicates that spatial resolution

must be chosen carefully to avoid the ‘‘unpredictable’’

behavior when coarsening beyond the critical point in

aggregation.

Fig. 3 The loss of detailed spatial information as the resolution coarsens using the nearest neighbor algorithm
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Table 2 Regression models for Aggregation metrics when the dataset is resampled by the nearest neighbor algorithm

Metrics Landscape AICc R2

Linear Power law Exponent I Exponent II Logarithmic

AI L1 87.13 - 119.10 -41.03 -35.20 29.61 1.00

L2 78.93 - 121.35 -48.18 -48.96 31.33 1.00

L3 77.30 - 144.41 -52.83 -51.23 21.28 1.00

L4 80.75 - 104.87 -48.48 -54.29 39.55 1.00

L5 95.52 - 102.38 -30.44 -31.91 58.00 1.00

L6 80.57 - 113.25 -49.88 -41.89 6.50 1.00

CONTAG L1 62.04 - 100.04 -54.92 -65.86 24.53 0.99

L2 48.15 - 98.76 -68.33 -67.00 15.51 0.98

L3 54.44 - 97.34 -66.36 -67.05 22.34 0.98

L4 54.18 - 103.96 -66.74 -84.09 20.76 0.98

L5 68.06 - 80.06 -49.17 -74.09 41.64 0.97

L6 50.67 - 101.87 -69.79 -67.66 16.20 0.98

DIVISION L1 -83.42 -94.49 -82.23 - 120.14 -95.53 0.96

L2 -109.25 -108.68 -108.13 - 109.94 -109.81 0.12

L3 -60.13 -57.91 -56.19 -60.97 - 61.90 0.24

L4 -144.05 -153.66 -142.68 -151.42 - 155.08 0.81

L5 -167.21 -174.11 -167.09 -172.56 - 174.24 0.69

L6 -69.17 -78.36 -66.36 -68.34 - 81.26 0.86

ENN_MN L1 90.51 - 74.01 7.37 13.69 198.47 1.00

L2 96.49 - 92.51 9.27 13.89 198.78 1.00

L3 98.73 - 72.95 7.75 14.08 198.51 1.00

L4 112.93 - 64.65 7.81 15.16 199.71 1.00

L5 78.86 - 74.71 7.04 13.21 196.84 1.00

L6 90.83 - 86.03 8.16 13.33 199.73 1.00

ENN_AM L1 81.08 - 85.08 8.99 14.18 190.06 1.00

L2 91.52 - 105.48 10.40 13.88 189.63 1.00

L3 87.48 - 107.42 10.07 14.07 188.70 1.00

L4 72.85 - 102.38 9.78 14.14 188.69 1.00

L5 61.07 - 104.70 9.45 13.70 189.54 1.00

L6 64.35 - 127.31 10.25 13.96 189.42 1.00

ENN_SD L1 140.67 - 45.45 2.30 12.61 195.92 1.00

L2 183.25 - 32.59 3.75 13.74 208.78 0.99

L3 189.55 - 23.10 2.04 13.58 211.02 0.98

L4 178.10 - 31.02 6.22 15.72 211.85 0.99

L5 154.05 - 50.52 1.29 9.22 195.11 1.00

L6 178.07 - 27.92 6.64 9.17 197.56 0.99

IJI L1 22.49 -110.16 -101.38 - 128.19 13.70 0.88

L2 20.80 -99.84 - 100.35 -81.78 22.30 0.91

L3 32.88 - 90.27 -86.28 -79.11 29.09 0.81

L4 2.92 - 147.44 -113.95 -101.01 -28.49 0.99

L5 -5.29 -100.90 - 124.16 -83.00 18.73 0.97

L6 47.71 -77.82 -71.76 - 86.55 41.54 0.69
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Dependence of the critical resolution on extent

for Type II metrics

To further demonstrate whether the scale effect of

changing grain size would vary with the extent of

spatial data, the critical resolution was estimated

within the given error limit (i.e., 10%, 15% and 20%)

across various extents, and the relationship between

the critical resolution (G) and the extent (E) are shown

in Figs. 9 and 10 for Type II metrics. In general, the

critical resolution can be relaxed with extending the

spatial extent, indicating that there is more room for

scaling within a given error for a larger extent.

