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Abstract
Laser-induced breakdown spectroscopy (LIBS) is an emerging multi-elemental
analytical technique offering fast and simultaneous quantification of soil proper-
ties with minimal sample preparation and effective cost. Due to soil heterogene-
ity, spectral variation however limits the quantitative robustness. In this study,
348 soil samples were collected and prepared for acquisition of LIBS spectra.
Influences of shot layer and number on LIBS quality were evaluated by spectral
intensity and relative standard deviation (RSD). Effects of shot layer and number
and five normalization procedures on LIBS ability tomeasure soil organicmatter
(SOM), total nitrogen (TN), and total soluble salt content (TSC), were evaluated
using partial least squares regression (PLSR). Increasing shot number reduced
LIBS spectral variance, thereby improving the quantitative accuracy of selected
soil properties. Deep shot layers (4th or 5th shot layers) reduced the intensities of
soil spectra and thereby decreased the quantitative accuracy for TSC. However,
deep shot layers improved the SOM and TN prediction performances. Among
the normalization approaches, themethod based on the correction of Si line (DS)
showed superior performance for improving quantitation of SOM and TN. The
arithmetic average method (AA) was best for TSC prediction. Optimization of
shot layer, number and normalization procedures of LIBS spectra resulted in fair
prediction of SOM (residual prediction deviation of validation set, RPDV= 1.608),
good prediction of TN (RPDV = 1.836), and very good quantitative analysis of TSC
(RPDV = 2.456). Therefore, our findings illustrate very good potential for improv-
ing the quantitative accuracy of the LIBS soil spectra.

Abbreviations: AA, arithmetic average method; DA, method based on
the correction of spectral area; DM, method based on the correction of
spectral maximum; DN, method based on the correction of spectral
norm; DS, method based on the correction of Si line; LIBS, laser-induced
breakdown spectroscopy; nLV, number of latent variables; PLSR, partial
least squares regression; RMSECV, root-mean-square-error of
cross-validation; RMSEV, root-mean-square-error of validation set;
RPDV, residual prediction deviation of validation set; RSD, relative
standard deviation; SOM, soil organic matter; TN, total nitrogen; TSC,
total soluble salt content; VIP, variable important in projection.
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1 INTRODUCTION

The key aspect of accomplishing accurate management of
soil nutrients in precision agriculture is the recognition of
local changes in the soil environment within traditional
management units and then addressing them appropri-
ately (Ji et al., 2019). However, conventional laboratory-
based soil analytical methods have been used in an
attempt to establish the relationship between soil physical

Soil Sci. Soc. Am. J. 2020;84:1307–1326. wileyonlinelibrary.com/journal/saj2 1307

https://orcid.org/0000-0002-9064-3581
mailto:chwdu@issas.ac.cn
https://wileyonlinelibrary.com/journal/saj2


1308 XU et al.

and chemical properties and individual soil components,
often ignoring their complex, multi-component interac-
tions (Ma, Du, & Zhou, 2016). Moreover, these conven-
tional methods are time- and cost-consuming, tedious,
destructive to the sample being analyzed, and sometimes
generate toxic waste that must be disposed of correctly
(Ma, Du, Zhou, & Shen, 2019; Peltre, Bruun, Du, Thom-
sen, & Jensen, 2014). Therefore, the development of fast,
cost-efficient, and convenient methodologies to estimate
soil properties will be of great significance for monitor-
ing and evaluating soil conditions and understanding their
complex and multi-component interactions.
Laser-induced breakdown spectroscopy is a multi-

elemental spectroscopic technique based on atomic emis-
sion spectroscopy. By focusing a high-energy laser beamon
the sample surface, a plasma generates the atomic emis-
sion of elements. This technique shows great potential for
soil analysis because it is rapid, quasi-nondestructive, and
produces real-time multi-elemental measurements (Luna,
Gonzaga, da Rocha, & Lima, 2018; Paules et al., 2018). Fur-
thermore, the simple structure of LIBS systems allows for
design of portable devices for field use (Knadel et al., 2017;
Yamamoto, Cremers, Ferris, & Foster, 1996). Previous stud-
ies have reported the application of LIBS for quantitative
analysis of soil properties, including soil texture (Villas-
Boas et al., 2016), pH (Ferreira, Neto, Milori, Ferreira, &
Anzano, 2015), CEC (Liu, Zeng, Zhang, Liu, & Lin, 2012),
C (Cremers et al., 2001; Martin et al., 2010; Nguyen, Moon,
& Choi, 2015), and N, P, and K (Dong, Zhao, Zheng, Zhao,
& Jiao, 2013; Lu et al., 2013).
However, the application of LIBS in measurements of

soil properties is limited by the matrix effect and poor
repeatability which results in poor precision and sensi-
tivity (Hao et al., 2018). The matrix effect is caused by
changes in the emission line intensities of some elements
in samples when the physical properties and the chemi-
cal composition of the matrix vary (Senesi, 2014). Several
attempts to improve the quantitative accuracy of LIBS and
reduce the matrix effect using chemometrics and multi-
variate methods have been made (Eppler, Cremers, Hick-
mott, Ferris, & Koskelo, 1996; Takahashi & Thornton, 2017;
Zaytsev, Krylov, Popov, Zorov, & Labutin, 2018). Poor preci-
sion caused by highly variable measurements is a concern.
Causes include pulse fluctuation, the distance of plasma
light to the collection fiber, scattering of light, atmospheric
conditions, variation of the lens to sample distance, and
material homogeneity (Michel & Chave, 2007; Motto-Ros,
Negre, Pelascini, Panczer, & Yu, 2014). Several studies indi-
cate that the optimization of LIBS parameters contributed
to an improvement of the signal repeatability (Fu, Hou,
Li, Li, & Wang, 2019; Hao et al., 2018; Sirven, Mauchien,
& Sallé, 2008). In addition, spectral normalization meth-
ods are proven to be an effective strategy for enhancing

Core ideas

∙ LIBS is an emerging multi-elemental analytical
technique for soil samples.

