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Abstract 

Large-scale terrestrial carbon estimating studies using methods such as atmospheric inversion, 

biogeochemical modeling, and field inventories have produced different results. The goal of this 

study was to integrate fine-scale processes including land use and land cover change into a large-

scale ecosystem framework.  We analyzed the terrestrial carbon budget of the conterminous U.S. 

from 1971 to 2015 at 1-km resolution using an enhanced dynamic global vegetation model (DGVM) 

and comprehensive land cover change data. Effects of atmospheric CO2 fertilization, nitrogen 

deposition, climate, wildland fire, harvest, and land use/land cover change (LUCC) were considered. 

We estimate annual carbon losses from cropland harvest, forest clearcut and thinning, fire, and 

LUCC were 436.8, 117.9, 10.5, and 10.4 TgC yr-1, respectively. Carbon stored in ecosystems 

increased from 119,494 to 127,157 TgC between 1971 and 2015, indicating a mean annual net 

carbon sink of 170.3 TgC yr-1. Although ecosystem net primary production increased by 

approximately 12.3 TgC yr-1, most of it was offset by increased carbon loss from harvest and natural 

disturbance and increased ecosystem respiration related to forest aging. As a result, the strength of 

the overall ecosystem carbon sink didn’t increase over time. Our modeled results indicate the 

conterminous U.S. carbon sink was about 30% smaller than previous modeling studies, but 

converged more closely with inventory data. 

Keywords: carbon sequestration, ecosystem productivity, land use and land cover change, wildfire, 

ecosystem model, DGVM 
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Significance:  

Differences in input data and methods cause discrepancies in large regional carbon assessment 

results. Carbon sequestration estimates from bottom-up ecosystem models are usually smaller than 

estimates from atmospheric inversion models and larger than field inventory results. Here, we 

quantify carbon dynamics of the conterminous U.S. at 1-km spatial resolution focusing on detailed 

land cover changes over recent decades, using several proven and established national data 

products. Our research highlights that the combined impacts of land management, human-

dependent land use change, and natural disturbance on carbon are greater than those associated 

with climate variability, and that process modeling can converge with field inventory data when 

detailed land cover change information is used.  
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Introduction  

Regionally and globally, large uncertainties exist in quantifying biological carbon (C) sequestration in 

terrestrial ecosystems (IPCC, 2007; Arneth et al., 2017). Atmospheric inversion models, terrestrial 

biogeochemical models, and field inventories typically give notably different results (King et al., 

2015; Hayes et al., 2012). Grassi et al. (2018) indicate that a model–inventory discrepancy in the 

global anthropogenic net land-use emissions (about 1.5 GtC yr
−1

) can be mostly explained by 

conceptual differences in dealing with forest related land use and environmental changes. For the 

conterminous U.S., estimates of the annual C sink during recent decades range from 200 to 685 TgC, 

varying greatly by method, period of analysis, and ecosystem type (Table S0-1). The recent SOCCR-2 

report (Birdsey et al., 2018) indicates that estimates of the U.S. land C sink (excluding aquatic 

system) are converging around 275 TgC, including 201 TgC in forestland.  

Land use and land cover change (LUCC) is an important perturbation of the regional and global 

carbon cycle. Synthesis of bookkeeping models, remote sensing, and process modeling studies 

indicate that global LUCC-induced C emission during 1990–2009 was estimated around 1.1 PgC yr−1, 

with an overall uncertainty of ±0.5 PgC yr−1 (Houghton et al., 2012). Several long-term global and 

continental scale C assessments have used process-based dynamic global vegetation models 

(DGVMs). Although DGVMs can reflect much greater spatial and temporal variability in carbon 

density and response to environmental conditions than bookkeeping models, their modeled carbon 

stocks may differ markedly from observations (Houghton et al., 2012). One reason is that most 

carbon cycle processes related to LUCC were simplified in large-scale C modeling assessments 

(Arneth et al. 2017) because DGVMs typically operate at coarse spatial resolutions with limited 

representation of LUCC. For example, the Community Land Model (CLM) (Lindsay et al., 2014) and 

the Ecosystem Demography (ED) model (Hurtt et al., 2002) have spatial resolutions of 0.5–1.0 

degree for global simulations although the MC2 model has been used at 4-km resolution for 

western U.S. (Bachelet et al., 2016). In some cases, other sources of LUCC C effects are 

adopted/combined in DGVM simulations (Schimel et al., 2016; Sitch et al., 2015) in order to reflect 

