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A B S T R A C T   

Straw retention has been widely recommended as a nutrient-conserving measure that effectively increases soil 
fertility and soil nitrogen (N) availability. However, despite its efficacy in reducing reactive N (Nr) runoff losses, 
there is currently little information available regarding the influence of distinct straw return modes with respect 
to potential Nr runoff loss. In this study, based on a 6-year period of straw incorporation in a field under 
rice–wheat rotation with a yield of two crops a year, we sought to evaluate the overall responses of Nr runoff 
losses and N changes in the surface water to soil biotic and abiotic factors. Four different straw return modes (CK: 
no straw, W: wheat straw, R: rice straw, and S: both wheat and rice straw) were examined. The results revealed 
that compared with the CK treatment, the three modes of crop residue incorporation significantly reduced N 
runoff loss by 4.21 %–11.59 % (P < 0.05), of which the S mode of straw returning was found to be the most 
effective. The reductive effect of straw return was observed during the early period of rice growth (the basal and 
tiller fertilization stages, P < 0.05). Significant differences in both the soil abiotic and biotic factors were 
observed not only between the tillering and ripening stages of rice growth (P < 0.01), but also among the four 
straw return modes (P < 0.05). Structural equation modelling revealed that soil inorganic nitrogen (SIN, r =
0.53, P = 0.007) had the most direct positive effect on Nr runoff loss, but the effect was statistically compromised 
by the overall negative effects of soil organic carbon (SOC, r = -0.33, P = 0.034), pH (r = -0.15, P> 0.05), and 
bacterial community composition (r = -0.10, P = 0.041), and to a less extent by α-diversity (r = -0.04, P > 0.05). 
During the tillering stage of rice growth and in response to the S mode of straw return in particular, there was a 
significant enrichment of Proteobacteria (P < 0.01), thereby indicating the potentially prominent role of microbial 
N immobilization in reducing N losses. The links among N contents in paddy standing water, surface runoff, and 
soil biotic and abiotic factors established in this study will inform straw return strategies to reduce the levels of 
N-based pollution.   

1. Introduction 

From the perspective of both environmental and human health, N 
has become “too much of a good thing” owing to its dispersion from 
agricultural ecosystems and further conversion into pollutants, thereby 
contaminating the surrounding land and water bodies and impairing 
human health and well-being (Drinkwater and Snapp, 2007; Sutton 
et al., 2011). In monetary terms, Nr pollution is estimated to cause 
damage amounting to 0.3 %–3.0 % of the global gross domestic product 
(GDP) (Sutton et al., 2013). With respect to rice cultivation, the exces-
sive release of Nr tends to be associated with lower nitrogen-use 

efficiency (NUE), particularly in China (approximately 31 %) (Galloway 
et al., 2008; Zhang et al., 2012), and notably in the Yangtze Delta region 
owing to the intensive nature of cultivation in this area (Zhao et al., 
2012b), which has led to substantial Nr losses through surface runoff 
and leaching pathways (Zhao et al., 2012a; Xue et al., 2014; Zhang et al., 
2016a). 

The control and reduction of Nr runoff losses from their sources are 
the most effective preventive measures of N pollution (Zhang et al., 
2016b). For instance, Nr runoff losses have been found to be reduced by 
15 %–82 % via optimizing agronomic management practices (Zhang 
et al., 2016b), among which crop residue retention has been 
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demonstrated to be significantly effective in reducing Nr runoff losses 
(Sainju et al., 2007; Tan et al., 2011; Liu et al., 2017). However, previous 
analyses of agricultural N losses have mostly been conducted in the 
absence of sufficient field monitoring activity, thereby resulting inac-
curacy and large differences of Nr loss among studies (Xue et al., 2014; 
Xia et al., 2016; Wang et al., 2018a). In addition, it has been observed 
that Nr losses can also differ markedly due to site-specific peculiarities 
related to precipitation, topography, soil properties, and management 
(Basso and Ritchie, 2005; Fang et al., 2006; Liang et al., 2011). However, 
even when straw return is undertaken with an equivalent input of fer-
tilizer, substantial differences in Nr loss have been observed in the same 
region (Liang et al., 2011; Xue et al., 2014; Xia et al., 2016; Wang et al., 
2018a), and accordingly it is necessary to determine the optimal modes 
of straw return. It has been established that returning crop straw with a 
high C/N ratio (>30) can stimulate the microbial immobilization of soil 
ammonium (NH4

