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A B S T R A C T

Estimating timber volume and carbon stock in forests is fundamental for silviculture and for accurate estimation
of national and global carbon budgets. Taper models are important tools for predicting diameter at any height
along a tree bole. Mean annual temperature (MAT) and mean annual precipitation (MAP) influence tree growth,
but their precise effects on stem shape are still poorly understood and climatic factors are seldom included in
taper models. To evaluate the effect of climate on tree stems, we incorporated MAT and MAP as covariates in the
Kozak (2004) model to improve model performance in goodness-of-fit. The Kozak (2004) model with the in-
corporation of MAT and MAP was refitted using nonlinear mixed-effects (NLME) modeling techniques to account
for within-sample tree heteroscedasticity and autocorrelation structure in residuals from data measured at dif-
ferent points along the same individual tree stem of Larix gmelinii (Rupr.). Results showed that the predictive
accuracy of the Kozak (2004) model was improved by incorporating MAT and MAP as covariates. The Kozak
(2004) model incorporating both MAT and MAP had the highest prediction accuracy for stem diameter, closely
followed by the model incorporating only MAT and then the model incorporating only MAP. MAT effect on tree
stem shape was stronger than that of MAP. The NLME Kozak (2004) model incorporating MAT and MAP with
exponential variance function and first-order continuous autoregressive correlation structure (CAR(1) model)
removed the heteroscedasticity and autocorrelation in the residuals, had the best prediction performance.
Therefore, such refined model is recommended for planning and management of natural L. gmelinii forests. In
conclusion, incorporating the effect of climate variables in stem taper equations could significantly improve
timber volume and biomass estimations, particularly in harsh environments, such as natural boreal forests.

1. Introduction

The forests of the Greater Khingan Mountains cover 30% of China’s
total forest area (DFPRC, 2014) and play an important role in China's
national carbon budget (Cai et al., 2016). Such forests define the
southern boundary of boreal forests in eastern Asia and are dominated
by Dahurian larch (Larix gmelinii (Rupr.) Rupr. (Editorial Committee for
Vegetation of China, 1980). L. gmelinii forests contribute more than
20.9% of the total forest area in China (Wang et al., 2001). The volume
of L. gmelinii forest stock is 0.51 billion m3 and it accounts for 8% of the
national total timber volume (DFPRC, 2014). To reach such stem vo-
lume estimations, taper equations are used because these equations can

describe the shape of a tree stem by predicting the diameter of the stem
at specified heights above the ground. Standing timber volume can then
be converted into carbon stocks by using carbon density factors.
Therefore, carbon stocks estimated from a suitable taper equation can
be used as a scientific basis for boreal forest assessment and manage-
ment at different scales under the context of managing carbon flows
and stocks.

A welcomed group of taper models is variable-form taper equations,
which usually have three main advantages: (i) they are flexible and easy
to fit, which is important for practical purposes; (ii) they provide a
smooth continuous taper profile model; and (iii) they have low multi-
collinearity (Kozak, 2004). In general, data used for building taper
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equations are hierarchical or longitudinal data (i.e. diameter mea-
surements on the same stem at different heights, so taper data are not
independent but are correlated). Nonlinear mixed-effects models
(NLME) including the fixed- and random-effects parameters have been
used to model stem taper because they consider heteroscedasticity and
autocorrelation among multiple diameter observations on each tree
stem (Yang et al., 2009). As a consequence, the use of NLME can im-
prove volume and diameter estimation accuracy relative to fixed-effects
models (Özçelik et al., 2011; Fonweban et al., 2012).

Variations in tree taper are affected by several factors, including
stand age (Gomat et al., 2011), stand density (Sharma and Parton,
2009), crown variables (Li and Weiskittel, 2010) and management
practices, such as thinning treatments (Thomson and Barclay, 1984).
Gomat et al. (2011) found that dominant trees are more impacted by
stand age than suppressed trees. For example, Sharma and Parton
(2009) studied the impacts of stand density on the taper equation for
jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana
[Mill.] B. S. P.) in Canada. These authors showed that trees had larger
butt diameters and more taper at lower stand density than they did at
higher stand density. Incorporating crown variables into taper equa-
tions for primary conifer species in the North American Acadian region
demonstrated that these variables could improve prediction accuracy
(Li and Weiskittel, 2010). Unfortunately, the ability of crown variables
to improve the predictive accuracy of tree profile equations is species-
specific (Valentine and Gregoire, 2001), as it is directly related to crown
architecture, and therefore generalizations cannot be made. In addition,
thinning has been identified as an effective silvicultural treatment to
alter tree taper. For example, Thomson and Barclay (1984) reported
that when stand density was reduced by heavy thinning, there was
more space for the crowns of individual trees to expand and stem butt
flare increased, especially in smaller trees.

Climate is directly related to tree mortality through extreme events
that can indirectly influence stand density. Previous studies have sug-
gested that climate change (including temperature and water avail-
ability) may affect the growth of coniferous forests. For example, at
global scale a positive impact of climate change on forest productivity
was found when water was not a limiting factor (Boisvenue and
Running, 2006). However, forest dieback of L. gmelinii has been related
to global warming in Siberia (Kobak et al., 1996). Chen et al. (2016)
also showed increased mortality of mature boreal forests (> 40 years
old) in Canada due to warming and reduced moisture availability.
Generally, forest ecosystems in the mid- to high latitudes may be more
sensitive to future climate change in terms of tree growth and expan-
sion, distribution ranges and primary productivity, especially boreal
forests (Gang et al., 2017).

In this line, researchers have shown that the boreal forests of the
Greater Khingan Mountains, where L. gmelinii is the dominant species,
are more sensitive to climate change than other Chinese forests (Dai
et al., 2002; Wang et al., 2012). The temperature in northeastern China
is predicted to increase in the future (Leng et al., 2008). If the tem-
perature increase is< 2 °C, the population of L. gmelinii may decline,
and it may be replaced by broadleaf species (He et al., 2005). Bu et al.
(2008) also predicted that the coverage of L. gmelinii could decrease
under a warming climate. Precipitation has been shown to affect the
growth of L. gmelinii, with precipitation influence on L. gmelinii growth
varying seasonally at high altitudes in the Greater Khingan Mountains
(Bai et al., 2019). Winter precipitation had a positive effect on growth,
whereas summer precipitation had negative impacts on L. gmelinii
growth at both high- and low-altitude sites.

Although some research has looked at the effects of temperature and
precipitation on the growth of L. gmelinii in the Greater Khingan
Mountains, few studies have examined their effects on the stem taper of
L. gmelinii. Knowledge on whether, and how, temperature and pre-
cipitation influence the taper of L. gmelinii is urgently needed to more
accurately estimate the volume and carbon stocks of L. gmelinii in the
Greater Khingan Mountains under future climate changing conditions.