∙ Soil heterogeneity resulted in the limitation of
LIBS application in soil analysis.

∙ Optimization of laser shots improved the repre-
sentation for heterogeneous soil samples.

∙ Spectra normalization strategies increased the
detection accuracy through removing interfer-
ences.

the repeatability of the LIBS signal (Body & Chadwick,
2001; Hao et al., 2018). Soil is heterogeneous because of
the uneven distribution of soil components in amicroscale
space. The laser spot focused on the soil surface is some-
times smaller than the diameter of some aggregates in the
soil. Consequently, variations of the spectra at each site are
significantly different. The signal variation caused by the
inhomogeneity of a soil sample is mainly responsible for
the low repeatability of the LIBS signal (Wainner, Harmon,
Miziolek, McNesby, & French, 2001).
Precision also depends on soil preparation and LIBS

measurement processes. In the LIBS measurement pro-
cess, shot layer and number are the main factors affecting
the repeatability of LIBS soil spectra. A LIBS spectrum is
attained by one ablation or shot of the laser in the vertical
plane at a specific site of the sample. At a specific site, an
initial crater with certain depth is produced after the first
ablation and this ablation is called the first shot layer. Then
the second ablation is created on the bottom of the ini-
tial crater to produce a deeper crater and this second abla-
tion is called the second shot layer. By that analogy, spec-
tra of different shot layers are obtained. Unfortunately, the
optimization of shot layer and number for LIBS soil spec-
tra remain unknown. Moreover, we hypothesize that both
optimization of shot layer andnumber anddata normaliza-
tion methods may benefit the accuracy of LIBS for quanti-
fying soil properties. Therefore, these combined effects on
the quantitative accuracy of LIBS soil spectra deserve an
in-depth investigation.
In this work, we applied the LIBS technique at different

shot numbers to acquire LIBS soil spectra for 348 soil sam-
ples collected from Hetao Irrigation District, China. Sev-
eral types of spectral normalization methods were applied
to preprocess the spectra of multiple measurements. A
PLSRmodel was used to assess the ability of LIBS soil spec-
tra to quantitatively analyze SOM, TN, and TSC. The objec-
tives of this study were to: (i) evaluate the influences of
shot layer and number on the quality of LIBS soil spectra;
(ii) evaluate the influences of shot layer and number and
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F IGURE 1 Distribution map of the soil sampling sites in this study

spectra normalization methods on the quantitative analy-
sis using LIBS soil spectra; and (iii) optimize the combina-
tion of shot layer and number and spectral normalization
methods for improving the quantitative abilities of LIBS
soil spectra.

2 MATERIALS ANDMETHODS

2.1 Study area

The study area was located in Urad Front Banner, Inner
Mongolia, in northern China (Figure 1). This region is the
third-largest irrigation district in China, covering a total
area of 1.12 × 106 ha (Feng, Wang, & Feng, 2005). As a typi-
cal arid continental climate, themean annual precipitation
in this region is 150 mm and the mean annual potential
evaporation is in the range of 2200–2400 mm (Lei, Issac,
Yuan, Huang, & Yang, 2001). As a result, crop production
in this region relies heavily on flood irrigation using water
diverted from the Yellow River (Yang, Shang, & Jiang,
2012). The soil texture is a silty clay loamwith severe salin-
ization (Yu et al., 2010). Soils are Aridisols according to the
USDA soil taxonomic system (Yue, Guo, Lin, Li, & Zhao,
2016). Local crops are mainly spring wheat (Triticum aes-
tivum L.), sunflower (Helianthus annuus L.), and maize
(Zea mays L.) (Chen et al., 2018).

2.2 Soil sampling and chemical analysis

In 2015, a total of 348 topsoil samples (0- to 20-cm depth)
were collected from farmland with the precise location

determined using GPS. Soil samples were collected at
348 randomly selected locations (Figure 1) using a 35-
mm soil auger after the autumn irrigation. The soils were
fully mixed and stored in plastic sampling bags for subse-
quent analysis. Before laboratory analysis, the soil samples
were air-dried at room temperature and were then passed
through a 2-mm sieve. Content of SOM was determined
using a potassium dichromatic oxidation titration method
(Walkley & Black, 1934). Content of TN was determined
using the Kjeldahl method, with a Kjeldahl analyzer (Kjel-
tec 8200, FOSS Analytical, Hilerod, Denmark) (Pansu &
Gautheyrou, 2007). Total soluble salt was extracted using a
1:5 soil/water suspension and the cation and anion content
were determined by the method described by Lao (1988).
Briefly, 50 ml of extract was dried by distillation using a
water bath. Then aliquots of 15% H2O2 were added repeat-
edly to remove the OM as visually observed. The residue
was subsequently oven-dried to constant weight at 105◦C.
The TSC was calculated by the amount of residue, volume
of extract and soil to water ratio.