+) and nitrate (NO3
− ) (Aulakh et al., 2001; Xia et al., 

2016; Cheng et al., 2017), but whether soil microbiomes play an 
important role in regulating N concentration in the surface water of 
paddy field and closely relate to Nr runoff loss still remains poorly un-
derstood. It is also worth noting that soil bacterial communities can 
differ markedly according to the stage of rice growth (Edwards et al., 
2015; Wang et al., 2016); therefore, it is reasonable to speculate that 
straw return could reduce Nr runoff loss during the specific period of rice 
growth. Based on the present knowledge about the soil bacterial com-
munities in response to straw return, we further hypothesize that, with 
the amendment of straw, the enhanced soil C pool and stimulated bac-
terial phyla would directly or indirectly contribute in decreasing Nr 
runoff loss, and their effects might be more significant with the mode of 
consecutive seasonal straw return for the rice-wheat double cropping 
system. 

In this study, following the 6-year program of straw incorporation, a 
field experiment was conducted to investigate the effects of different 
straw retention modes in the rice–wheat rotation system, with the 
following specific aims: (1) to quantify the Nr runoff loss loads and 
evaluate their potential characteristics during the entire rice production 
period; (2) to characterize soil physicochemical factors and bacterial 
community structure at different stages of rice growth; and (3) to 
investigate the direct and indirect relationships between Nr runoff losses 
and key soil abiotic and biotic factors. The findings from this study will 
provide new insights into the efficacy of straw return measures with 
respect to Nr runoff loss and the underlying mechanism. 

2. Materials and methods 

2.1. Description of the site and long-term experiment 

The long-term straw retention experiment was conducted at 
Changshu Agro-Ecological Station (31◦32′93′′N, 120◦41′88′′E), a mem-
ber station of the Chinese Ecosystem Research Network (CERN), Chinese 
Academy of Sciences, in the Yangtze Delta region. The site is a typical 
rice-wheat double cropping area of China and characterized by a sub-
tropical monsoon, with a mean annual air temperature (MAT) of 23.7 ◦C 
and mean annual precipitation (MAP) of 1097.1 mm (2008–2018) of 
which approximately 70 % occurs during the summer rice season. The 
experimental paddy soil is classified as Anthrosol (FAO, 2006) derived 
from lacustrine sediments. 

The long-term experiment was initiated in 2012 and set up as a 
randomized block design. Four experimental treatments (Table 1) with 
three replicate plots (size: 43.7 m2) characterized by an equivalent input 
of NPK fertilizer were examined: (1) CK, without straw return; (2) W, 
wheat straw return only (in the rice-growing season); (3) R, rice straw 
return only (in the wheat-growing season); and (4) S, both wheat and 
rice straw return (in rice- and wheat-growing seasons of the rotation, 
respectively). In 2018, the tested summer rice (Oryza sativa L) was 
transplanted on June 18th and harvested on November 3rd. The syn-
thetic N fertilizer (in the form of urea) was split into: 40 % as basal 

fertilizer, 20 % as tiller fertilizer, and 40 % as panicle fertilizer. Phos-
phorus (in the form of calcium superphosphate) was applied as basal 
fertilizer. Potassium (in the form of potassium chloride) was split into: 
50 % as basal and 50 % as panicle fertilizer. Rice and wheat residues 
were chopped into pieces (5~10 cm in length) after each harvesting and 
fully rotary incorporated into the corresponding plots before the next 
crop transplantation. 

To monitor the Nr runoff losses, identical cubic concrete tanks (1.5 ×
1.2 × 1.2 m3) were built beside the field for each plot through a piping 
system (Fig. S1). As dictated by local customs, flooding conditions were 
maintained after the rice plant sprouted leaves and the standing water 
layer was kept 3~5 cm depth, except for duration of later tiller stage and 
last two weeks before harvest according to local customs. The upper 
water-level holes were set up 7 cm above the ground surface for col-
lecting runoff during the rice season. 

2.2. Water and soil sampling 

At the beginning the two weeks after each fertilization (Jun 12th, 
July 4th, and Aug 4th in 2018), for every two days, surface water was 
collected about 100 mL from five random locations in each plot, after 
which the sampling frequency was changed to once a week, once every 
two weeks, and finally once a month during the rice season from June to 
September in 2018. As for the runoff water, the runoff was carefully 
mixed in each tank and then sampled into a 100 mL polyethylene bottle 
after each runoff event during the whole experimental period, before 
which the depth of water in each tank was recorded. To prepare for the 
next runoff collection, the remaining water was discharged and cleaned. 
Half of per sample was filtered through a 0.45 μm membrane and the 
two portions were stored at 4 ◦C for chemical analysis and assayed 
within 24 h after sampling. 