LUCC effects. In general, LUCC is represented in DGVMs at spatial resolutions which are relatively 

coarse compared to the spatial scales at which land cover change and land management occur (e.g., 

forest stands and municipal planning districts).  A
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The conterminous U.S. (CONUS) has a diverse geography, comprising many ecoregions with unique 

biophysical and land use characteristics. The unpredictable occurrence of large wildland fires, 

intensive land use in forestry and agriculture, and land use change complicate attempts to assess 

changes in ecosystem C balance. This study integrates existing scientific knowledge, robust 

modeling, and the best currently available data to quantify the effects of major controlling 

environmental processes (atmospheric chemistry, climate variability, fire disturbance, and LUCC) on 

ecosystem C dynamics. The goal of this study was to include smaller scale processes such as land 

use and land cover in a large-scale regional ecosystem framework.  Our approach evaluates C 

sequestration in dominant vegetation types (forests, shrublands, grasslands, croplands) in CONUS 

from 1971 to 2015 at 1-km resolution by reconciling a modeling approach with county-scale 

observations. The study focuses on changes in ecosystem productivity, C storage, and biomass C 

losses from disturbances. Our modeling tool and various model input data are described in the 

Methods and Supporting Information.   

Methods 

Model description 

The Integrated Biosphere Simulator (IBIS) (Foley et al., 1996) is a DGVM that links mesoscale 

atmospheric drivers and vegetation ecophysiology in a physically consistent representation of canopy 

photosynthesis and stomatal conductance, while accounting for vegetation phenology and soil 

biogeochemistry to simulate long-term vegetation dynamics and ecosystem productivity. IBIS allows 

multiple plant functional types (PFT, see Table S0-3 in Supporting Information) to coexist in a 

single land pixel. Existence of a PFT depends on local-scale environmental conditions and is 

constrained by human land use. IBIS doesn’t directly use forest age to calculate forest growth. 

Each forest PFT within a grid cell contains a single biomass carbon density. The biomass density 

together with the climate and disturbance variables determine the PFT’s growth and mortality 

rates. 

In this study, our modified version of IBIS introduces detailed effects of land cover change, 

wildland fire, forest thinning, and cropland grain/straw harvest (Liu et al., 2016). The model A
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was enhanced to use comprehensive gridded LUCC data. The model handles eight major land 

transitions/disturbances (fire, forest clearcut, forest thinning, deforestation to other 

vegetation, reforestation from other vegetation, agricultural expansion from grassland, 

agricultural contraction to grassland, and urban/infrastructure development). Carbon transfer 

following LUCC and fire events includes direct C harvest/combustion and additional vegetation 

mortality. 

The modified IBIS model incorporates fractional land cover changes. Each 1-km grid cell 

contains multiple land cover types. Each land cover type (e.g. forest, grass and agriculture) can 

have multiple PFTs (see Table S0-3 in Supporting Information). Each PFT has a single set of 

biomass pools and fluxes. The IBIS model does not consider forest age directly. It uses biomass 

C density to adjust new biomass growth and mortality.  

Forest thinning in a grid cell is determined by an external thinning ratio derived from the USDA 

Forest Service Forest Inventory and Analysis (FIA) and literature, which applies to entire forest 

PFTs annually. All live biomass from forest PFTs will be reduced following the thinning ratio. 

More details are presented in the Supporting Information. 

Key input data 

In this study, IBIS was enhanced to use comprehensive LUCC data: (a) 30-m vegetation height 

and cover type information from the USDA-USGS LANDFIRE Program; (b) five dates (1973, 

1979, 1986, 1992, 2000) of 60-m resolution land cover change information from the USGS Land 

Cover Trends Project; (c) 30-m resolution annual wildland fire scar and burn severity 

information (1984-2015) from the USGS-USDA Monitoring Trends in Burn Severity (MTBS) 

Project; and (d) freshwater and saline wetland area fractions derived from 30-m National Land 