Furthermore, a power-law scaling relationship

between critical aggregation resolution (G) and spatial

extent (E) could be found when spatial data were

resampled by the nearest neighbor algorithm as

follows:

Ga Eð Þ ¼ kaE
ca þ e;

where a is the given error limit, k is a proportionality

constant, c is the scaling exponent of the power law

scaling relationship, and e is an error term representing

uncertainty in estimating the critical resolution. The

power law relationship signifies the scale invariance

between the critical threshold and the extent of the

landscape. That is, scaling the spatial extent E by a

constant factor c, the original power law relationship

would simply be multiplied by the constant cca .

Ga cEð Þ ¼ kaðcEÞca ¼ ccaGa Eð Þ

The change of FRAC_MN or PAFRAC is subtle

within the whole spectrum of scaling (\ 5% and 20%,

respectively), and would not be further discussed here.

Similar to the scale effect when resampling by the

nearest neighbor approach, power-law scaling

Table 2 continued

Metrics Landscape AICc R2

Linear Power law Exponent I Exponent II Logarithmic

LSI L1 181.86 - 45.30 -7.06 7.85 152.11 0.99

L2 189.71 - 55.89 -0.95 9.38 165.52 1.00

L3 178.57 - 49.68 -4.29 8.32 151.27 1.00

L4 179.88 - 43.54 -4.95 9.60 151.37 0.99

L5 182.99 - 33.39 -9.98 10.07 147.67 0.99

L6 175.72 - 49.53 -7.00 6.66 146.69 1.00

NP L1 430.15 - 32.77 18.87 30.02 416.73 1.00

L2 434.68 - 35.38 21.63 31.54 422.35 1.00

L3 417.33 - 31.78 18.92 30.18 403.76 1.00

L4 419.43 - 25.97 18.79 31.54 405.69 1.00

L5 434.06 - 33.39 19.37 30.16 420.71 1.00

L6 423.18 - 39.77 19.71 29.19 410.14 1.00

SPLIT L1 135.44 13.21 21.82 - 8.12 128.89 0.91

L2 92.38 -10.19 -9.08 - 12.19 90.51 0.21

L3 69.96 2.03 4.16 - 2.06 67.44 0.43

L4 43.49 - 62.53 -50.41 -61.24 30.22 0.83

L5 186.14 -6.33 5.53 - 10.74 173.33 0.84

L6 82.52 - 7.29 5.52 -0.61 69.50 0.85

PLADJ L1 87.18 - 115.84 -41.02 -34.58 28.23 1.00

L2 78.98 - 125.93 -48.17 -47.90 29.73 1.00

L3 77.36 - 149.73 -52.82 -50.24 19.02 1.00

L4 80.79 - 107.88 -48.46 -53.22 38.35 1.00

L5 95.55 - 105.04 -30.43 -31.39 57.61 1.00

L6 80.63 - 110.36 -49.86 -41.19 3.55 1.00

The lowest AICc values are marked in bold, indicating the scaling relation types for Aggregation metrics
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Fig. 4 Scalograms and scaling functions of Aggregation

metrics. Insert graphs are scalograms over the whole spectrum

of grain size, and the main graphs are zoomed-in window over a

range of [30 m, 450 m] in grain size (X-axes are grain size

(km), and y-axes are metric values, which are same for Figs. 5

and 6). Among them, ENN_MN, ENN_AM and ENN_SD

present increasing power-law scaling relations, while others

present decreasing power-law relations. The scaling relation-

ships exhibit more variation when coarsening grain size for AI,

CONTAG, ENN, and PLADJ

Fig. 5 Scalograms and scaling functions of Area–Edge metrics. Among them, TE presents decreasing power-law relations, and others

present increasing power-law relations. Their scaling relationships exhibit more variation when coarsening grain size except for TE
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relationship could also be found when resampling by

the majority algorithm. Figures 9 and 10 show the

power law relations presented between critical aggre-

gation resolutions and extents for most Type II

metrics. However, there are exceptions. For example,

the graphs for GYRATE_SD uniquely show erratic

behaviors; ENN_SD shows two scale domains: a

flatter relationship for smaller extent and then a sudden

shift to higher values of critical resolution in aggre-

gation; CONTIG_MN shows similar behavior when

calculated by the majority algorithm. These results

show that most landscape metrics have consistent

Fig. 6 Scalograms and scaling functions of Shape metrics.