2.3 Sample preparation and spectral
acquisition

Before the spectral acquisition, soil samples of approx-
imately 0.5 g were pelletized to dimensions of 1-cm
diameter and 0.25-cm thickness with an applied pressure
of ∼55 MPa for 2 min using a tablet machine (YP-2,
Tianjin, China). The pelletized soil tablets were placed
over an X–Y–Z manual/automatic, micro-metric platform
with a 1.0-μm stage of travel at every coordinate. Various
spectral acquisition approaches were achieved according
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F IGURE 2 Schematic diagram of LIBS ablation process and the relationship between shot layer and number

to the combination of different shot layers and numbers
(Figure 2). The LIBS laser first produced an initial ablation
crater on the surface of soil pellet and this ablation was
the first shot layer. Then the laser sequentially ablated
on the bottom of the initial crater to produce a deeper
crater and this second ablation was the second shot layer.
As an analogy, m spectra of m shot layers at one specific
site were obtained. After that, the laser moved to a fresh
site to repeat the above process until n shot sites were
achieved. Thus, the shot number and total number of
spectra for one sample was m × n. The ith shot layer of
all sites was labeled as Li and the ith to jth shot layers
of all sites were labeled as L(i-j). The k shot number was
labeled as SNk. The combinations of different shot layer
and number were labeled as L(i-j)/SNk. For example, the
first to fourth shot layers with a total of 80 shot numbers
(20 sites, 4 shots/site) was labeled as “L(1-4)/SN80”. The
shot depth refers to the depth from the crater of the shot
layer to the surface of soil pellet. The 1st and 2nd shot
layers are considered as surface shot layers and 4th and
5th shot layers are considered as deep shot layers. Spectra
obtained under different combinations of shot layer and

number were used for subsequent spectral processing and
modeling. In particular, for the three shot layers’ condi-
tion, one and two spectra of the third layer were removed
for keeping the shot number at 20 and 40, respectively,
before subsequent spectral processing and modeling.
A MobiLIBS system (IVEA, Orsay, France) with AnaL-

ibs control software was used for spectral acquisition. A
fourth-harmonic Nd:YAG laser (Quantel, Paris, France)
was operated at 266 nm with a 5-ns pulse duration, to
generate a laser beam with the frequency of 20 Hz and
delivery energy of 16 mJ. The laser beam was focused on
the pelleted sample with a spot/site diameter of 50 μm by
a lens with a focal length of 15 cm. A plasma was produced
in the ablation area and light radiated during plasma
cooling. Emitted light was collected by a collection lens
and transmitted to a Mechelle 5000 Echelle spectrometer
(Andor Technology, Ltd., Belfast, Northern Ireland) by a
fiber optic cable. The resolving power of this spectrometer
(λ/∆λ) is 4,000. An intensified charge-coupled device
camera (iStar, Andor Technology, Ltd.) was used to collect
the diffracted light. The delay time and the gate width
were controlled and adjusted to the optimal conditions
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(370 μs delay time and 7.0 ms gate width) in advance. The
wavelengths of the obtained spectra ranged from 200 to
1000 nm and the resolution was 0.116 nm.

2.4 Baseline correction and outlier
removal of spectra

The baseline drift of the LIBS spectra was corrected using
a morphological-weighted penalized least squares (MPLS)
algorithm (Li et al., 2013). The MPLS algorithm can be
briefly described as: (i) a rough background profile was
first obtained using a mathematical morphological open-
ing operation; (ii) the rough background and the localmin-
imum values were then used as the input vector for penal-
ized least squares to refine the background profile; and (iii)
the corrected spectrum was obtained by subtracting the
refined background profile from the original spectrum. In
this work, the adjustable parameters, λ and window size,
in the MPLS algorithm were set as 10,000 and 100, respec-
tively. After baseline correction, a principal component
analysis (PCA) was performed on the spectra to remove
spectral outliers that existed in multiple measurements for
each soil sample. The spectra with the first principal com-
ponent (PC1) scores of below −10,000 were identified as
outliers and were removed.

2.5 Spectral normalization methods

Castro and Pereira-Filho (2016) applied twelve normal-
ization methods to reduce the interference matrix and
improve the calibration models. Some of their normaliza-
tion methods showed great improvement for calibration
of metal elements in alloys. In this study, normalization
approaches were selected to normalize the LIBS spectra
with repeated measurements for each sample (Castro &
Pereira-Filho, 2016), consisting of the followingmethods:

(1) The arithmetic average was calculated for the spectra
over a number of measurements and this method was
labeled as AA.

(2) Each repeated spectrum was divided by its individual
norm and the norm of each repeated spectrum of was
assigned a value of 1. TheAAof the normalized spectra
was then calculated. This normalization method was
labeled as DN.

(3) Each repeated spectrum was divided by its individ-
ual spectral area and the area of each repeated spec-
trum was assigned a value of 1. The AA of the normal-
ized spectra was then calculated. This normalization
method was labeled as DA.

(4) Each repeated spectrum was divided by its spectral
maximum (the highest signal) and the signal inten-
sity of the highest emission line for each repeated spec-
trum was assigned a value of 1. The AA of the normal-
ized spectra was then calculated. This normalization
method was labeled as DM.

(5) Each repeated spectrum was divided by the signal
intensity of Si I 287.9 nm and the signal intensity of Si
I 287.9 nm for each repeated spectrum was assigned a
value of 1. The AA of the normalized spectra was then
calculated. This normalization method was labeled
as DS.