Cover Database (NLCD) and NOAA Coastal Change Analysis Program (C-CAP) data. These 

publicly available datasets for CONUS are the largest and most comprehensive of their kind. In 

addition, state/county level forest thinning rates were derived from previous studies (Zhou et 

al., 2013; Law et al., 2013).  A
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To better constrain the model’s prognostic representation of the C cycle at regional scales, we 

used region-specific C densities as calibration references for each county in CONUS. MODIS-

derived annual net primary productivity (NPP) from 2001 to 2005 (Zhao et al., 2005), forest live 

biomass and dead wood standing stock at 100 years from the Carbon On Line Estimator (COLE) 

tool (Van Deusen and Heath, 2016), and USDA NASS county-level crop harvest data 

(https://www.quickstats.nass.usda.gov/) were used to calibrate the model. The COLE tool is 

based on USDA Forest Service FIA data (USDA Forest Service, 2016) (http://fia.fed.us), which is 

also used in development of LANDFIRE and some NLCD mapped products. Details are provided 

in Methods and Supporting Materials.  

Details of LUCC-related data are provided in Supporting Materials S1, S2, S3, and S4. Table S0-2 

provides key data links. Dynamic monthly precipitation and temperature data from 1971 to 

2015, interpolated to 4-km resolution using PRISM (Daly et al., 2008), were used as the main 

climatic drivers. Other variables like monthly mean cloud cover fraction, wet days per month, 

relative humidity, and wind speed were adopted from monthly normals for 1961–1990 

obtained from the UK Climate Research Unit (CRU, http://www.cru.uea.ac.uk/). The soil texture 

and C content were obtained from SSURGO (2015) polygon data and reprocessed/interpolated 

to 1-km resolution. The modeled soil profiles contain up to six layers (0 to 7, 7 to 15, 15 to 25, 25 

to 50, 50 to 100, 100 to 200 cm). Sand, silt, and clay fractions of each layer are used by IBIS to 

calculate soil water holding capacity and permeability. Additionally, 0.5-degree spatially explicit 

seasonal surface CO2 concentration (2003-2009) and annual nitrogen deposition (1970-2009) 

were derived from satellite-based column density measurements (Zhang et al., 2014; Lu et al., 

2016). The 1-km land ownership map was derived from the Protected Areas Database of the 

United States, version 1.4 (USGS, 2016). 

Consideration of fractional land cover 

IBIS tracks annual changes in the area fractions of each land cover type within each land 

pixel. The original IBIS model simulated the existence of each PFT using climatic constraints 

only, which could give very different upper and lower canopy fractions from reality in regions A
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where human activities have a major influence and in regions where physical limitations on 

vegetation exist (such as rock, desert, or open water). In our modified version, observed 

fractional land cover data are used to constrain the extent of changes in LAI and the 

proportions of different PFTs.  Land cover fractions, including the unvegetated fraction, are not 

allowed to change unless a relevant LUCC event happens.  

Vegetation regrowth occurs following any disturbance or human-caused land use change. 

Disturbance applies to an entire PFT and land cover type in the model. When wildfire and 

forest harvest events occur (which are not permanent land cover conversions), the forest 

fraction will remain unchanged, with only biomass density (kgC m-2) being reduced; however, 

when deforestation occurs, all of the forest fraction will be converted to the target land cover 

(e.g., agricultural land, grassland, shrubland, etc.) except that we intentionally allow a small 

fraction (5%) of forest to exist during urbanization. Conversely, when 

reforestation/afforestation occurs, either natural or human induced, other land covers convert 

to forest, causing the forestland fraction to increase, although the forest biomass density of 

the entire grid cell may not immediately increase. Following LUCC events, different proportions 

of ecosystem C will transfer to the atmosphere, harvest products, and on-site dead wood.  

Forest biomass and soil carbon initialization 

We used a county-level scalar and retrospective cold-start simulations (i.e., forest biomass 

starts from zero) to obtain county-level average forest standing stocks at 100 years that 

matched with FIA-COLE observations (per hectare biomass densities). For individual forest 

pixels in a county, we assumed that the pixel-level forest growth rates varied around the 

county mean forest growth rate. The variability is driven by local environmental factors specific 

to its soil, climate, tree cover fraction, and PFTs. When forest area fraction changes, pixel-level 

ecosystem production and biomass values will change based on the new forest area fraction. 