Among them, PAFRAC, FRAC_MN, FRAC_AM, PARA and

SHAPE_AM present power-law scaling relationships, and other

metrics present logarithmic scaling functions. Their scaling

relationships exhibit more variation when coarsening grain size

except for FRAC_AM, PARA and SHAPE_AM
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power-law scaling relationships and only a few present

more than one scale domains.

Dependence of scaling coefficients on extent

for Type I and II metrics

The coefficients of scaling relations for metrics in

Type I and Type II vary with spatial extents. For Type

I metrics whose responses to changing grain size

exhibit power law functions, the absolute value of

scaling exponent b increases with the spatial extent,

and logarithmic scaling relationship was found

between b and the extent (Figs. 11 and 12).

b ¼ a0 log2 E þ b0;

where a0 and b0 are constants, and E is the spatial

extent.

Fig. 7 The behavior of R2 of scaling relations for Aggregation metrics in changing the range of grain size
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Table 3 Three types of landscape metrics and their scaling relations with respect to changing grain size

Group name Metrics Scaling relationship

Type I metrics: predictable across the whole spectrum of grain size.

Aggregation ENN_MN An increasing power function:

y ¼ axb, a[ 0, b[ 0ENN_AM

Area–Edge

metrics

AREA_MN

AREA_SD

GYRATE_MN

Aggregation LSI A decreasing power function:

y ¼ axb, a[ 0, b\ 0

where y is the value of the metric, x is the grain size, a is the proportionality constant, and b is the

scaling exponent of power law function.

NP

Area–Edge

metrics

TE

Shape

metrics

FRAC_AM

PARA_MN

PARA_AM

PARA_SD

SHAPE_AM

Type II metrics: predictable within a limited range of grain size.

Aggregation ENN_SD An increasing power function:

y ¼ axb, a[ 0, b[ 0Area–Edge

metrics

GYRATE_SD

Shape PAFRAC

Aggregation AI A decreasing power function:

y ¼ axb, a[ 0, b\ 0

where y is the value of the metric, x is the grain size, a is the proportionality constant, and b is the

scaling exponent of power law function.

CONTAG

PLADJ

Shape FRAC_MN

Shape CIRCLE_MN A decreasing logarithmic function:

y ¼ aln xð Þ þ b, a\ 0, b[ 0

where a and b are constants.

CIRCLE_AM

CONTIG_MN

CONTIG_AM

CONTIG_SD

FRAC_SD

Type III metrics: unpredictable across scales.

Aggregation DIVISION These metrics behave staircase-likely or erratically. The response curves of other metrics

demonstrate various forms, like no obvious changes or fluctuations. No consistent behaviors

emerge across landscapes, or specific scaling functions could not be identified. Specifically, PR

and SHEI tend to decrease while scaling functions could not be extracted.

IJI

SPLIT

Area–Edge

metrics

AREA_AM

GYRATE_AM

LPI

Shape CIRCLE_SD

SHAPE_MN

SHAPE_SD

Diversity PR

SHDI

SHEI
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The changes of the constant a of the scaling functions

are more complicated. The constants a exhibit similar

increasing trends among the Type I metrics except for

the scalograms of GYRATE_MN, PARA_SD, and

PARA_AM. In general, a power law or logarithmic

scaling relationship was found between a and E.

a ¼ cEh or a ¼ c log2 E þ h;

where c and h are constants, and E is the spatial extent.

For Type II metrics, the scale effects with respect to

changing grain size exhibit power-law functions or

logarithmic functions. The ranges of the scaling

coefficients are relatively small. And compared to

Type I metrics, no obvious and consistent patterns

could be observed between the parameters of the

scaling function and spatial extents (Figs. 13 and 14).

In general, for AI, CONTAG, ENN_SD, GYRA-

TE_SD, and PLADJ, whose responses to changing

grain size exhibit power-law function, and for

CIRCLE_AM and CONTIG_AM whose responses

to changing grain size exhibit logarithms functions, all

parameters increase a little bit as the spatial extent

increases, and logarithmic scaling relationship was

found among them. Considering the variations among

different landscapes with certain spatial extent, the

scaling relationships are not robust.