2.6 Partial least squares regression and
model evaluation

Partial least squares regression is a widely used modeling
approach as it can be used to analyze data where there
are multiple X variables that are strongly collinear (cor-
related) and noisy (Wold, Sjöström, & Eriksson, 2001). In
PLSR, a vector, y (SOM, TN, or TSC), can be described as
a function of the elements of X (spectra) for predictions
using the smallest number of latent variables (nLV). In the
present study, PLSR was used to evaluate the effects of dif-
ferent spectral acquisition and normalization approaches
on the quantitative accuracy of LIBS soil spectra. The nLV
in PLSR was optimized by ten-fold cross-validation. The
optimal number of LVs was determined when the local
minimum of root-mean-square-error of cross-validation
(RMSECV) was achieved. Spatial autocorrelation analysis
in ArcGIS v10.2 (ESRI, California, USA) showed that all
p values of the spatial autocorrelation for SOM, TN, and
TSC were greater than 0.05. This indicated that the SOM,
TN, and TSC were spatially independent. Therefore, the
full spectra dataset was randomly divided into a calibra-
tion set (75%, 261 samples) and a validation set (25%, 87
samples). The calibration set was used for modeling PLSR
and the validation set was used for verifying the prediction
performance. The statistics of chemically measured con-
tents of SOM,TN, andTSC in the calibration and validation
sets are presented in Table 1. To evaluate the repeatability
of measurements, robustness, and accuracy of the model,
RSD of various spectral lines, the coefficients of deter-
mination (R2), root-mean-square-error of validation set
(RMSEV), and RPDV of prediction were determined (Xing
et al., 2016). These evaluation parameters were specifically
defined by the following formulae:

RSD =

√∑𝑛

𝑗= 1 (𝑥𝑗−�̄�)
2

𝑛−1

�̄�
× 100% (1)
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TABLE 1 Statistics of soil organic matter (SOM), total nitrogen (TN), and total soluble salt content (TSC) measured by the reference
chemical methods

Properties N Range Median Mean SDa CVb

g kg−1 %
All soil samples
SOM 348 5.37−21.00 13.00 13.08 3.01 23.04
TN 348 0.27−1.24 0.82 0.80 0.87 23.48
TSC 348 0.44−7.54 0.90 1.24 1.00 81.21
Calibration set
SOM 261 5.37−21.00 13.10 13.32 2.86 21.47
TN 261 0.32−1.24 0.82 0.81 0.17 20.99
TSC 261 0.44−6.54 0.89 1.14 0.8 70.18
Validation set
SOM 87 6.21−19.50 12.20 12.37 3.36 27.16
TN 87 0.27−1.12 0.79 0.76 0.23 30.26
TSC 87 0.54–7.54 0.93 1.43 1.2 83.92

aSD, standard deviation.
bCV, coefficient of variation.

𝑅2= 1 −

∑𝑁

𝑖 =1 (𝑦𝑖 − �̂�𝑖)
2

∑𝑁

𝑖=1

(
𝑦𝑖 − �̂�

)2 (2)

RMSEV =

√√√√ 1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)
2 (3)

RPDV =
SD

RMSEV
(4)

SD =

√√√√ 1

𝑁

𝑁∑
i = 1

(𝑦𝑖−�̄�)
2 (5)

where n is the number of repeated measurements; xj is
the spectral intensity of jth repeated measurement; x̄ is
the average intensity of n repeated spectra; yi and ŷi refer
to the measured value and the corresponding estimated
value, respectively; ŷ is the average of the estimated value;
N denotes the number of observations; and ȳ is the aver-
age of the measured value. The RPDV value in soil science
is considerably lower than in most other fields because
of the complicated interaction among soil components,
which influences the distribution of specific soil properties
(Du, Ma, Zhou, & Goyne, 2013). Thus, RPDV values < 1.4

were considered poor; those ≥ 1.4 and < 1.8 were consid-
ered fair and allowed the model prediction to be used for
assessment and correlation; those≥ 1.8 and< 2.0were con-
sidered good, in which case quantitative predictions were
possible; those ≥ 2.0 and < 2.5 were considered very good
for quantitative analysis; and those ≥ 2.5 were considered
excellent (Lu, Du, Yu, & Zhou, 2014; Rossel, McGlynn, &
McBratney, 2006).
The variable importance in projection (VIP) in PLSRwas

used to determine the interpretative ability of spectral lines
for soil properties (Farrés, Platikanov, Tsakovski, & Tauler,
2015). The VIP score for the kth variable is given as

VIP𝑘 =

√√√√∑𝐹

𝑘
𝑤2
𝑘𝑓
SSY𝑓 J

SSY𝑇 F
(6)

where wkf is the weight value for the kth variable and
f latent variable in PLSR; SSYf is the sum of squares of
explained variance for the fth latent variable and J is the
number of spectral variances. The term SSYT is the total
sum of squares explained by the dependent variance; and
F is the total number of latent variables. The Spearman
correlations between the RMSEV values of SOM, TN, and
TSC and the RSD of various element lines (C, N, K, Ca,
Mg, and Si) were used to assess the influence of the RSD
values of various element lines on the quantitative accu-
racy. All above statistical and spectral analyses were imple-
mented inMATLABR2016a software (MathWorks, Natick,
MA, USA).
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F IGURE 3 Preprocessed LIBS spectra of farmland soils

3 RESULTS

3.1 Soil properties

The descriptive statistics of the soil properties are listed in
Table 1. The SOM content of the 348 soil samples ranged
from 5.37 to 21.00 g kg−1, withmedian andmean content of
13.00 and 13.08 g kg−1, respectively. The TN content ranged
from 0.27 to 1.24 g kg−1, with median and mean content
of 0.82 and 0.80 g kg−1, respectively. The TSC of samples
ranged widely from 0.44 to 7.54 g kg−1, with median and
mean content of 0.90 and 1.24 g kg−1, respectively, indicat-
ing the existence of a small number of soil samples with
high TSC.