In 2018, soil samples were collected from depths of 0–15 cm at the 
rice tillering stage on July 10th and after rice ripening on September 
27th (a week before rice harvest). For each plot, five cores (5 cm in 
diameter) were sampled randomly, mixed separately, and then ho-
mogenized by being gently passed through a 2 mm sieve to remove large 
roots and gravels. A portion of each sample was stored at 4 ◦C for 
additional air drying and subsequent chemical analysis and the other 
part was stored at -80 ◦C until molecular analysis was performed. 

2.3. Chemical properties analysis 

The filtered water sample was assayed for nitrate nitrogen (NO3
− -N) 

by dual-wavelength ultraviolet spectrometric method and ammonium 
nitrogen (NH4

+-N) by indophenol blue method (Committee of Analytical 
Method of Water and Wastewater, 2002). The unfiltered part was 
measured for total nitrogen (TN) through alkaline potassium persulfate 
oxidation-ultraviolet spectrometric method (Rayment and Higginson, 
1992). 

Soil moisture was determined by oven drying at 105 ◦C for 12 h. Soil 
inorganic nitrogen (SIN, include NH4

+, NO3
− and NO2

− ) were extracted 
with 2 M KCl followed measurement by continuous-flow analyzer 
(San++, Skalar, The Netherlands). Soil organic matter (SOM) was 
analyzed by the K2Cr2O7 oxidation method (Bao, 2000). Soil total ni-
trogen (SN) was determined by semi-micro Kjeldahl digestion method 

Table 1 
Field experimental treatments and managements during the rice growth season.  

Treatment CK W R S 

Chemical fertilizer 
application rate(N:P:K, 
kg ha-1) 

240:15:60 240:15:60 240:15:60 240:15:60 

Split N application ratio 4:2:4 4:2:4 4:2:4 4:2:4 
Split K application ratio 5:0:5 5:0:5 5:0:5 5:0:5 
Wheat/rice straw input 

rate (kg dry matter ha-1) 
0/0 5500/0 0/10,000 5500/ 

10,000  

S. Zhang et al.                                                                                                                                                                                                                                   



Agriculture, Ecosystems and Environment 305 (2021) 107162

3

(Lu, 2000). Soil available phosphorus (AP) was extracted using sodium 
bicarbonate and then measured by the molybdenum-blue method. Soil 
available potassium (AK) was measured using flame atomic absorption 
spectrophotometry. Soil pH and electrical conductivity (EC) was deter-
mined with a soil to water ratio of 1:2.5 and 1:5, respectively. 

2.4. Molecular methods bioinformatics analysis 

For each replicate of soil sample, genomic DNA was extracted from 
0.5 fresh soil using a Soil DNA Kit (MP Biomedicals, Santa Ana, CA, 
United States) according to the manufacturer’s protocols. The DNA 
concentration was monitored by Qubit 3.0 Fluorometer. The bacterial 
V3-V4 hypervariable region of the 16S rRNA gene was amplified by PCR 
using the primers “CCTACGGRRBGCASCAGKVRVGAAT” and “GGAC-
TACNVGGGTWTCTAATCC.” PCR reactions of 16S rDNA were per-
formed in triplicate 25-μL mixture containing 2.5 μL of TransStart 
Buffer, 2 μL of dNTPs, 1 μL of each primer, and 20 ng of template DNA. 
Meanwhile, indexed adapters were added to the ends of the 16S rDNA 
amplicons at the same time to generate indexed libraries ready for 
downstream NGS sequencing on Illumina Miseq. High-throughput 
sequencing of total bacterial 16S rRNA genes was performed on the 
Illumina MiSeq platform (Illumina, San Diego, CA, USA) using PE250 
paired-end according to manufacturer’s instructions. 

The bacterial 16S rRNA gene data were processed using the Quan-
titative Insights Into Microbial Ecology (QIIME) 1.9.1 pipeline (Capor-
aso et al., 2010). Briefly, the sequences were binned into OTUs using a 
97 % identity threshold, and the most abundant sequence from each 
OTU was selected as a representative sequence for that OUT. Taxonomy 
was assigned to bacterial OTUs against a subset of the Greengene 13.8 
database. Usearch was used to remove chimera and aligned OTU 
representative sequences (Edgar, 2013). A subset of 47,176 sequences 
per sample was selected for downstream analyses. The raw sequences 
are available through the NCBI Sequence Read Archive (Accession No. 
PRJNA592598). 