Fig. 8 The identification of critical resolution at which the

relative differences of predicted values deviating from the

observed value by more than 20%. a The scalogram of AI and

the predicted curve. b Pairs of observed and predicted values of

AI. The straight line is reference 1:1 line. c The relative

differences between observed values and estimates. d The

goodness of fit and critical thresholds derived from the

corresponding regression for different input data
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Discussion

Although increasing attention has been placed on how

to effectively characterize the spatial patterns across

scales, our ability to precisely quantify the scaling

relations remains limited. For a specific landscape, the

pattern and the underlying process are specific, so the

challenge lies in how we represent it and how to

transfer the knowledge to other scales. It has been

perceived empirically that if a study area is larger,

coarser spatial resolution could be acceptable for

study. Whether the empirical perception is valid or not

is still an open question. In addition, if behaviors of

certain metrics suggest that the spatial resolution can

be coarsened, the quantitative functions to transfer the

knowledge from one resolution or extent to others

need to be identified.

Fig. 9 Power–law relationships between critical aggrega-

tion resolution of scalograms and spatial extent for Type II

metrics at given error limits (i.e., 10%, 15%, and 20%) when the

dataset is resampled by the nearest neighbor algorithm. The

mean value and standard error were derived from thresholds of

six landscapes with the same extent, and the regression curve

was obtained accordingly
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In this study, we expand the approach of Wu et al.

(2002) and Wu (2004) by performing a much more

extensive investigation on the scaling of landscape

parameters over wider ranges of grain size and extent.

Results show that the behaviors of landscape metrics

with changing resolution can be grouped into three

types, which are consistent with previous studies that

generally classified the scale effects of landscape

metrics as predictable and unpredictable (Wu and

Hobbs 2002; Uuemaa et al. 2005; Alhamad et al. 2011;

Feng and Liu 2015). Previous studies have suggested

that a metric should behave insensitively or pre-

dictably sensitively to changing resolution on the

premise that it could efficiently measure the spatial

features as designed (Frohn and Hao 2006). Type I and

Type II metrics are predictably sensitive. For example,

NP drops dramatically due to the way the raster image

represents the edge or perimeter. Because of the stair-

step outline of the edge, the length is biased upward

and the magnitude of the bias varies with resolution

(McGarigal and Marks 1995). It is essentially fractal,

similar to the typical measurement of the length of

Fig. 10 Power–law relationships between critical aggregation resolution of scalograms and spatial extent for Type II metrics at given

error limits (i.e., 10%, 15% and 20%) when dataset is resampled using the majority algorithm
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Fig. 11 Relations between the parameters (a and b) of the

power law scaling function (i.e., y ¼ axbÞ with changing grain

size and the spatial extent (E) for Type I metrics when

resampling with the nearest neighbor (NNR) and the majority

algorithm (MR). The absolute value of scaling exponent b
increases with E, and logarithmic scaling relationship was found

between b and E. A power law or logarithmic scaling

relationship was found between the constant a and E. (Part 1)
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Britain’s shoreline using different rulers (Mandelbrot

1967). A fractal system is statistically self-similar

without a characteristic scale (Mandelbrot and

Wheeler 1983), suggesting that scale-independence

is an important property of geographic phenomena

(Goodchild and Mark 1987). Most Type I metrics

involve perimeters and size of the patches as input, and

some of them are highly correlated. For example, NP

and AREA_MN, LSI, and TE mimic each other when

spatial extent remains the same in scaling. Together

with PARA and SHAPE_AM, these metrics exhibit

power law scaling relationships due to the fractal

Fig. 12 Relations between the parameters (a and b) of the

power law scaling function (i.e., y ¼ axbÞ with changing grain

size and the spatial extent (E) for Type I metrics when

resampling with the nearest neighbor (NNR) and the majority

algorithm (MR). The absolute value of scaling exponent b
increases with E, and logarithmic scaling relationship was found

between b and E. A power law or logarithmic scaling

relationship was found between the constant a and E. (Part 2)
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Fig. 13 Relations between the parameters (a and b) of the

power law scaling functions (i.e., y ¼ axb) with changing grain
size and the spatial extent (E) for Type II metrics when

resampling with the nearest neighbor (NNR) and the majority

algorithm (MR). The parameters present logarithmic relations

with respect to changing extent for AI, CONTAG, ENN_SD,

GYRATE_SD, and PLADJ
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nature of the patch edges. Although robust across the

whole spectrum of scales, the scaling relations

provides limited information at coarse resolutions

when number of patches decreases dramatically. For

Type III metrics, their responses to changing grain size

are more complicated. We suggest that Type III

metrics should be used with more caution as no

consistent or stable patterns are found either among

different landscapes or for multi-scale analysis.