Based on those pixel-level biomass-over-age growth curves, we used the “observed” 1-km 

forest biomass map generated from LANDFIRE data (Supporting Material S1) to determine the 

approximate forest age in 2000 and reconstructed the age and biomass for 1971. For a pixel A
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where biomass derived from LANDFIRE was larger than that simulated by IBIS at 100 years, we 

assumed the forest was mature and used the LANDFIRE estimate as its biomass in 1971. For a 

pixel where forest age backtracking indicated a stand-replacing disturbance occurred between 

1971 and 2000, we assumed the previously disturbed forest was mature and set the biomass in 

1971 to that of a forest with an age selected at random between 30 and 100 years. This 

assumption could lead to slightly lower estimates of wood harvest for the western old-growth 

forest and slightly higher estimates of harvest for the southeastern plantations. 

Initialization of soil C pools was based on soil survey data. Soil C has four pools: fast, 

unprotected slow, protected slow, and passive. These pools are not further divided by soil 

layers. IBIS soil layers are mainly used for water balance calculation. Our soil C calculation in 

the first 10 years was similar to the fast soil spin-up method of Xia et al. (2012), which 

compared input and output fluxes of total soil C. When input and output fluxes became very 

close, the soil C pool was close to a theoretical balanced state. To maintain the overall soil C 

pool size close to observations, we used a set of internal scalars in the first 20 simulation years 

that dynamically adjust the slow soil C pool size and then deducted the slow C from the total 

observed soil C to obtain the size of the initial passive soil C pool. To avoid drastic declines of 

soil C in the simulation, we used an approach similar to the LPJ-WHy model (Wania et al., 2009) 

in modeling peatland soil accumulation: A maximum amount of the passive soil C (reactive, 5 

kg C/m2) is allowed to participate in the soil decomposition process. The extra passive soil C 

(beyond 5 kg C/m
2
) is assumed inactive within a given year. IBIS has ground litter C and dead 

wood C pools in addition to the four soil C pools. Dead wood calibration was done using FIA-

COLE county-level 100-year dead wood data (same as live biomass calibration). Ground fine 

litter was calculated with IBIS default litter decomposition parameters. 

Model Calibration 

Model calibrations were performed by comparing simulated county-level NPP, live biomass, 

dead wood, and crop yield with county-level observations of MODIS-derived NPP, FIA-derived 

forest live biomass, dead wood, and USDA statistics of crop yields (Figure S5-1).  A
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The COLE tool provides 100-year forest growth curves (live and dead wood) based on FIA 

data for each FIA survey unit (Table S5-1 and Figure S5-1). It was assumed that a 100-year-old 

forest did not undergo any stand-replacing disturbances, although effects of thinning, non–

stand-killing fires or other disturbances are implicitly included in the FIA data. Repeated IBIS 

simulations were performed with disturbance events turned off and compared with the COLE-

based FIA data. Scaling coefficients for each county were then calculated and applied to adjust 

IBIS’ simulations of forest live growth and dead wood. County-level live biomass scaling 

coefficient was calculated as a ratio of simulated county-level 100-year forest biomass over 

FIA-derived county-level 100-year forest biomass. The ratio was constrained between 0.1 and 

10.0 and applied to tree mortality calculation in the next simulation. Repeated adjustments 

helped to make the simulation and observation converge. Dead wood scaling coefficient was 

calculated the same way using dead wood data. 

We summarized county-level annual agricultural harvest data (comprising 26 crop species) 

since 1960. The yield data were aggregated based on their area fractions (Table S5-2). The 

2000-2009 averages were used to calibrate IBIS agricultural harvest amounts over the same 

period. The 1960-2009 grain yield trend was used to adjust grain production increase in 

addition to simulated effects of CO2 fertilization. 

The MODIS-derived NPP product provided full spatial and temporal coverage, which was 

used to calibrate IBIS NPP at the ecoregion level. IBIS does not consider individual tree/crop 

species and other local management factors that would be captured by remote sensing. We 

avoided overfitting because IBIS has its own NPP algorithm. Although this was not a pixel-level 

calibration, simulated NPP would still respond to spatial variability driven by climate, soil, and 

disturbance on the 960-m grid. 