Therefore, we hypothesize that temperature and precipitation can affect
tree stem shape by altering growing factors and affect tree architecture.
Hence, stem taper equations including climatic factors would provide
better estimations of tree volume than regular equations without cli-
matic factors. To test such hypothesis, our aims were: (1) to examine
the effect of mean annual temperature (MAT) and mean annual pre-
cipitation (MAP) on the tree stem form of L. gmelinii in the Greater
Khingan Mountains; (2) to modify the variable taper function to in-
corporate MAT and MAP as independent variables; and (3) to build a
nonlinear mixed-effects (NLME) model to account for within-tree het-
eroscedasticity and autocorrelation in residuals.

2. Materials and methods

2.1. Climate features in the Greater Khingan Mountains

The Greater Khingan Mountains (Fig. 1) are an important climate
demarcation line in China, with an increasing temperature gradient
(cold-temperate to mid-temperate) from north to south and an in-
creasing humidity gradient (semi-arid to humid) from east to west (Fu
et al., 2018). The climate of the Greater Khingan Mountains is a cold
temperate continental monsoon with a long cold winter (more than
nine months), a short warm summer (less than one month) and a short
frost-free period (only 70 to 100 days). The frost sometimes occurs
during the growing season in the north part of the mountain chain and
at high altitudes. MAT is −2.8 °C and the monthly mean temperature
has historically varied from −52.3 °C in January to 39 °C in July. MAP
is 442 mm, in which 85% to 90% precipitation occur in summer season
(June to August) and 10% precipitation occur from the end of October
to the start of April next year, usually as snow. Annual average relative
humidity is 70%. The annual snow accumulation period lasts for
5 months, and the depth of snow in the forests is up to 30–50 cm (Xu,
1998).

2.2. Stem data

The data used in this research were collected from natural L. gmelinii
stands located in the 17 Forestry Bureaus across the southern, middle
and northern sections of the Greater Khingan Mountains, covering the
existing range of diameters, heights, stand density and sites for L.
gmelinii forests (Fig. 1). A total of 10,729 measurements were taken
from 1858 felled trees. Tree data were obtained from two sources: (i)
1410 dominant and intermediate trees from 355 plots with areas be-
tween 0.04 and 0.32 ha/plot felled between the year of 1985 and 1987,
and (ii) 448 trees including dominant, intermediate and suppressed
trees from 26 plots with areas from 0.09 to 1.05 ha/plot, felled to model
stem shape variability in the year of 2015. Although the measurements
were taken in two periods with up to 30 years interval, the method used
for taper measurement was relatively consistent. For the total of 1858
felled L. gmelinii trees mentioned above, 20% of the total data were
selected at random as a validation dataset (containing 372 trees) using
Sample Function in R, while the remaining data (containing 1486 trees)
were used for fitting the models (Table 1).

For each tree, the diameter at breast height (DBH) outside bark (D)
and diameter outside bark at a height h (d) were measured to the
nearest 0.1 cm. Total tree height (H) and height above ground to the
measurement point h were measured to the nearest 0.1 m using a tape
measure. The lowest measurements of diameter outside bark were
taken at stump height between 0.1 and 0.3 m above the ground, then
another measurement was usually taken at 0.7 m before reaching the
defined breast height of 1.3 m. Measurement intervals above breast
height along the stem were 0.5, 1.0 or 2.0 m depending on the height of
the sampled tree. Fig. 2 shows the variation between the relative height
(q = h/H) and relative diameter (d/D) according to the measurement
data points of the 1858 trees. Relative height (q) values were divided
into ten classes (q intervals of 0.1). Within each relative height class,
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relative diameters are completely independent of each other, which
meets the prerequisites of ANOVA. The normality and homogeneity of
variances were verified before ANOVA is carried out, respectively, by
Shapiro–Wilk and Bartlett values> 0.05.

2.3. Climate data

The climate variables MAT and MAP were observed to be important
indicators of climate change in this region (Guo et al., 2013). Thus,
MAP and MAT were selected as candidate climate variables in this
study. Values for MAT and MAP were calculated from meteorological
data recorded by five meteorological stations (Eerguna (EEGN), Genhe
(GENH), Yakeshi (YKS), Elunchun (ELC) and Aershan (AES)) located
nearest to the 17 Forestry Bureaus (Fig. 1)). The MAT and MAP data for
Moerdaoga (MEDG) were obtained from the EEGN meteorological
station; MAT and MAP data for Deerbuer (DEBE), Mangui (MG),
Alongshan (ALS), Jinhe (JH), and GENH were obtained from the GENH
meteorological station; MAT and MAP data for Yitulihe (YTLH), Tulihe
(TLH), Kuduer (KDE), and Wuerqihan (WEQH) were obtained from the
YKS meteorological station; MAT and MAP data for Ganhe (GH), Alihe
(ALH), Keyihe (KYH), and Jiwen (JW) were obtained from the ELC
meteorological station; and MAT and MAP data for Chaoyuan (CY),
Chaoer (CE), and AES were obtained from the AES meteorological
station. The data were downloaded from the China Meteorological Data
Service Center (http://data.cma.cn/). The MAT and MAP statistics were
averaged for the period 1985–2015. Summary statistics for D, H, MAT

and MAP of sample trees used in fitting and validating the models are
described in Table 1.

We used the raw data of the MAT and MAP for each meteorological
station to calculate their mean, minimum, maximum and standard de-
viation. Several time periods were used (5 to 30 years) and potential
trends in MAT and MAP over the last 30 years were explored, but as
results were not significantly affected by the period selected (results not
shown), we decided to use the standard 30 years period to calculate
climate normals. Considering these statistics and the actual climatic
conditions in the Greater Khingan Mountains, we classified the MAT
and MAP into three different classes:< 400 mm, 400 to 450 mm,
and> 450 mm (for MAP); and<−3.0 °C, −3.0 to −2.0 °C,
and>−2.0 °C (for MAT) to analyze whether d/D were statistically
different among MAT and MAP classes using the univariate analysis of
variance (ANOVA). As with relative diameters, normality and homo-
geneity of variances were verified before ANOVA is carried out, re-
spectively, by Shapiro–Wilk and Bartlett values> 0.05.