For Type II metrics, the existence of aggregation

threshold calls for further examination on the change

of the scaling relationship beyond the critical

Fig. 14 Relations between the parameters (a and b) of the

logarithmic scaling functions (i.e., y ¼ aln xð Þ þ b) with chang-

ing grain size and the spatial extent (E) for Type II metrics when

resampling with the nearest neighbor (NNR) and the majority

algorithm (MR). The parameters present logarithmic relations

with respect to changing extent for CIRCLE_AM and

CONTIG_AM
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resolution. It is important to know if the scaling

relationship shift from one type of function to another

(e.g., from power law to logarithmic) or become

erratic beyond the threshold. It is therefore important

to specify not only the set of scaling functions but also

the corresponding valid ranges of resolutions. Results

show that scaling relations of Type II metrics exhibit

increasing variation with coarsening grain size. We

suggest that the scaling functions are used only in their

corresponding limited domains of scales with the

following two considerations. First, spatial informa-

tion would gradually get lost as the resolution

coarsened, and there would be more uncertainty due

to the greater variation using one aggregated pixel to

present the spatial heterogeneity of an area at coarser

resolution. Second, more caution is needed in the

interpretation of the landscape pattern with the metrics

of big variation, as the uncertainty in the aggregation

process and the chaos beyond the threshold would

prevent us from identifying the scaling relation.

We found power-law scaling relationships between

the critical aggregation resolution and spatial extent

for Type II metrics, and three features can be found in

the relations (Figs. 9 and 10). First, all the scaling

exponents (c) are positive, suggesting that the critical

aggregation resolutions for these landscape metrics

can be relaxed as the spatial extent expands. This

finding supports the empirical perception that coarser

grain size might be allowed for the spatial data of a

larger extent. Second, most exponents of the power-

law functions vary within [0.35, 0.45], regardless of

error limit or landscape metric. The particular ranges

of scaling exponents might suggest a deeper origin of

an underlying mechanism generating the power law

relation (Zhao and Liu 2014). Third, the critical

resolutions of various metrics are inconsistent with

one another for a certain landscape and at a given error

limit. The inconsistency is reasonable considering the

differences in meanings and algorithms of these

landscape metrics. Critical aggregation resolutions of

different landscapes for a certain spatial extent are also

different, suggesting that spatial heterogeneity inher-

ent in all landscapes should not be ignored in

quantifying landscape patterns. Although most Type

II metrics follow the power law function relating

extent to critical resolution, exceptions exist. For

example, GYRATE_SD exhibits erratic behaviors

when the error limit is set to 10% or 15%. The critical

aggregation resolution remains small for ENN_SD

and shifts to higher value when the spatial extent is

larger than about 215 km2. A similar pattern appears

for CONTIG_MN when resampling with the majority

algorithm. The low critical aggregation resolutions for

landscapes with smaller extents suggest that the

scaling relations with respect to changing grain size

are not consistent throughout the entire spectrum of

resolutions for these metrics, and the scaling relation-

ship derived for one segment of resolution should be

used with caution in practical analysis. In addition, we

group FRAC_MN and PAFRAC into Type II based on

the performance of R2 of the scaling functions;

however, the parameters of the scaling functions

remain in a relatively narrow range and do not show

logarithmic relationships with extent as other metrics

do (see Fig. 13). This might be related to the fact that

the perimeter is adjusted for correcting the raster bias

in their calculations, overcoming the major limitations

of the straight perimeter-area ratio as a measure of

shape complexity (McGarigal and Marks 1995).

Furthermore, this research investigated how scaling

functions with changing grain size vary with the

spatial extent, which has seldomly explored in previ-

ous studies. The relationships between the scaling

function parameters and spatial extents show how the

landscape metrics would change with scales (i.e., both

the resolution and extent) to formally represent the

spatial heterogeneity mathematically. Among all the

metrics, SHAPE_AM, TE, LSI, and NP present the

robust scaling relationships between the parameters

and spatial extents, especially for the constant a. These
four metrics are highly correlated in their definitions

and formula, and the simple scaling relationships

suggest that these spatial features can be accurately

extrapolated or interpolated across scales. However,

the scaling relationships of other landscape metrics

should be used with caution for interpolation or

extrapolation as no robust and consistent scaling

relationships can be identified when changing both

resolutions and extents.