3.2 Features of LIBS soil spectra

The average LIBS spectrum of the 348 soil samples dis-
played various responses to atomic emission at different
wavelengths from 200 to 1000 nm (Figure 3). The C I emis-
sion line was observed at 247.8 nm (Cremers et al., 2001).
The signals at 343.7, 498.2, 498.9, 499.9, 500.6, 501.6, 503.0,
and 633.1 nm were attributed to the emission lines of N II
(Harris, Cremers, Ebinger, &Bluhm, 2004); and the signals
at 742.3, 744.2, 746.8, 818.25, 819.3, 821.7, and 824.3 nmwere
attributed to N I emission lines (De Lucia Jr & Gottfried,
2010;Dong et al., 2013;Harris et al., 2004). TheO I emission
lineswere observed at 777.1 and 844.6 nm; theO II emission
line was observed at 655.6 nm; and the O III emission line
was observed at 794.6 nm (Ji, Xi, & Mao, 2010). The strong
emission lines at 766.3 and 769.8 nm corresponded to the
emission of K I (Mansoori, Roshanzadeh, Khalaji, & Tavas-
soli, 2011; Sallé, Cremers, Maurice, Wiens, & Fichet, 2005).
Abundant Ca emission lines were observed, including Ca

I emission lines at 422.5, 429.8, 445.4, 526.4, 558.8, 615.6,
645.1, 714.8, and 720.2 nm; Ca II emission lines at 315.7,
317.7, 373.5, 393.0, 396.5, 732.3, 854.2, and 866.2 nm; and Ca
III emission lines at 642.5 and 648.3 nm (Ahmed, Umar,
Ahmed, & Baig, 2017; Juvé, Portelli, Boueri, Baudelet, &
Yu, 2008; Velioglu, Sezer, Bilge, Baytur, & Boyaci, 2018;
Yaroshchyk, Morrison, Body, & Chadwick, 2005). Several
signals at 279.3 and 280.0 nmwere attributed toMg II emis-
sion lines and those at 382.9 and 383.5 nm represented Mg
I emission lines (Abdel-Salam, Al Sharnoubi, & Harith,
2013; Li, Liu, Chen, & Li, 2008; Mansoori et al., 2011;
Rai, Zhang, Yueh, Singh, & Weisberg, 2001; Yaroshchyk
et al., 2005; Zheng et al., 2008). An Al I emission line was
observed at 309.2 nm (Mansoori et al., 2011; Yaroshchyk
et al., 2005). Two Si I emission lines were observed at 251.4
and 287.9 nm (Ismail et al., 2006; Juvé et al., 2008; Man-
soori et al., 2011; Sabsabi, Detalle, Harith, Tawfik, & Imam,
2003; Zheng et al., 2008). In addition, numerous Fe I and
II emission lines were observed at 460.6 and 487.7 nm and
237.1, 259.7, 262.8, 274.4, 323.2, 534.7, and 669.9 nm, respec-
tively. The characteristic emission lines of C, O, and N cor-
responding to SOM; N and O corresponding to TN; and
C, O, Ca, Mg, and K corresponding to TSC can be clearly
observed and distinguished, indicating the theoretical fea-
sibility of this method for quantitative analysis.

3.3 Effects of the spectral acquisition
approaches on the quality of LIBS soil
spectra

The average intensity and RSD of C (247.8 nm), N
(460.5 nm), K (766.1 nm), Ca (393.0 nm), Mg (279.1 nm),
and Si (287.9 nm) lines were used to estimate the effects of
shot layer and number. The boxplots of the average inten-
sity of C, N, K, Ca, Mg, and Si lines in the 348 soils with
the different shot layers are found in Figure 4. The average
intensity of C, N, K, Ca, Mg, and Si lines decreased with
increasing of shot layer both in one, two, three, and four
layer conditions, suggesting low LIBS intensity with deep
shot layers. However, the variation in the average inten-
sity among the 348 soils was reduced with increasing shot
depth. The boxplots of the RSD of C, N, K, Ca, Mg, and
Si lines in these soils with the different shot layers are
shown in Figure 5. The RSD values of these spectral lines
increased with increasing shot layer except for the C line,
which indicated that the shot-to-shot signal variation for
each soil increased with the shot depth.
The mean values of the C, N, K, Ca, Mg, and Si

intensities in the 348 soil samples did not vary as shot
number increased (Figure 6). The interquartile ranges of
the C, N, K, Ca, Mg, and Si intensities among these soil
samples decreased along with the increase of shot number
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F IGURE 4 Boxplots of the LIBS intensity of (a) C, (b) N, (c) K, (d) Ca, (e) Mg, and (f) Si lines among 348 soil samples as a function of
different shot layers. The number labeled after “L” denotes the shot layer; shot number = 20
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F IGURE 5 Boxplots of the RSD of (a) C, (b) N, (c) K, (d) Ca, (e) Mg, and (f) Si lines among 348 soil samples as a function of different shot
layers. The number after “L” denotes the shot layer; shot number = 20; RSD is the relative standard deviation
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F IGURE 6 Boxplots of the (a) C, (b) N, (c) K, (d) Ca, (e) Mg, and (f) Si average intensities among 348 soil samples as a function of shot
number. The shot layer was the 1st to 5th layers
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(Figure 6), indicating that the variations of these spectral
lines among these soil samples were lower at higher shot
numbers. The shot number showed no obvious effect on
the mean values of RSD in the 348 soil samples for C, N,
K, Ca, Mg, and Si lines (Figure 7). The interquartile ranges
and SD values of the RSD in these soil samples for C, N,
K, Ca, Mg, and Si lines were markedly decreased along
with the increase of shot number (Figure 7). Findings
from these results indicated that increasing shot numbers
were associated with a reduction in the spectral variation
among these soil samples and provided a better and more
robust estimate of the mean spectrum.