2.4. Model analysis and development

We first compared ten variable-form taper models, and evaluated
their performances based on statistical indicators of fit and validation.
The Kozak (2004) variable-exponent model, which showed a larger
adjusted coefficient of determination (R2adj), and smaller root mean
squared error (RMSE), mean absolute error (MAE) and mean percen-
tage of relative bias (MPRB) than the other models, was selected as the

Fig. 1. Location of the study region in the Greater Khingan Mountains of Inner Mongolia, northeast China and 17 Forestry Bureaus belonged to five meteorological
stations.
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foundation model in this study for further analysis in predicting dia-
meters at any height along the tree bole for L. gmelinii. The form of the
most accurate Kozak (2004) model is:

= ++ + + + +d b D H xsij si
b

si
b

sij
b q b e b x b D b H b x

sij1
[ [1 ] (1 ) ]sij

Dsi Hsi sij si si
qsij

sij2 3 4 4 5 6 0.1 7 8
1 1 3

9

(1)

where dsij (cm) is diameter outside bark at a height hsij of the jth mea-
surement in the ith tree in the sth meteorological station; Dsi (cm) and Hsi

(m) are the DBH outside bark and total tree height of the ith tree in the
sth meteorological station; qsij = hsij /Hsi is relative height, xsij =
(1−qsij1/3)/(1−(1.3/Hsi)1/3); εsij is an error term; and bi…n are the re-
gression coefficients.

Because the exponent of the height solely determines the overall
shape of a tree (Sharma and Zhang, 2004), the original Kozak (2004)
model can be modified to accommodate the effects of climate on the
taper of L. gmelinii by adding the MAT and/or MAP to the exponent to
further improve model precision. Modifying the exponents for D and H
due to MAP and MAT would have a similar effect on taper along the
whole stem, while modifying the exponent for variable x allows the
effect of MAP and MAT on taper to vary along the stem. We chose the
three optional linear terms: (1) b10MAT, (2) b10MAP, and (3)
b10MAT + b11MAP in the exponent of x because it allowed the greatest
flexibility in capturing variability along the stem. Preliminary analyses
showed that the interaction between MAP and MAT did not exert sig-
nificant effects on d, which can be expressed as b10MAT*MAP,
b10MAP + b11MAT*MAP and b10MAT + b11MAT*MAP (data not
shown). Hence, three Kozak (2004) models with climate variables in-
cluded as a predictor in the exponent were defined as follows:

= ++ + + + + +d b D H xsij sib sib sij
b qsij b eDsi Hsi b xsij b Dsi b Hsi

qsij
b xsij b MAPsi sij1 2 3 [ 4 4 5 [1 ] 6 0.1 7 (1 ) 8

1 1 3

9 10 ]

(2)

= ++ + + + + +d b D H xsij sib sib sij
b qsij b eDsi Hsi b xsij b Dsi b Hsi

qsij
b xsij b MATsi sij1 2 3 [ 4 4 5 [1 ] 6 0.1 7 (1 ) 8

1 1 3

9 10 ]

(3)

where dsij (cm) is diameter outside bark at a height hsij of the jth mea-
surement in the ith tree in the sth meteorological station; Dsi (cm) and Hsi

(m) are the DBH outside bark and total tree height of the ith tree in the
sth meteorological station; qsij = hsij /Hsi, xsij = (1-qsij1/3)/(1-(1.3/Hsi)1/

3); MATsi and MAPsi are mean annual temperature and mean annual
precipitation corresponding to the sth (s = 1, 2, 3, 4, 5) meteorological
station in which the ith tree is located, respectively; εsij is an error term;
and bi…n are parameters.

2.5. NLME model

Using a nonlinear mixed-effects (NLME) model (Davidian and
Giltinan, 1995), the selected best Kozak (2004) model incorporating

climate variables can be expressed as follows:

= +d f u X u DR( , , ) Ñ(0, ) Ñ(0, )i i i i i i i (5)

where di is the vector of diameter outside bark at the different heights h

Table 1
Summary statistics for the fitting and validation data.

Variable Fitting data Validation data

Mean SD Min Max Mean SD Min Max

No. of data points = 8583 (1486 trees) No. of data points = 2146 (372 trees)
D (cm) 16.3 6.9 1.0 68.3 16.4 7.2 2.1 68.3
H (m) 15.3 4.1 2.0 43.0 15.3 4.3 3.2 41.9
MAT (°C) −2.0 1.1 −3.6 −0.4 −2.0 1.1 −3.6 −0.4
MAP (mm) 437 75 361 558 437 75 361 558

D: diameter at breast height outside bark, H: total height, MAT: Mean annual temperature, MAP: Mean annual precipitation, Min: minimum, Max: maximum, SD:
standard deviation.

= ++ + + + + + +d b D H xsij sib sib sij
b qsij b eDsi Hsi b xsij b Dsi b Hsi

qsij
b xsij b MATsi b MAPsi sij1 2 3 [ 4 4 5 [1 ] 6 0.1 7 (1 ) 8

1 1 3

9 10 11 ] (4)

Fig. 2. Scatterplot between the relative height (h/H) and relative diameter (d/
D).
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on the ith tree; Xi is the vector for independent variables; β is the vector
of fixed-effects parameters; ui is the vector of random effects for sample
tree i; N is the multivariate normal distribution; D is the variance–-
covariance structure matrix; εi is random error; Ri, which needs to be
specified to account for any within-tree heteroscedasticity and auto-
correlation among measurements, is the within-tree variance–covar-
iance matrix and is expressed as follows:

=R G Gi i i i
2 0.5 0.5 (6)

where 2 is a scaling factor for error dispersion which is given by the
value of residual variance of the estimated model; Gi is the diagonal
matrix explaining the variance of within-tree heteroscedasticity; and

iis a matrix accounting for the within-tree autocorrelation structure of
the errors. The heteroscedasticity errors and autocorrelation errors are
widely present in the repeated diameter measurements on the same
tree.

Preliminary analyses showed that the first-order continuous auto-
regressive correlation structure (CAR(1) models) can best model the
autocorrelation within the sample tree, which can be expressed as

=Cov ( , )j j
djj , where Cov ( , )j j is the covariance of two model re-

siduals j and j for two diameter values from the sample tree i; is the
estimated parameter of CAR(1); =d h h| |jj ij ij , for j j is the distance
between two observed h on the sample tree i (Pinheiro and Bates,
2000). The increasing within-tree heteroscedasticity with predicted
diameter outside bark can be best modeled using the exponential of the
fitted value (d ) variance function, which can be expressed as

= dVar ( ) exp(2 )i i
2 , where 2 is the value of residual variance of the

estimated model, and δ are estimated parameters. The above-described
within-group correlation structure (CAR(1) models) and within-group
heteroscedasticity structure (exponential variance function) in this
study, respectively, showed the smallest fit evaluation criteria: that is,
Akaike's information criterion (AIC) and Bayesian information criterion
(BIC) (Schwarz, 1978; Sakamoto et al., 1986).