Four uncertainty statistics methods were used to evaluate model performance, including 

Pearson correlation coefficient (COR), root mean square error (RMSE), modeling efficiency 

(MEF), and mean relative difference (BIAS). Details are provided in Supporting Materials S5. A
cc

ep
te

d 
A

rt
ic

le



 

This article is protected by copyright. All rights reserved 

Results 

Land cover transition and related carbon gains and removals 

Over the study period, wildland fire and forest clearcut disturbed the most land area, followed by 

agricultural contraction and expansion, development, and forest to/from agricultural land (Table 1).  

Table 1. Land cover change and fire effects on ecosystem carbon fluxes in CONUS (1971-2015 average 

NPP and NBP). The areas are the sum of the land pixels that had undergone the same LUCC events 

during 1971-2015. A positive NBP value refers to a net carbon sink on land. Fire disturbance locations 

overlap with the No-LUCC locations. The land area and carbon numbers on the No_LUCC row already 

include the numbers from the Fire row. Therefore, the numbers on the Sum/Avg row do not include the 

numbers from the Fire row. The fire area included 14,000+ fires from 1984 to 2015. No fire data were 

available from 1971-1983. Forest thinning was assumed to occur across all forested areas annually. 

 

  

       

 

      

Change Type 

AREA 

(km2) 

NPP 

(kgC m-2 yr-1) 

NPP_SUM 

 (TgC yr-1) 

NEP 

(kgC m-2 yr-1) 

 NEP_SUM 

 (TgC yr-1) 

NBP 

(kgC m-2 yr-1) 

NBP_SUM 

(TgC yr-1) 

No_LUCC 6835273 0.36 2480.7 0.10  665.5 0.027 182.9 

Fire 547034 0.33 181.5 0.04  23.4 0.010 5.5 

Forest Clearcut Harvest 316501 0.55 175.2 0.09  28.5 -0.044 -14.0 

Deforestation to Ag. 39515 0.43 16.9 0.16  6.1 -0.030 -1.2 

Reforestation from Ag. 38512 0.61 23.5 0.15  5.8 0.065 2.5 

Forest to Development 38735 0.38 14.8 0.09  3.4 -0.023 -0.9 

Grass to Development 15702 0.18 2.8 0.04  0.7 -0.019 -0.3 

Ag. to Development 50164 0.27 13.8 0.09  4.5 -0.021 -1.1 

Ag. expansion from Grass 123993 0.30 37.3 0.16  20.2 -0.004 -0.5 

Ag. contraction to Grass 183977 0.28 51.0 0.04  8.1 0.015 2.8 

Sum/Avg (excluding fire row) 7642373 0.368 2816 0.097  743 0.022 170 

 

The mean annual C loss was 572.6 TgC yr-1, including grain harvest (284.5), straw harvest (152.3), forest 

clearcut harvest (31.9), forest thinning (86.0), direct emissions from fires (10.5), and C losses related to 

other land transitions (10.4). These C losses were partly compensated by vegetation regrowth. For 

example, over the 45 years, average total net biome productivity (NBP; negative values denote C loss) 

of all clearcut harvest sites was -14.0 TgC yr-1, whereas the average annual C removal on clearcut sites 

was 31.9 TgC yr-1. Similarly, all wildfire sites together sequestered 5.5 TgC yr-1, while their average 

annual C loss in combustion was 10.5 TgC yr-1. Fire emission was not available before 1984 due to lack A
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of wildfire data. This would cause underestimation of C loss in those years. The underestimation might 

be close to the average annual fire emissions during 1984–1990 (6 TgC yr
-1

), which was lower than the 

fire emissions during 2011–2015 (25 TgC yr
-1

). Urban development areas on average lost 2.3 TgC yr
-1

. 

Areas with unchanged land cover sequestered 182.9 TgC yr
-1

.  

Carbon trends and spatial distribution 

Figure 1 shows the simulated trends in key ecosystem C fluxes and stocks from 1971 to 2015. Due to 

the combined contributions of CO2 fertilization, plant phenology, climate change, and land change 

impacts, average NPP increased by about 23% during 1971–2015 (18.5% in forests, 7% in shrubland, 

27.9% in grassland, and 31.7% in agricultural systems), calculated using the linear trendline of the 45-

year NPP values. NPP of agricultural land had the highest increase partly due to farming and 

biotechnology advances, which were represented in the model empirically, based on 1960-2010 crop 

yield data. Average total NBP was 170 TgC yr-1, ranging from a loss of 104 TgC yr-1 in 1988 to a maximum 

uptake of 366 TgC yr-1 in 2004. Clearcut harvest removals averaged 32 TgC yr-1 and were lowest in the 