3.4 Effects of the spectral acquisition
and normalization approaches on the
prediction accuracy of LIBS soil spectra

The influences of the shot layer on the RMSEV values for
SOM, TN, and TSC in the validation set using PLSR based
on full LIBS spectra from 200 to 1000 nm are depicted
in Figure 8. Both the RMSEV values of SOM and TN
decreasedwith increasing shot depth, suggesting that LIBS
soil spectra at deeper shot layersweremore favorable to the
prediction of SOM and TN. Relatively lower RMSEV val-
ues of SOM and TN were observed for DN, DA, DM, and
DS methods than for the AAmethod (Figure 8a, b), which
indicated an improvement of LIBS quantitative abilities for
SOM and TN by these methods. However, the RMSEV val-
ues of TSC increased with increasing shot depth. The DN,
DA, DM, and DS methods reduced the quantitative accu-
racy of LIBS spectra for TSC, as the RMSEV values of TSC
in these methods were higher than in the AA method.
The RMSEV values of SOM decreased markedly with

increase in shot number except for the DS method
(Figure 9a). When the shot number was 20, the DN, DA,
DM, andDSmethods showedhigher SOMprediction accu-
racies than the AA method. When the shot number was
80 or 100, only the DM method showed higher SOM pre-
diction accuracy than the AA method. For TN predic-
tion, the DN, DA, DM, and DS methods showed lower
RMSEV values than the AA method in various shot num-
bers (Figure 9b). This indicated that the DN, DA, DM,
and DS methods dramatically improved the TN quantita-
tive ability of LIBS soil spectra. With the increase of shot
number, RMSEV values of TSC first decreased and then
increased (Figure 9c). The optimal shot number was 40,
where the DN, DA, DM, and DS methods showed no obvi-
ous improvement in TSC prediction accuracies of LIBS soil
spectra.
The quantitative accuracies of LIBS soil spectra for SOM,

TN, and TSC based on the combination of shot layer, shot
number, and normalization methods were also investi-

gated using the PLSR model. The statistics of prediction
performances for SOM, TN, and TSC are listed in Supple-
mental Tables S1, S2, and S3, respectively. The optimal con-
ditions for prediction of SOM, TN, and TSC were selected
and the scatterplots of measured vs. predicted values and
the VIP of variables are shown in Figure 10. The optimal
model based on the approach of L5/SN20-DS showed fair
performance for SOM prediction, with RMSEV of 2.076 g
kg−1, RPDV of 1.608, and RV2 of 0.622. The higher VIP val-
ues for SOMpredictions by LIBS spectra weremainly asso-
ciated with the emission lines of C, O, N, K, Ca, and Mg
elements (Figure 10b). The optimal model based on the
approach of L4/SN20-DS presented good performance for
TN prediction, with RMSEV of 0.123 g kg−1, RPDV of 1.836,
and RV2 of 0.712. The higher VIP values for TN prediction
inLIBS spectraweremainly located in the emission lines of
C, N, O, K, Ca, and Mg elements (Figure 10d). The optimal
model based on the approach of L(1-3)/SN60-AA showed
very good performance for TSC prediction, with RMSEV
of 0.581 g kg−1, RPDV of 2.456, and RV2 of 0.851. The higher
VIP values for TSC prediction in LIBS spectra were mainly
located in the emission lines of C, N, O, K, Ca, Si, Al, and
Mg elements (Figure 10f).

3.5 Correlation between the quality and
the prediction accuracy of LIBS soil spectra

Spearman correlations between the RMSEV values of
SOM, TN, and TSC and the RSD of various element lines
(C, N, K, Ca, Mg, and Si) are given in Table 2. The corre-
lation reflects the influence of the RSD values of various
element lines on the quantitative accuracy. The negative
correlation indicates that a lower RSD value is beneficial to
improve the prediction accuracy and vice versa. For SOM,
the RMSEV values inDMandDSmethods showed a signif-
icant negative correlation with the RSD of C intensity. For
TN, the RMSEV values in DN, DA, DM, and DS methods
showed significant negative correlations with the RSD of
N intensity. For TSC, the RMSEV values in the AAmethod
showed a significant negative correlation with the RSD of
N, K, Ca, Mg, and Si intensities. These results indicated
that the RSD of LIBS spectra was a critical factor for quan-
titative accuracy of LIBS soil spectra.

4 DISCUSSION

4.1 Effect of the shot layer and number
on the prediction accuracy of LIBS soil
spectra

The sensibility of the measurement stability for LIBS is
proven to be related to the LIBS parameters (Motto-Ros



1318 XU et al.

F IGURE 7 Boxplots of the RSD of the (a) C, (b) N, (c) K, (d) Ca, (e) Mg, and (f) Si intensities among 348 soil samples as the function of
shot number. The shot layer was the 1st to 5th layers; RSD is the relative standard deviation
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F IGURE 8 Changes of the root-mean-square-error of validation set (RMSEV) values for (a) SOM, (b) TN, and (c) TSC based on various
normalization methods along with shot layers. AA, arithmetic average method; DN, the method based on the correction of spectral norm; DA,
the method based on the correction of spectral area; DM, the method based on the correction of spectral maximum; DS, the method based on
the correction of Si line; the number after “L” denotes the shot layer; the shot number = 20

et al., 2014). For example, Castle, Talabardon, Smith, and
Winefordner (1998) indicated that the RSD of the Cu emis-
sion signal decreased with increasing pulse energy. Zhang
et al. (2010) showed that the 266-nm laser has lower RSD
of spectra and better repeatability than 1064-nm laser.
In this study, the LIBS parameters were controlled and
unchanged; so the shot layer and number are two critical
factors that influence the quantitative accuracy of LIBS soil
spectra. The laser spot focused on the sample surface was
limited to 50 μm in diameter, thereby only a small area of
soil was ablated. Hence, the soil spectra were very sensi-
tive to the uniformity of sample composition. However, the
organic and inorganic components in the soil particle were
unevenly distributed in mesoscopic (micron-sized) space
because of soil heterogeneity (Barrios, Buresh, & Sprent,
1996). Consequently, the variation of the spectral signal at