D is the variance–covariance matrix for the random-effects para-
meters ui, which explains between-tree random variability, generally
assumed to be the unstructured positive definite matrix in tree profile
research (Yang et al., 2009). We used our tree profile data also to find
the smallest AIC and BIC when the D matrix is considered to be the
unstructured positive definite matrix.

To determine the parameter types (fixed effect or fixed plus random
effects) of the NLME model, the different combinations of the para-
meter types for the selected best Kozak (2004) model incorporating
climate variables in this study were evaluated with the method applied
by Trincado and Burkhart (2006). The best model was selected using
AIC, BIC, and twice the negative log-likelihood (−2Ln(L)). The para-
meters of NLME models were estimated using restricted maximum
likelihood with the nlme function of the nlme package in R (Pinheiro
et al., 2018).

The sample tree-level random effects parameters ui were calculated
using the empirical best linear unbiased prediction (EBLUP) method
(Vonesh and Chinchilli, 1997). The expression is as follows:

= +u D Z R Z D Z e( )i i
T

i i i
T

i
1

(7)

where ui is the estimated random effects parameter for sample tree i; D
is the estimated variance-covariance matrix for ui; Ri is the estimated
within-tree variance–covariance matrix for εi; =e f Xd ( , , 0)i i i is
the residuals vector, which is calculated by subtracting the estimated di
using the fixed-effects model from the observed di of the sample tree i
for the subsample; f(.) is a nonlinear function of the independent
variable Xi; and Zi is the design matrix of the partial derivatives of

=
=

Zi
f u X

u
u

( , , )

, 0

i i
i

i

. Details of random-effects parameters estimation for

the NLME model in forestry were introduced in Fang and Bailey (2001)
and Calama and Montero (2004).

2.6. Model evaluation

To evaluate the fit and prediction performance of fixed- and mixed-
effects models, several criteria and the standardized residual plots were
applied. For these criteria, besides AIC and BIC, the R2adj (the fit in-
dicator, Eq. (8)), RMSE (Eq. (9)), MAE (Eq. (10)) and MPRB (Eq. (11))
(Li and Weiskittel, 2010) were also calculated for both fitting and va-
lidation (independent) datasets. The corresponding expressions are as
follows:

= =

=

R
n y y

n p y y
1

( 1)· ( )

( 1)· ( )
adj

i

n

i i

i

n

i i

2 1

2

1

2
(8)

=
=

RMSE y y n p( )
i

n

i i
1

2

(9)

=
=

MAE y y n| |
i

n

i i
1 (10)

= ×
= =

MPRB y y y| | 100%
i

n

i i
i

n

i
1 1 (11)

where yi is the observed value of the diameter for the ith observation, yi
is the predicted value of the diameter for the ith observation, ȳi is the
mean value of the yi, n is the number of observations in the fitting or
valuation dataset, and p is the number of estimated parameters in the
corresponding stem taper model.

3. Results

3.1. Impact of MAP and MAT on stem taper

There were significant differences in the relative diameter of trees
among the three MAP and MAT classes along the entire tree stem
(0 < q ≤ 1; F = 213.2 and 171.3, p < 0.001; Tables 2 and 3). The
relative diameter (d/D) increased with higher MAP (Table 2). The re-
lative diameter of the tree bole in the stands with MAP larger than
450 mm was up to 1.2 times greater than those stands with MAP
smaller than 400 mm. The average relative diameter of a tree bole in
the stands with MAT lower than −3.0 was 0.665 ± 0.009, sig-
nificantly lower than the other two stands with MAT between −3.0 and
−2.0 °C and MAT larger than −2.0 °C (p < 0.001, Table 3). For the
three MAP and three MAT classes, there were significant differences for
the average relative diameter among ten different relative height
classes (q intervals of 0.1), except for that of 0.1 < q ≤ 0.2 and
0.2 < q ≤ 0.3 (for the three MAP classes), and except for that of
0.2 < q ≤ 0.3 and 0.3 < q ≤ 0.4 (for the three MAT classes), where
stem forms were generally modeled geometrically as a cylindrical shape
(q ranges from 0.1 to 0.4). Similar to the cylindrical shape, there was no
effect of MAP and MAT on the average relative diameter of a tree bole
where tree stems were modeled as conical frustums (0.9 < q < 1).
Overall, the ANOVA indicated that MAP and MAT generally had sig-
nificant effects on the tree stem diameter (p < 0.001). Thus, MAP and
MAT were incorporated into the Kozak (2004) model as predictors to
improve the accuracy of taper equations for L. gmelinii.

3.2. Analysis of the tree profile equation incorporating climate variables

The parameters for the Kozak (2004) model, which were significant
at the 95% confidence level in the models incorporating MAP or/and
MAT (Eqs. (2)–(4)), are reported in Table 4. Based on the diagram of
stem profile simulation (Fig. 3) and the evaluation statistics of the three
analyzed taper models (Eqs. (2)–(4)) (Table 5), the Kozak (2004) model
with MAP and MAT was rated as the best among the three candidate
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Table 3
ANOVA of relative diameter (mean ± standard error) for different mean annual temperature classes (MATs) (<−3.0 °C, −3.0 to −2.0 °C and>−2.0 °C) for
different relative height classes (q intervals of 0.1).

Relative height < −3.0 °C −3.0 to − 2.0 °C > −2.0 °C F p

d/D N d/D N d/D N

0 < q ≤ 1 0.665 ± 0.009a 1361 0.767 ± 0.006b 2735 0.803 ± 0.002c 6635 171.3 <0.001
0 < q ≤ 0.1 1.050 ± 0.007a 164 1.180 ± 0.009b 573 1.004 ± 0.001c 2141 665.5 <0.001
0.1 < q ≤ 0.2 0.988 ± 0.006a 169 0.968 ± 0.003b 308 0.954 ± 0.002c 534 25.6 <0.001
0.2 < q ≤ 0.3 0.898 ± 0.006a 132 0.891 ± 0.003a 231 0.824 ± 0.001b 1080 333.5 <0.001
0.3 < q ≤ 0.4 0.830 ± 0.007a 114 0.838 ± 0.004a 248 0.759 ± 0.002b 475 187.7 <0.001
0.4 < q ≤ 0.5 0.733 ± 0.007a 135 0.771 ± 0.004b 255 0.688 ± 0.001c 969 261.3 <0.001
0.5 < q ≤ 0.6 0.637 ± 0.008a 130 0.694 ± 0.005b 243 0.596 ± 0.002c 679 244.4 <0.001
0.6 < q ≤ 0.7 0.527 ± 0.009a 113 0.597 ± 0.005b 244 0.496 ± 0.002c 482 167.4 <0.001
0.7 < q ≤ 0.8 0.400 ± 0.008a 136 0.465 ± 0.007b 237 0.425 ± 0.003c 237 30.1 <0.001
0.8 < q ≤ 0.9 0.251 ± 0.006a 155 0.283 ± 0.007b 239 0.299 ± 0.014a 28 6.9 0.001
0.9 < q < 1 0.133 ± 0.007a 113 0.136 ± 0.006a 157 0.166 ± 0.008a 10 0.9 0.413

Note: The different superscript letters in the same row indicate significant differences among MAT classes; the same superscript letter in the same row indicate no
significant differences among MAT classes (Tukey’s HSD, p < 0.05).