2.5. Statistical calculation and analysis 

The volume (V) of runoff and loss flux (Q) of various forms of was 
calculated by the follows: 

Vi (L) = Di × S × 1000 (1)  

Qi
(
kg ha− 1) =

∑n

i=1
Ci ×

Vi

43.7
× 10− 2 (2)  

where Di (m) is the depth of water recorded per collection tank recorded 
after each runoff-producing rainfall event. S (m2) equals to 1.8, which is 
area of the bottom of tank. Ci (mg L− 1) is the concentration of TN, NO3

- -N 
and NH4

+-N and i is the frequency number of runoff events occurred 
during whole rice growth season. 

One way analysis of variance (ANOVA, Duncan multiple compari-
sons) was performed using SPSS 18.0 to separately compare the differ-
ences of N runoff losses, soil properties, α-diversity indexes and bacterial 
relative abundance at phylum level in response to four treatments and 
two rice growing stages. The ACE richness index and Shannon diversity 
index were generated using Mothur (Schloss et al. 2009). Analysis of the 
differential OTU abundance was performed using Wilcoxon rank sum 
tests with relative abundance from top ten phyla, and corresponding P 
values were corrected for multiple tests using a FDR set at 0.05 using R 
package edgeR (Robinson et al., 2010). Comparisons of the genera from 
top five bacteria phyla among the different groups (straw return modes 
and growth stages) were separately performed using STAMP (Parks 
et al., 2014). The bacterial community assemblage was also visualized 
by principal coordinate analysis (PCoA) based on the matrix weighted 
unifrac distance and also estimated by the permutation analysis of 
variance (PERMANOVA) test, which was conducted in R 3.2.1 (http: 

//www.rproject.org/) with the VEGAN package (Dixon, 2003). Struc-
tural equation modelling (SEM) were conducted to evaluate the direct 
and indirect relationships of environmental factors, bacterial alpha and 
beta diversity on the Nr loss, prior to which a Pearson correlation 
analysis (SPSS 18.0) between TN loss and soil properties (two-tailed 
test) was performed to simplify the model. Here, the overall goodness of 
model fit was validated by the chi-square test (the model has a good fit 
when χ2 /df < 3 and P > 0.05), the (adjusted) goodness of fit index (GFI 
and AGFI; the model has a good fit when GFI > 0.9 and AGFI > 0.9) and 
the root mean square error of approximation (RMSEA; the model has a 
good fit when RMSEA < 0.05) (Schermelleh-Engel et al., 2003). In 
addition, standard total effects of observed variables were calculated 
(Delgado-Baquerizo et al., 2016). The endogenous variables of SEM 
were ln-transformed to improve normality and all data satisfied normal 
distribution and homogeneity of variance before the ANOVA analysis. 

3. Results 

3.1. Nr runoff losses and the N dynamic characteristics in the surface 
water 

It was found that Nr loss via surface runoff was clearly influenced by 
straw return (Fig. 1 B, D, and F), with the observed seasonal TN cu-
mulative loads under rice cultivation showing the following pattern: S ≈
W < R < CK (P < 0.05), of which an average between 76.2 % and 87.0 % 
was discharged in the NH4

+-N form. Relative to the CK treatment, the W, 
R, and S treatments resulted in TN load reductions of 9.83 %, 4.21 %, 
and 11.59 %, respectively (P < 0.05). 

In order to identify the processes contributing to the observed re-
ductions in N loss, the Nr concentrations were closely monitored in 
paddy surface water throughout the rice-growing season (Fig. 1A, C, and 
E). Consistent with the N composition of runoff, NH4

+-N comprised the 
largest proportion of Nr in the surface water. With the exception of the 
basal stage, the Nr content peaked after each fertilizer application, 
although urea was applied at the 4:2:4 ratio for the three stages, and 
rapidly decreased over time. The results revealed the following pattern 
of TN concentration in the surface water averaged over the entire rice- 
growing season: CK ≥ R ≥ S ≈ W (Table S1, P < 0.05). This pattern 
was found to be similar to the TN levels at the basal and tiller stages, 
whereas it was opposite to those at the panicle stage. This accordingly 
illustrated that a decrease in Nr loss occurred during the early stage after 
incorporating straw, which exceeded the enhanced effect observed at 
the panicle stage. 