The scaling functions found in this study and

previous studies present a set of complicated nonlinear

relationships among landscape metrics, resolution,

and extent. Power-law scaling relationship has been

found ubiquitous in physics and biology (Milne et al.

2002; Newman 2005; Spence 2009; Humphries et al.

2010). The most notable one is the allometric scaling

of organism form or function to body size (Kleiber

1947; Gould 1966; West et al. 1997). For the
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landscape system,Wu (2004) suggested that the power

law of landscape metrics could be considered as an

extension of spatial allometry (Schneider 2001). That

is, the power law can be applied to represent the

scaling relationship between ecological attributes and

extent of landscape. Though the underlying mecha-

nisms remain unclear, the power-law scaling relation-

ships could contribute to the identification of general

guiding principles in spatial pattern analysis, and our

study takes a small step in that direction.

The major difference between the two resampling

methods is that rare patch types are more likely to be

preserved when spatial data are aggregated with the

nearest neighbor algorithm. Rare patch types are

significant for characterizing some ecological phe-

nomena such as the locations of urbanization, distur-

bances, and endangered species, and therefore should

be preserved during scaling. With the majority

resampling scheme, only the dominated patch type

would be assigned to the aggregated pixel, and some

spatial information like number of patches, total edges

and patch type degrades dramatically. For example,

the NP for L1 drops from 1,203,960 at 30 m to

520,763 and 172,742, respectively, when resampled to

60 m using the nearest neighbor and majority algo-

rithm, indicating that spatial information degrades

faster with the majority algorithm. On the other hand,

the dominated patch type is widely used in many

ecological studies because the dominated landscape

usually plays a significant role in determining the

landscape process. As the general patterns of scale

effects and critical resolution-extent relationships are

similar when resampled by these two aggregation

methods, we suggest that the selection of the aggre-

gation method should primarily consider the purpose

of the studies.

It should be noted that the large landscape extents

and grain sizes investigated in our study are far

beyond what would be considered by most land-

scape ecologists, and we believe it is worthy to

investigate the scaling issues beyond the traditional

boundaries as larger extents or coarser resolutions

can reveal the continuity or discontinuity of scale

effects in the whole spectrum of scales. In this

regard, our analysis goes beyond but contains the

traditional landscape scale. In practice, spatial

information aggregated up to 20 km is useful for

global climate models (Kumar et al. 2013), and the

behaviors of landscape metrics can provide insight

into whether the land cover or other spatial datasets

can be aggregated into large extents. In addition, the

power-law scaling relationship between the critical

aggregation resolution and spatial extent found in

this study could provide a concrete quantitative

relationship guiding the choice of spatial resolution

according to the variation of spatial metrics for a

given extent and error limit, which has further

implications for studying ecosystem processes. For

example, we found a similar power law relationship

in scaling carbon cycle processes in an earlier study

(Zhao and Liu 2014), which signifies the criticality

of the disturbance scale in the carbon cycle. Our

present study shows that power-law relations in

pattern scaling across scales is an intrinsic part in

the representation and interpretation of landscape

pattern, and future research should investigate the

implications of these relationships to underlying

ecological processes and their scaling. In addition,

we investigated the existence and scale domains of

scaling relationships across ranges of resolution and

extent, which could be seen as an upscaling effort as

coarser resolutions are sequentially added during the

calculation process. Our calculations do not neces-

sarily have to go from fine to coarse resolutions, and

therefore the scaling results are in fact directionless.

Nevertheless, downscaling is often more challenging

and more important since sub-grid information is

often unknown and has to be generated (Riitters

2005; Argañaraz and Entraigas 2014; Frazier 2014),

and the intrinsic scaling relationships presented in

this study may help guide the downscaling pro-

cesses. It should be realized that our findings may

be specific to the dataset or geographic regions used

in our study; it is therefore necessary to assess the

generality of these rules using different research

areas and datasets, in particular, those related to

ecological processes such as plant canopy structure,

evapotranspiration, and ecosystem productivity.
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