1970s (21 TgC yr-1) and highest in the late 1980s (36 TgC yr-1), whereas forest thinning removed 

approximately 86 TgC yr-1. Combustion of soil and biomass C was 6 TgC yr-1 during 1984–2000, but 

increased to 12 TgC yr-1 in 2000s, and reached 25 TgC yr-1 during 2001–2015, with large interannual 

variation. C losses in agricultural harvests (grain + straw) increased steadily from 374 TgC yr-1 to 505 TgC 

yr-1 over the simulation period. Total C increases in live biomass, dead wood, other plant litter, and soil 

were 4.19, 1.16, 0.57, and 1.75 PgC, respectively. More than half of the C stock increase was in live 

biomass (55%), followed by soil (23%), dead wood (15%), and litter (7%). 

Summaries of carbon stocks and fluxes by land cover class and by decade from 1971-2015 are listed in 

Table 2. Overall, the estimated CONUS terrestrial ecosystem C sink of 170 TgC yr-1 (not including C sink 

in aquatic systems and harvested wood product) offset about 11.5% of total CONUS fossil fuel emissions 

(1,476 TgC yr-1) (3). The highest decadal NBP occurred in the 1990s (188 TgC yr-1), due to favorable 

climate and relatively small areas disturbed. However, NBP was low in the 2000s (166 TgC yr-1), when C 

removals in agriculture, fire disturbances, and LUCC increased. The average NBP of 2011-2015 

recovered to 192 TgC/yr. 

Table 2. Overall carbon fluxes and stocks in CONUS by land cover type and by decade. Flux values by 

land cover are the 1971-2015 averages. Stock values by land cover are for 2015. The “Other” lands A
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include all lands in CONUS with non-vegetation cover of greater than 85%, mostly barren, and urban 

areas. Area unit is km
2
; C stock unit is TgC; C flux (NPP, NEP, NBP) unit is TgC/yr 

                      

  Area (1971) Area (2015) NPP NEP NBP Live Biom C Dead Biom C Litter C Soil C Total C 

Forest 2737374 2709645 1448 280 129 15407 2374 3454 40461 61695 

Crop 2018467 1958302 747 395 21 1875 208 696 28429 31209 

Shrub 1670473 1651758 282 28 14 1051 428 723 11004 13206 

Grass 1174161 1185146 325 35 14 624 104 638 14727 16094 

WdCrop 10066 10066 7.6 5.1 0.1 22 0 6 104 132 

Other 31833 127456 7.8 0.9 -7.6 63 8.0 16.4 947 1034 

Sum 7642374 7642374 2817 744 170 19043 3123 5533 95672 123371 

1970s     2607 653 171 17488 2676 5277 95041 120482 

1980s     2698 686 145 18559 2948 5378 95265 122150 

1990s     2868 776 188 19354 3174 5605 95671 123804 

2000s     2947 796 166 19984 3430 5701 96227 125342 

2010s     3105 866 192 20543 3630 5865 96645 126683 

AVG 71-15     2816 743 170 19035 3121 5532 95673 123360 

 

 

Figure 2 shows the spatial patterns of ecosystem NPP, NEP, NBP, and C removals from fire and harvest 

averaged over the 45-year simulation period. The U.S. west coast and the eastern U.S. had generally 

high NPP and NBP, mostly in forested regions. Agricultural land had the highest NEP and medium high 

NPP, but its NBP was low due to grain and straw removals. 
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Discussion 

Implications for LUCC-based C modeling 

Our study provides a number of important insights on the quantification of LUCC and fire effects on 

CONUS C cycling. First, the interannual variations in NPP and NEP were driven mainly by climate 

variability without counting LUCC and fire effects. In our study, LUCC and fire disturbance caused C loss 

of approximately 573 TgC (STD=68 TgC) per year on average (including 437 TgC yr
-1 

loss from agricultural 

land), which offset 77% of total NEP (743 TgC yr
-1

). This huge C loss greatly exceeded year-to-year 

variability (STD) in NPP (199 TgC yr-1), NEP (121 TgC yr-1), and NBP (96 TgC yr-1). If we look at forestlands 

only, C losses caused by clearcut and thinning (104 TgC yr-1, STD=13.2 TgC yr-1) also exceeded the 

variations of forest NPP (93 TgC yr-1), NEP (53 TgC yr-1), and NBP (47 TgC yr-1). This demonstrates that 

human land use and natural disturbance are key factors in the C balances of the CONUS ecosystems, 

with larger magnitude and smaller variation than climate variability effects. 