Table 4
Parameter estimates, and regression coefficients and standard errors (in parentheses) for Kozak (2004) model without (Eq. (1)) and with mean annual precipitation
(MAP) and/or mean annual temperature (MAT) (Eqs. (2)–(4)), and with fixed- and random-effects parameters (with MAP and MAT incorporated) (Eq. (12)) plus an
exponential variance function (varExp) and autoregressive error structure CAR(1).

Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (12) Eq. (12) with varExp and CAR(1) model

Parameters
b1 0.9687 (0.0084) 0.9658 (0.0082) 0.9703 (0.0082) 0.9699 (0.0082) 0.9671 (0.0142) 0.9885 (0.0179)
b2 0.9759 (0.0053) 0.9771 (0.0052) 0.9750 (0.0051) 0.9752 (0.0051) 0.9612 (0.0070) 0.9471 (0.0081)
b3 0.0445 (0.0074) 0.0444 (0.0073) 0.0451 (0.0072) 0.0450 (0.0072) 0.0586 (0.0095) 0.0649 (0.0111)
b4 7.0916 (0.1319) 7.3330 (0.1311) 7.4603 (0.1300) 7.4630 (0.1300) 7.0610 (0.1115) 6.7590 (0.0974)
b5 −1.1192 (0.2323) −2.3000 (0.2404) −1.9573 (0.2291) −2.0330 (0.2385) −4.1566 (0.3383) −3.2684 (0.3174)
b6 −10.4929 (0.3488) −10.9100 (0.3453) −9.9827 (0.3415) −10.0500 (0.3473) −7.5452 (0.3948) −6.6081 (0.3580)
b7 −0.6965 (0.0506) 5.6300 (1.1140) 3.9801 (1.0486) 4.3760 (1.1030) 11.2876 (1.2720) 7.5478 (1.2939)
b8 0.0163 (0.0036) 0.0556 (0.0043) 0.0353 (0.0036) 0.0383 (0.0045) 0.0542 (0.0095) 0.0168 (0.0101)
b9 15.1469 (0.4142) 13.5800 (0.4217) 14.5541 (0.4052) 14.4200 (0.4217) 12.0987 (0.4863) 11.3027 (0.4309)
b10 0.0026 (0.0002) 0.1685 (0.0080) 0.1593 (0.0115) 0.2501 (0.0157) 0.2207 (0.0153)
b11 0.0003 (0.0000) −0.0002 (0.0000) −0.0001 (0.0000)
Variance components
σ2 1.36189 1.32480 1.31077 1.29504 0.89750 0.30491
var(b2) 0.00012 0.00004
var(b8) 0.00154 0.00079
cov(b2, b8) 0.00032 0.00017
Variance structure
δ 0.04227
Correlation structure
ρ 0.45594
Goodness-of-fit
AIC 27014.5 26784.8 26695.5 26596.3 25049.5 22651.0
BIC 27085.1 26862.4 26773.2 26681.0 25155.4 22771.0
logLik −13497.3 −13381.4 −13346.8 −13286.1 −12509.8 −11308.5

Table 2
ANOVA of relative diameter (mean ± standard error) for different mean annual precipitation classes (MAPs) (< 400 mm, 400 to 450 mm and>450 mm) for
different relative height classes (q intervals of 0.1).

Relative height < 400 mm 400 to 450 mm >450 mm F p

d/D N d/D N d/D N

0 < q ≤ 1 0.660 ± 0.008a 1493 0.767 ± 0.006b 2982 0.808 ± 0.002c 6256 213.2 <0.001
0 < q ≤ 0.1 1.061 ± 0.006a 202 1.168 ± 0.008b 627 1.001 ± 0.001c 2049 625.4 <0.001
0.1 < q ≤ 0.2 0.972 ± 0.007a 172 0.967 ± 0.002ab 353 0.959 ± 0.002b 486 4.4 0.012
0.2 < q ≤ 0.3 0.888 ± 0.007a 133 0.886 ± 0.003a 256 0.825 ± 0.001b 1054 255.8 <0.001
0.3 < q ≤ 0.4 0.812 ± 0.007a 135 0.833 ± 0.004b 264 0.762 ± 0.002c 438 123.0 <0.001
0.4 < q ≤ 0.5 0.726 ± 0.007a 139 0.761 ± 0.004b 284 0.689 ± 0.001c 936 190.4 <0.001
0.5 < q ≤ 0.6 0.626 ± 0.007a 150 0.685 ± 0.005b 264 0.598 ± 0.002c 638 186.9 <0.001
0.6 < q ≤ 0.7 0.521 ± 0.008a 127 0.589 ± 0.005b 267 0.496 ± 0.003c 445 140.6 <0.001
0.7 < q ≤ 0.8 0.398 ± 0.007a 150 0.460 ± 0.006b 260 0.430 ± 0.003c 200 27.1 <0.001
0.8 < q ≤ 0.9 0.250 ± 0.006a 162 0.283 ± 0.006b 250 0.365 ± 0.017c 10 11.5 <0.001
0.9 < q < 1 0.136 ± 0.006 123 0.137 ± 0.006 157 – – – –

Note: The different superscript letters in the same row indicate significant differences among MAP classes; the same superscript letter in the same row indicate no
significant differences among MAP classes (Tukey’s HSD, p < 0.05).

Y. Liu, et al. Forest Ecology and Management 464 (2020) 118065

6



models, followed by the Kozak (2004) model with MAT, and finally by
the Kozak (2004) model with MAP. This indicated that the impact of
climate variables on the stem form decreased in the order: adding both
MAP and MAT (reducing MAE 5.5%) > adding only MAT (reducing
MAE 4.1%) > adding MAP only (reducing MAE 2.8%). The in-
corporation of MAT and MAP simultaneously into the Kozak (2004)
model led to the lowest AIC (Table 4), when compared with the Kozak
(2004) models that incorporated MAT alone or MAP alone and the
Kozak (2004) model without MAT and MAP. Therefore, we selected the
Kozak (2004) model with MAP and MAT (Eq. (4)) as the optimal model
to develop the NLME taper models.