each site was very significant. Increasing the shot num-
ber could reduce the random errors of spectra caused by
the soil heterogeneity and thereby improve the quantita-
tive accuracy of LIBS soil spectra. The difference in the
prediction accuracy of SOM, TN, and TSC by spectra of
different shot layers could be caused by the uneven dis-
tribution of soil organic and inorganic components in the
mesoscopic scale, which needs to be further analyzed and
verified. When the laser ablates a specific site, particles
are ejected owing to the pressure exerted by the plasma
and the accompanying shockwaves onmelted layers (Noll,
2012). These particles collect in the crater as the shot depth
increases (Noll, 2012). The energy of the laser pulses is
partially absorbed by these loose particles, which decrease
laser power density arriving at the bottom of the crater and
thereby weaken the shock wave generated in the crater
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F IGURE 9 Changes of the root-mean-square-error of validation set (RMSEV) values for (a) SOM, (b) TN, and (c) TSC based on various
normalization methods against shot number. AA, arithmetic average method; DN, the method based on the correction of spectral norm; DA,
the method based on the correction of spectral area; DM, the method based on the correction of spectral maximum; DS, the method based on
the correction of Si line; the shot layer was the 1st to 5th layers

(Corsi et al., 2005; Pardede et al., 2009). As a result, in
our study the intensities of the LIBS soil spectra decreased,
and RSD of the intensities increased with increasing shot
depth. Total soluble salt content is determined by the total
amount of soluble HCO3

‒, CO3
2‒, Cl‒, SO4

2‒, Ca2+, Mg2+,
K+, andNa+ in soil. As a consequence, the higher intensity
of inorganic C, N, O, K, Ca, Mg, Al, and Si lines with sur-
face shot layers was responsible for the better quantitative
accuracies of TSC.

4.2 Effects of normalizationmethods on
the prediction accuracy of LIBS soil spectra

Applying different spectral normalization methods for
different soil properties also could improve the quan-

titative accuracy of LIBS spectra. The DS method was
optimal for the prediction of SOM and TN content. In
the DS method, each multiple-measurement spectrum
of one sample was first divided by its signal intensity of
Si and then arithmetically averaged. In other words, this
method assumes that the signal intensity of the Si line
is undisturbed and invariable over multiple LIBS mea-
surements. The success of the DS method at enhancing
the accuracy of SOM and TN content prediction may be
due to the following reason. Silicon is the second most
abundant element in the earth’s crust (Iler, 1979) and Si
in free and combined forms is a dominant component
of the solid material of many soils (McKeague & Cline,
1963). Thus, the variation in Si content in soil samples
is small and consequently, the distribution of Si in the
soil sample is relatively uniform (Martin, Wullschleger,
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F IGURE 10 Scatterplots of measured vs. predicted values (a, c, and e) and the VIP plots of variables (b, d, f) for (a, b) SOM, (c and d) TN,
and (e and f) TSC in PLSR models based on LIBS soil spectra under optimal conditions. Statistics are as follows: RMSECV and RMSEV are the
root-mean-square-error of 10-fold cross-validation and validation set, respectively; RPDV is the residual prediction deviation of validation set;
VIP is variable importance in projection
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TABLE 2 Spearman correlation between the root-mean-square-error in the validation set (RMSEV) of soil properties and the relative
standard deviation (RSD) of characteristic spectral lines (nm) of elements using five normalization methods in 348 soil samples

Propertiesa
Normalization
methodsb C 247.8 N 460.5 K 766.1 Ca 393.0 Mg 279.3 Si 287.9

SOM AA −0.146 −0.519** −0.473** 0.039 −0.080 −0.230
DN 0.022 −0.339* −0.228 0.219 0.132 −0.004
DA 0.227 −0.462* −0.471** 0.311 0.159 −0.042
DM −0.557*** −0.657*** −0.459 −0.280 −0.361* −0.460**

DS −0.367* −0.292 −0.075 0.036 0.027 −0.069
TN AA 0.136 −0.186 −0.221 0.457** 0.384* 0.180

DN 0.178 −0.527** −0.679*** 0.078 −0.073 −0.289
DA 0.292 −0.362* −0.545*** 0.200 0.086 −0.120
DM −0.347* −0.544*** −0.491*** −0.147 −0.214 −0.342
DS −0.062 −0.570***

−0.561*** 0.034 −0.052 −0.258
TSC AA −0.235 −0.463* −0.777*** −0.385* −0.490**

−0.640***

DN −0.684*** −0.003 0.313 −0.266 −0.172 −0.011
DA −0.481** 0.244 0.591*** 0.104 0.204 0.362*

DM −0.610***
−0.052 0.253 −0.251 −0.205 −0.044

DS −0.307 0.100 0.192 −0.023 0.035 0.131
aSOM, soil organic matter; TN, total nitrogen; TSC, total soluble salt content
bAA, arithmetic average method; DN, the method based on the correction of spectral norm; DA, the method based on the correction of spectral area; DM, the
method based on the correction of spectral maximum; DS, the method based on the correction of Si line
*Significant at the 0.05 probability level; **Significant at the 0.01 probability level; ***Significant at the 0.001 probability level