Second, most terrestrial C sinks occur in areas unaffected by LUCC, primarily on forestlands, with 

about 55% of the C sink allocated to living biomass. Although forest NPP and NEP increased by 18.5% 

and 33.4%, respectively, forest NBP basically remained the same during the study period. This leveled 

NBP of forest was attributable to a combination of increased C gain from NPP and increased C loss from 

heterotrophic respiration, LUCC, and fire disturbances. 

Third, our estimates are generally more consistent with results from inventory-based methods, 

which consistently estimate a smaller land C sink than ecosystem models and atmospheric inversion 

methods (Table S0-1). Simulated forestland C sink in the 1990s was 125 TgC yr-1. If we consider an 

estimated 25 TgC yr-1 sink in harvested wood products (HWP) (USEPA, 2014; Pan et al., 2011), our 

adjusted 1990s forest NBP estimate would be 150 TgC yr-1. Because our forest summary included only 

land cells where forest cover was dominant, and because we used fractional land cover in the model, a 

portion of the carbon sink in shrublands, grasslands, and agricultural lands (total about 63 TgC yr-1) 

could be attributed to additional carbon uptake by trees. Our statistics indicate that average tree 

biomass density on forestland, agricultural land, shrubland, and grassland during 1971–2015 was 5.60, 

0.81, 0.16, and 0.20 kg C m-2, respectively. Therefore, about 14.5% of agricultural lands, 2.9% of A
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shrubland, and 3.6% of grassland can be considered tree-covered land. That equals approximately 

13.9% of normal forestland area. Therefore, given a forestland C sink of 125 TgC yr
-1

 in 1990s, we can 

assume an additional C sink of 17 TgC yr
-1

 for forests in non-forest dominant lands. Sparse trees on 

agricultural land usually have higher productivity than trees in a forest stand due to better soil N and 

water supply and edge effect. But sparse trees on non-agricultural lands may reside in a harsh 

environment (such as cold mountaintop) and have lower productivity than normal forest. Given that we 

have more than doubled sparse tree areas on agricultural land than on shrubland and grassland, we 

think the additional 17 TgC yr
-1

 C sink is conservative and reasonable. Our new adjusted forest NBP 

estimate for the 1990s would be 167 TgC yr
-1

, which is very close to some forest inventory studies, such 

as Pan et al (2011, 179 TgC yr
-1

), Heath et al (2011, 162 TgC yr
-1

), and Woodbury et al (2007, 169 TgC yr
-

1). For the 2000s, our adjusted estimate of forest NBP (with dynamic climate data used) is still 167 TgC 

yr-1. This value is a little lower than the inventory-based forest NBP (199 TgC yr-1) that usually has 

limited response to climate variability. However, our estimates of 2011-2015 forest C sink is 195 TgC yr-

1, which is close to inventory results. On the contrary, our adjusted average NBP on all land types for 

1991-2010 was 202 TgC yr
-1

, which is significantly lower than that obtained from other models (average 

of 331 TgC yr-1) and the SOCCR2 NBP estimates (275 TgC yr-1).  

Our model’s agreement with forest inventory estimates (1990s) may be partially explained by our 

calibration of modeled live biomass C stock and dead woody C stock against surveyed county-level 100-

year old forest stands. However, our calibration was done before fire and LUCC data were used. 

Therefore, our LUCC-related C budget is mostly independent from an inventory-based C budget. Our 

regional model calibration approach is likely the big difference from the site-level calibration approach 

used by other DGVM models. Additionally, our model considered land ownership, by which public or 

protected lands (mostly in the western U.S.) have reduced thinning rates compared to private lands 

(mostly managed land in the eastern U.S.). Overall, our findings represent the most comprehensive C 

modeling exercise utilizing available LUCC data for CONUS. Results indicate that combined effects of 

direct management, human-caused LUCC, and natural disturbance on C budget are larger than those 

associated with climate variability. However, we acknowledge that natural disturbances (such as 

wildland fires) also vary with climate. So additional work is needed to understand the full influence of 

climate variability. A
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Using a bookkeeping modeling approach, Piao et al. (2018) found that lower land-use emissions 

were responsible for the global increased land carbon sink since the 2000s. From our study, overall 

LUCC-induced total biomass removals (beyond fire emission) gradually increased, with the 2000-2009 

period being slightly lower than the 1990s and the 2010-2015 period, which is consistent with the global 

trend. Land conversions had relatively higher C emissions (biomass removals) during 1985-2000, and 

logging reached the highest level during late 1980s and early 1990s. But CONUS wildland fires 

significantly intensified since the 2000s. 