3.3. NLME taper models and their parameter estimates

Among all possible combinations of random effects and fixed effects
for Eq. (4), the best combination of the converged models selected b2
and b8 as mixed effects parameters. This combination gave the lowest
AIC value (25049.5) and BIC value (25155.4), and the largest log
likelihood values (−12509.8). The final NLME model (Eq. (12)), in-
cluding the random effects parameters, was:

where u2i and u8i are the random-effects parameters produced by the ith

sample tree on b2 and b8, respectively.
The model parameters and variance components for Eq. (12) are

shown in Table 4. All parameters were significant at the 95% con-
fidence level. However, the combination of b2 and b8 as mixed effects

parameters (random effects parameters related to the sample tree) and
other parameters as fixed effects was not enough to eliminate the het-
eroscedasticity and autocorrelation because the AIC difference (up to
10%) between Eq. (12) and Eq. (12) with exponential variance func-
tions and CAR(1) model was significant (Table 4). The likelihood ratio
tests also showed significantly improvements to the performance of Eq.
(12) (using L.Ratio = 2402.5, p < 0.0001), when simultaneously in-
cluding the exponential variance function to model the hetero-
scedasticity and the CAR(1) model to remove the autocorrelation
within the sample tree (the Eq. (12) with exponential variance func-
tions and CAR(1) model). The estimated residual variance σ2 values
decreased from 1.36189 to 0.30491 (reduction of 77.6%). The Eq. (12)
with exponential variance functions and CAR(1) model showed much
better goodness of fit measures than the other five models (Table 4).

3.4. Predicted diameters and model calibration

The difference between fixed and mixed effects models is that mixed
effects models require prior measured diameter information, but fixed
effects models do not. In this study, four randomly selected prior
measurements of the upper stem diameters from each tree were used to
estimate the random effects of NLME models and also to calibrate
diameters and calculate the evaluation statistics for the NLME models.
This procedure was suggested by Fu et al. (2017). All the evaluation
statistics for the fitting and validation datasets for the fixed and mixed
effects taper models are shown in Table 5. The Eqs. (1)–(4) and Eq. (12)
with exponential variance function and CAR(1) model explained more
than 97.9% of the entire stem taper variation. Based on the fitting and
validation statistics, plus the diameter outside bark standardized re-
siduals plot (Fig. 4), the Eq. (12) with exponential variance function
and CAR(1) model showed the best results in estimating d, which fur-
ther reduced the MAE by 2.8–8.0% and 3.4–10.2% for the fitting and
validation datasets, respectively, when compared with the other four
fixed effects taper equations (Table 5).

The differences in RMSE among the five models were at most 8.2%.
The d predictions for 10 relative height classes were further evaluated
using the evaluation statistics of validation datasets for Eq. (1), Eq. (4)
and Eq. (12) with exponential variance function and CAR(1) model
(Table 6). The diameter predictions were better for middle stems than
lower and upper stems for all the three models. The Kozak (2004)
model (Eq. (1)) with observed bottom (0 < q ≤ 0.1) and upper
(0.7 < q ≤ 1.0) stem diameters performed quite well in terms of
RMSE, MAE and MPRB. However, Eq. (12) with exponential variance
function and CAR(1) model provided a more accurate prediction of
upper stem diameters for lower and middle sections (0.1 < q ≤ 0.7)
based on the evaluation statistics (Table 6). As relative diameter be-
came greater, relative tree height (q) became smaller. The standardized
residuals of diameter in the sections with relative diameter classes
ranging from 0.1 to 1.0 were reduced for Eq. (12) with exponential
variance function and CAR(1) model, particularly for sections with
relative diameters ranging from 0.6 to 1.0 (Fig. 4). The standardized
residuals were slightly positive for the lowest of the stems with relative
diameter of 1.3 in the Kozak (2004) model (Eq. (1)) and Kozak (2004)

model with MAP and MAT, but became slightly negative in the Eq. (12)
with exponential variance function and CAR(1) model (Fig. 4). In
summary, the mixed-effects model had the lowest bias for the upper
stem diameter predictions, closely followed by the Kozak (2004) model
incorporating MAP and MAT and then by the Kozak (2004) model.

Fig. 3. Predicted diameter over height (an example for Larix gmelinii
(D= 64.9 cm, H= 37.2 m, MAT =−2.3 °C and MAP = 441.4 mm)) using the
Kozak (2004) model (black line), Kozak (2004) model with mean annual pre-
cipitation (MAP) (green line), Kozak (2004) model with mean annual tem-
perature (MAT) (blue line), and Kozak (2004) model with MAP and MAT (red
line). The four color codes represent the four different taper models. The hollow
dots represent the measured value of the upper-stem diameter at the corre-
sponding height along the tree bole. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 4. Standardized residuals of diameter for the Kozak (2004) model, Kozak (2004) model with mean annual precipitation (MAP) and mean annual temperature
(MAT) incorporated, and with fixed- and random-effects parameters (with MAT and MAP incorporated) plus an exponential variance function and autoregressive
error structure CAR(1), where four randomly selected prior measured upper stem diameters above ground from sample tree were used for estimating random-effects
parameters and then for making tree-specific diameter calibrations. Box plots represent the mean (red dot), median (middle line), the 25th (bottom of box) and 75th
quartile (top of box), maximum (top whisker), minimum (bottom whisker) and outliers (black dot) standardized residual of diameter for each relative height class.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
Evaluation statistics of nonlinear mixed-effects (NLME) models and models with and without mean annual precipitation (MAP) and mean annual temperature (MAT)
for analyzed variable-form taper Kozak (2004) model.