Garten, & Palumbo, 2003). Previous studies have also
used the C/Si ratio method for improving LIBS accuracy
(Cremers et al., 2001; Martin et al., 2003). However, these
studies considered the small variation of Si content in all
samples and applied the C/Si ratio method to spectra of
all samples rather than multi-duplicated spectra of one
sample. However, in practice, the Si content varies spa-
tially for different soil samples (Bravo, Blanco, & Amiotti,
2007). In the present study, the SOM and TN content of
soil samples ranged from 5.37 to 21.00 g kg−1 and 0.27
to 1.24 g kg−1, respectively, and were significantly lower
than Si content which was reported as 136 to 371 g kg−1 in
Mollisols and Aridisols (Bravo et al., 2007). Consequently,
the relatively weak signal intensities of C, H, O, and N
were often inconsistent over repetitive measurements,
resulting in the poor prediction accuracy of SOM and TN
content by LIBS spectra. In the DS method, soil Si content
was considered a useful ‘internal standard’ for correcting
the other line intensities, because of the stability of the
Si line in LIBS spectra. This also could be observed from
the correlation between the RMSEV and RSD of various
elements (Table 2). The negative correlation between the
RMSEV and RSD of C or N intensity for SOM or TN was
enhanced and the correlations between RMSEV and RSD
of other lines were reduced after applying the DS method,
suggesting that the DS method reduced the interferences
of other lines and increased the sensitivity of the C line.
These results indicated that the DS method can be consid-

ered as an effective normalization approach for improving
the ability of LIBS spectra to predict SOM and TN content.
However, the DS method did not enhance the abil-

ity of LIBS spectra to predict TSC but actually impaired
it. Among the five methods tested, the AA method was
the most effective at enhancing TSC prediction. In the
AA method, each multiple-measurement spectrum was
directly averaged. The TSC values represented the mass
sum of soluble K+, Na+, Ca2+, Mg2+, SO4

2‒, Cl‒, HCO3
‒,

and CO3
2‒, which were related to the total content of these

elements and the soil texture. The correlation between the
RMSEV and RSD of N, K, Ca, Mg, and Si intensities were
promoted after applying the AA method (Table 2), which
also indicated the enhancement of the sensitivity of these
lines. The content of these elements in the soil are compa-
rable to the soil Si content. Therefore, using the DN, DA,
DM, and DS methods for normalization of the multiple-
measurement spectra might increase the signal intensity
error of some elements related to TSC, resulting in a poor
TSC prediction accuracy of LIBS spectra. The AA method
was more effective for the TSC prediction by LIBS spectra
than the other methods.

4.3 Application of the LIBS technique
to the quantitative analysis of farmland soil

Although LIBS is considered to be a well-established ana-
lytical technique, despite the large variety of experimental
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designs and conditions, the treatment of LIBS spectra
is often the subject of discussions and the suitability
of this technique has not been sufficiently assessed (El
Haddad, Canioni, & Bousquet, 2014). In soil science,
advanced techniques for field analysis of soil properties
should be capable of providing repetitive, sequential
measurements for the evaluation of spatial and temporal
variation (Segnini et al., 2014). The LIBS technique is
superior to sequential measurements, but it lacks the
advantage of repeatability because of the matrix effects of
soil. Moreover, the lower SOM and TN content in these
irrigated soils have negative effects on the accuracy of
prediction using LIBS spectra. Many previous studies
(Cremers et al., 2001; Martin et al., 2003; Senesi & Senesi,
2016) report considerable prediction accuracy for SOM
content of soil using LIBS spectra, but these studies either
used soils with higher SOM content or fewer soil samples.
In our study, the SOM prediction accuracy (with R2 of
0.622) was lower than the accuracy reported in previous
studies with R2 values of 0.96 (Cremers et al., 2001), 0.962
(Martin et al., 2003), 0.94 (Martin et al., 2010), and 0.94
(Glumac, Dong, & Jarrell, 2010). According to Brickle-
myer, Brown, Turk, and Clegg (2018), LIBS shows better
prediction performance for soil inorganic carbon than soil
organic carbon. Thus, the lower prediction accuracy seen
in our study may have been caused by higher carbonate
content in the irrigated soil, which would seriously affect
the accurate prediction of SOM content. Optimization
of shot layer and number and normalization methods
achieved fair, good, and very good as a predictor of SOM
content, TN content, and TSC, respectively. Therefore, the
LIBS technique combined with these optimization meth-
ods shows potential for simultaneously monitoring soil
fertility and soil salinization or even other soil properties.

5 CONCLUSIONS

There is an urgent need to develop simple, rapid, and con-
venient analytical techniques to the soil science. Laser-
induced breakdown spectroscopy is a promising technique
but is limited by low repeatability of spectral intensity
which may influence the calibration results. In this study,
we investigated the effects of shot layer and number as well
as five spectral normalization approaches on the qualities
and quantitative abilities of LIBS soil spectra using PLSR
models. Increasing shot number improved the estimated
robustness of the mean LIBS spectrum, thereby increasing
the prediction accuracies of SOM, TN, and TSC. Spectra of
deep shot layers (4th or 5th shot layer) in soil samples pro-
vided higher prediction accuracies for SOM and TN con-
tent and lower prediction accuracy for TSC than that of sur-
face shot layers (1st and 2nd shot layer). Applying the DS

normalization method to soil spectra markedly improved
the prediction accuracies of SOM and TN by reducing the
interferences of other lines. TheAAnormalizationmethod
showed better prediction performance for TSC than other
methods. Findings from this work indicated that optimiza-
tion of spectral acquisition and normalization approaches
significantly enhanced the prediction accuracy of LIBS soil
spectra, providing a novel strategy for future application.
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