Pugh et al. (2019) pointed out that age-related forest carbon sink is predominantly located in the 

middle latitudes. Although IBIS doesn’t track forest age, our study seems to support that statement. 

From our study, IBIS showed significant increases in forest NPP and sustained NBP level even with 

gradually increased biomass removals and fire combustions. Our initial analysis indicated that, after 

excluding climate effects, forest NPP increased by 17% during 1971-2015. Considering this NPP 

increase, the model can generate 100-year total tree biomass that matches the 100-year biomass level 

derived from inventory. We believe the driving forces behind the NPP increase are the CO2 enrichment 

effect and forest age effect. Currently, although the IBIS model’s photosynthesis formula includes a 

conservative CO2 fertilization algorithm, we cannot separate the contributions of the two factors 

effectively. Further work is needed to quantify the relative contributions of forest age and CO2 

fertilization. 

Reducing model uncertainties 

Many aspects of this study still have notable uncertainties. First, dead wood C is one of the big 

unknowns in C modeling. In this study, although we calibrated our model with surveyed overall forest 

dead wood C stock at 100 years, we still do not have good dead wood C initialization. In addition, we did 

not explicitly model the effects of insects, disease, and physical agents such as flooding on tree 

mortality. Adding greater details to the tree mortality process, including the transfer of live tree carbon 

to dead tree carbon and the temporal changes in decomposition rates of standing and downed dead 

wood pools (Landry et al., 2016a; 2016b), would improve NBP calculations in future work. Second, 

although total C removal from forests (including clearcut, thinning, and other deforestation events) was 

about 128 TgC yr-1, which matched inventory-based estimates (Williams et al., 2016), thinning practices 

by region and by ownership across CONUS are still highly uncertain, especially in the interior western A
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U.S. Separation of partial thinning and clearcut can be further improved when better annual clearcut 

data become available. Third, estimates of annual land area burned also have considerable uncertainty. 

By mapping fires from 1984–2015 using Landsat data, Hawbaker et al (2017) found 31% more area 

burned than reported in MTBS in the western U.S., 312% more in the Great Plains, and 233% more in 

the eastern U.S. Therefore, the apparently low C removals due to fire may be attributed to the focus of 

the MTBS database on large fires (defined as 1,000 acres in the west and 500 acres in the eastern US). 

Finally, given that spatially explicit and comprehensive historical land change data were not available, 

we generated annual wall-to-wall land cover maps (1971-2015) based on land cover change sampling. 

The overall accuracy of land cover change sampling was reported to be 85% (USGS Land Cover Trends 

Project). Yet, new approaches, including annual wall-to-wall remote sensing products (e.g. USGS Land 

Change Monitoring, Assessment, and Projection (LCMAP) project) and robust land cover change 

models, will be very helpful to reconstruct more realistic land cover and biomass histories. In addition, 

DGVMs that can deal with fractional land cover change will be useful for large-scale, coarse resolution 

regional and global simulations. This feature of our model allows direct use of future land cover 

products such as the harmonized land use projections (Hurtt et al., 2011) developed for the IPCC’s Fifth 

Assessment Report.      
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Figure 1. Temporal trends of major carbon fluxes of CONUS from 1971 to 2015. Units are TgC yr-1. RH: 
ecosystem heterotrophic respiration. NPP: net primary productivity; NEP: net ecosystem productivity; NBP: 

net biome productivity. A positive NBP value refers to a net carbon sink on land. 
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Figure 2. Spatial distribution of 45-year average net primary productivity (NPP), net ecosystem productivity 
(NEP), net biome productivity (NBP), and carbon losses from grain harvest, tree harvest, and fire. Unit is 

kgC m-2 yr-1. 