Model Fitting Validating

R2 RMSE MAE MPRB(%) RMSE MAE MPRB(%)

Eq. (1) 0.9790 1.1667 0.7230 5.4828 1.0407 0.6969 5.2848
Eq. (2) 0.9795 1.1511 0.7028 5.3302 1.0176 0.6734 5.1068
Eq. (3) 0.9800 1.1385 0.6930 5.2559 1.0091 0.6684 5.0683
Eq. (4) 0.9813 1.1274 0.6829 5.1546 1.0037 0.6575 5.0521
Eq. (12) with varExp and CAR(1) model 0.9888 1.0712 0.6652 5.0444 0.9699 0.6256 4.6816

Y. Liu, et al. Forest Ecology and Management 464 (2020) 118065

8



4. Discussion

4.1. Influence of temperature and precipitation on stem shape

Taper models can be used to predict the relationship between tree
growth, timber volume and carbon stocks (Fonweban et al., 2011). Our
results support our initial hypothesis, as they indicate that climate-re-
lated factors significantly affect tree shape. Our study also showed that
the Kozak (2004) model incorporating climate was significantly better
than other models for predicting stem diameter. This result is consistent
with that of Rojo et al. (2005), who evaluated the performance of 31
well-known taper models and found that the Kozak (2004) model
was more accurate than the next best performing model. Heiðarsson
and Pukkala (2011) and Corral-Rivas et al. (2007) also suggested that
the Kozak (2004) model was the most suitable for predicting diameters
along the stem for both Siberian larch (L. sibirica) and lodgepole pine
(P. contorta) in Iceland, and another five pine species analyzed in El
Salto (Durango, Mexico), respectively. In Canada, the Kozak (2004)
model is extensively used to predict the diameter of the stem and in-
dividual tree volume for major tree species in British Columbia (Nigh
and Smith, 2012) and Alberta (Yang et al., 2009). These studies suggest
that although taper equations are generally species-specific, the Kozak
(2004) model can be successfully used to estimate diameter in many
different tree species because it is highly flexible (Kozak, 2004).
Therefore, improving such model with climate-dependent variables
could have applicability in a wide range of forest types.

In addition, our results show that stem form is not only influenced
by biotic factors (e.g. stand density, age, tree species, stand origin and
branch location), but also impacted by abiotic factors (e.g. climate
variable and site characteristics) (Meng, 2006). Although the Kozak
(2004) model has been shown to successfully predict stem diameters,
the effect of climate variables on the stem taper of L. gmelinii is sig-
nificant and it should be incorporated into the model structure as
covariates to further increase the accuracy of existing the Kozak (2004)
model. The climate factors (MAT and MAP) have important impacts on
taper, which is consistent with the finding of Chen et al. (2016), who
showed that temperature and moisture availability affected the net
biomass of boreal forests in western Canada. Schneider et al. (2018)
also reported that the taper of white birch (Betula papyrifera Marsh.)
decreased with increasing summer temperatures and winter precipita-
tion in the province of Quebec, Canada.

MAP and MAT should be considered as surrogates for a summary of
several environmental factors interconnected among them. For ex-
ample, MAT depends on both elevation and orientation, with moun-
taintops and northern-facing slopes being colder and therefore having
shorter growing seasons. This could be translated into stems growing

slowly in diameter, particularly in the top sections, and stems becoming
more conical. MAT could also be related to topography, as lower tem-
peratures are usually combined with steeper slopes that could force
swollen butts to increase structural stability. Similarly, MAP usually
becomes higher as altitude increases, but in this region that is translated
into more snow loads and stronger winds, which again could force a
more conical stem shape to increase stability against snow and wind
damage.

The MAT and MAP were simultaneously included in the Kozak
(2004) model (Eq. (4)) as predictors, which gave better results than
models that either only included MAT (Eq. (2)) or MAP (Eq. (3)) in
estimating tree diameters at any height. The additional climate vari-
ables improved the model performance more for MAT than MAP by
reducing MAE by 4.1% and 2.8%, respectively. Therefore, MAT was the
main climate factor influencing L. gmelinii taper in the Greater Khingan
Mountains. This result is consistent with Guo et al. (2019), who found
that MAT was the most important driver for stem growth in Asian
boreal forests. Other studies showed that temperature was the key cli-
mate factor driving the growth of trees in cold alpine regions (Pauli
et al., 2012; Suvanto et al., 2016b). We have also found that tem-
perature had a positive effect on relative diameter. When the tem-
perature was higher than −2.0 °C, the relative diameter
(0.803 ± 0.002) was larger than that of other MAT classes (Table 3).
This result corroborates the positive relationship between temperature
and stem diameter reported for L. gmelinii taper in the Greater Khingan
Mountains by Jiang et al. (2016).

Under warmer temperatures, trees in the boreal latitudes tend to
develop more wood cells in wider shape, causing higher annual dia-
meter growth (Lo et al., 2010), which translates into the significant
positive relationship between temperature and stem shape shown by
our results. Such positive temperature-diameter relationships are
widely documented in dendroclimatological research (Hughes et al.,
2011). On the other hand, in natural even-aged stands tree height
growth is less directly related to competition among trees than diameter
growth. Under these conditions, top height variations across sites
mainly depend on environmental factors, and top height traditionally
serves as a proxy for site fertility (Skovsgaard and Vanclay, 2008). In
northern latitudes, it has been shown that boreal tree height is more
dependent on temperature than on precipitation, being spring tem-
peratures particularly influential on tree height growth (Bloom et al.,
1985; Messaoud and Chen, 2011). Therefore, our results showing a
stronger influence of temperature than precipitation on tree shape are
consistent with previous research for boreal forests. However, as tree
stem growth is a cumulative process of annual increments during many
years and therefore it has an important legacy from previous years, our
results should be interpreted as if MAT and MAP change at these sites,

Table 6
Root mean squared error (RMSE), mean absolute error (MAE) and mean percentage of relative bias (MPRB) (%) for the predictions of diameter outside bark for
validation data for nonlinear mixed-effects (NLME) models and models with and without mean annual precipitation (MAP) and mean annual temperature (MAT) for
analyzed Kozak (2004) model.

Relative height N Kozak (2004) Kozak (2004) with MAP and MAT Eq. (12) with varExp and CAR(1) model

RMSE MAE MPRB(%) RMSE MAE MPRB(%) RMSE MAE MPRB(%)

0–0.1 578 1.2966 0.7455 4.0039 1.3231 0.7617 4.0907 1.3501 0.6825 3.6656
0.1–0.2 187 0.5814 0.3676 2.5412 0.5871 0.3757 2.5969 0.5481 0.3664 2.5326
0.2–0.3 281 0.7602 0.5608 4.0495 0.7224 0.5400 3.8993 0.5161 0.4826 3.4851
0.3–0.4 160 0.9918 0.7499 5.4795 0.8854 0.6673 4.8762 0.8678 0.6046 4.4181
0.4–0.5 295 1.0161 0.7078 6.0801 0.8938 0.6328 5.4364 0.8024 0.5907 5.0747
0.5–0.6 206 0.9542 0.7131 6.4540 0.8796 0.6283 5.6862 0.8050 0.6191 5.6032
0.6–0.7 184 1.2005 0.9059 10.0940 1.0858 0.7965 8.8757 0.9000 0.7411 8.2584
0.7–0.8 127 1.2064 0.8459 10.7765 1.2421 0.8722 11.1122 1.2746 0.9127 11.6278
0.8–0.9 84 0.9602 0.7279 18.8906 1.0094 0.7389 19.1756 1.0594 0.7386 19.1686
0.9–1.0 44 0.8316 0.6223 40.1463 0.8897 0.6363 41.0484 1.0201 0.7055 45.5183
Overall 2146 1.0407 0.6969 5.2848 1.0037 0.6575 5.0521 0.9699 0.6256 4.6816

Note: Numbers shown in bold indicate the lowest errors of each criteria for three models in diameter prediction for each relative height (q).
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new tree generations will have different stem shape from the trees
historically harvested from the Greater Khingan Mountains or the ma-
ture tree still standing.

4.2. Predictive performance of taper equations with climate factors

The relative height (q) was divided into ten sections to evaluate the
predictive performance of the models along the whole stem. The Kozak
(2004) model (Eq. (1)) with observed bottom (0 < q≤ 0.1) and upper
(0.7 < q ≤ 1.0) stem diameters performed the best in terms of RMSE
and MAE. However, the Eq. (12) with exponential variance function
and CAR(1) model provided the best prediction of upper stem diameters
for lower and middle sections (0.1 < q≤ 0.7) based on the evaluation
statistics (Table 6 and Fig. 4). Similar results were reported by Özçelik
et al. (2011) and Yang et al. (2009): in other words, the NLME model
showed the highest precision for the lower and middle stem sections
compared with the fixed-effects model with and without other predictor
variables. This result could be explained as the NLME tree profile
equations with exponential variance function and CAR(1) model were
successful at removing the heteroscedasticity and autocorrelation in
model residuals, which are caused by multiple measurements of an
individual tree (Yang et al., 2009; Li and Weiskittel, 2010). However,
the NLME created bias with estimation for small (at the relative height
of 0.7 < q ≤ 1.0) and large (at the relative height of 0 < q ≤ 0.1)
relative diameters, i.e., such issue could lead to poor predictive per-
formance for the upper and bottom stem diameters, being of particular
importance for those trees growing in natural forests in harsh en-
vironments, such as L. gmelinii in the Greater Khingan Mountains.

Stem diameter predictions were less precise for the stem section of
small relative diameter, which may be caused by an over-prediction of
the calibrated diameters for that relative height class (0.7 < q≤ 1.0),
as this location is closer to the tree top with fairly small diameters in
general (Yang et al., 2009). Similar conclusions were reached by
Trincado and Burkhart (2006) and Özçelik et al. (2011), when using the
NLME modeling technique. The poor predictions at the bottom section
for the NLME model (RMSE was employed as a primary criterion for
model evaluation) may be due to the butt swell presented by L. gmelinii
trees at that relative height class, 0 < q ≤ 0.1, when compared with
predictions based only on fixed-effects models. Even though the NLME
model can remove part of the heteroscedasticity and autocorrelation in
the residuals, it has often been shown to predict butt sections poorly. In
spite of that, the butt error may be of little practical significance be-
cause this height, which corresponds closely to stump height, is not the
main timber portion and is usually not harvested but left on site
(Fonweban et al., 2011). Similar conclusions of poor predictive per-
formance for the butt sections by taper modeling were reached by
Fonweban et al. (2011) and Parresol et al. (1987). It has also been re-
ported that harsh environments produce shorter trees (Marks et al.,
2016), due the limited resource for growing and also the need to adapt
to perturbances, such as winter storms with high winds and heavy snow
loads. Such shorter tree stems have more taper to develop stronger
roots, which are critical to anchoring boreal trees against winter storms
(Suvanto et al., 2016a). Therefore, such shorter trees tend to develop
larger butt diameter (Danquechin Dorval et al., 2016).

Supporting this argument, the ANOVA results also demonstrated
that there was no impact of either MAP or MAT on the average relative
diameter of the tree bole near the top of the stem (0.9 < q < 1). This
result could be because the vertical-axis system produces vigorous
growth at the top of the tree and, therefore, the shape of the bole shows
a sharp change. Alternatively, this could be caused by an over-
estimation of d for that relative height class (0.7 < q ≤ 1.0). Because
this location is closer to the top of the stems with relatively small
diameters in general, the effect of the sample tree-level random effects
on d should be small. However, the Kozak (2004) model with MAP and
MAT showed consistent performance for each section and exhibited
only moderate variation in any section, which indicated that the

inclusion of climate variables improved the performance of the stem
form model in this study. Our results are also aligned with previous
findings on the importance of climate on stem shape in European forests
(Fortin et al., 2019), and follow Kimmins et al. (2008) indications that
forest models should be simple, but include all the factors relevant for
estimating the target variable.

Our work indicates possibilities for further research to keep in-
creasing the accurate estimation of diameter, volume, biomass or
carbon in standing forests as well as in harvested trees. In this study, the
regional climate differences exerted significant effects on the stem taper
was explored. However, the appropriate temporal frame to study cli-
mate differences that is most correlated with tree form at the time of
smapling could not be found, as only data from two harvesting events
were available. In future work, the continuous observation of stem data
(either with dendrometers or dendrochronological sampling) could be
used to carry out a study of potential lag effects, and therefore de-
termine the appropriate temporal frame of climate differences that is
most correlated with tree form at the time of measurement.

5. Conclusions

The flexibility of the Kozak (2004) model demonstrates acceptable
predictive accuracy for stem diameter and can be adapted to simulate
the taper profile of L. gmelinii in the Greater Khingan Mountains of Inner
Mongolia, northeast China. The Kozak (2004) model including MAT
and/or MAP showed a significant improvement on predictions of stem
diameter. The NLME approach was used to fit the stem taper equations.
The heteroscedasticity and autocorrelation in the residuals were mod-
eled by the exponential variance function and CAR(1) model. Based on
our results, the NLME Kozak (2004) model including MAT and MAP is
recommended for the estimation of diameter at specific heights of L.
gmelinii stem when upper stem diameter measurements are available.
To our knowledge, very few previous attempts have been made to de-
monstrate the effect of climate on taper, and even fewer studies have
developed specific stem taper equations that included climate variables
as covariates for L. gmelinii. In these boreal forests, climate plays a role
in stem shape (through improving stem growth in height and diameter
when conditions are favorable and through the selection of trees well
rooted and better able to resist mechanical loads from snow and wind).
This study will improve the prediction accuracy of tree-specific dia-
meters at any height along the tree bole and make up for the defi-
ciencies of previous regional taper equations in the Greater Khingan
Mountains, particularly in the context of changing climate that could
affect tree shape.
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