3.2. Soil physicochemical properties 

Soil samples were collected at the tillering and ripening stages to 
further examine the variations in N characteristics, and accordingly 
found that soil properties showed significant differences between these 
two rice growth stages, and also among the modes of residue return 
(Table 2). Generally, the EC, SOC, SN, AP, AK, and particularly SIN 
content decreased, whereas pH increased with the progression of rice 
development from the tillering to the ripening stage. Compared with the 
CK treatment, over a 6-year period of straw incorporation, either single- 
(W and R) or double- (S) season returns significantly increased the SOC, 
SN, AP, and AK content at both stages (P < 0.05), which generally 
showed the following pattern: S ≥ R ≈ W > CK. However, the SIN 
content showed distinct changes. For instance, relative to the CK treat-
ment, the SIN content under the S treatment was lower at the tillering 
stage but higher at the ripening stage (P < 0.05). As a consequence of 
residue retention, both pH and EC reduced at the tillering stage, but in 
the ripening stage, pH reduced while EC was not significantly different 
among the four straw return modes. 
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3.3. Bacterial α-diversity and community composition 

To assess the effect of the different straw return modes on bacterial 
diversity at different stages of rice growth, the ACE and Shannon index 
values were determined (Fig. S2). However, although the differences 
were not significant, the values of both indices were lower from the 
tillering to the ripening stage. Unexpectedly, the Shannon index showed 
almost no appreciable changes in response to the treatments under the 
different modes of straw return, whereas ACE values for soil under 
residue treatments R and S were found to be higher than those deter-
mined for the CK treatment (P < 0.05). 

The analysis of bacterial community composition at the phylum level 
provided further evidence of differences in response to different treat-
ments at both the tillering and ripening stages (Fig. 2). These commu-
nities were predominated by bacteria of the phyla Proteobacteria (34.6 
%–39.7 %), Acidobacteria (20.2 %–23.7 %), and Bacteroidetes (8.88 %– 
12.7 %), whereas the proportion of the remaining seven assessed phyla 
ranged between 1% and 10 %. Among the five most predominant phyla, 
it was observed that compared with the ripening stage, Proteobacteria, 
Nitrospirae, and Chloroflexi were enriched in the tillering stage, whereas 
the populations of Acidobacteria and Bacteroidetes were depleted (Fig. 3). 
Furthermore, the STAMP results revealed that during the tillering stage, 
seven (including Thioalkalispira, Haliangium, Sideroxydans, and Devosia) 
among the twelve genera showed a significant difference belonged to 
Proteobacteria (Fig. 4). All the straw return treatments (W, R, and S), 
particularly the double-season straw return (S), enhanced the Proteo-
bacteria and Nitrospira abundances but reduced the Latescibacteria 
abundance during the tillering stage (Figs. 2 and 3, P < 0.05). Similar 
differences in response were also detected at the generic level (Fig. S3), 
with genera belonging to Proteobacteria showing the most significant 
responses to the W, R, and S treatments, and those in the Acidobacteria 
phylum being the most affected by the CK treatment. 

The PCoA analysis clearly revealed distinctions in microbial distri-
butions at both tillering and ripening stages of rice growth in response to 
the different straw return modes (Fig. 5). Responses at the tillering and 
ripening stages were separately clustered in the lower and upper por-
tions of the PCoA plot, respectively. The PC1 axis indicted treatment- 
specific distribution at both stages of rice growth. Intriguingly, the 
PC1 axis data indicated that responses to the CK treatment differed from 
those to all the three straw return treatments, with distances generally 
following the order S > R > W. The PERMANOVA analysis confirmed 
the significant differences between the two growth stages and among the 
four treatments (Table 3). More importantly, the tillering stage was 
found to be a more important period with respect to bacterial commu-
nity differentiation in response to the different treatments. 

3.4. Relationships between Nr runoff loss and soil abiotic and biotic 
factors 

The Pearson correlation analysis (Table S2) revealed the various 
interrelationships between different soil environmental factors and N 
runoff loss, whereas the SEM analysis (Fig. 6, Table 4) further indicated 
the direct and indirect effects of key soil biotic and abiotic variables on 
Nr loss. Datasets from the tillering and ripening stages of rice growth 
under each of the four treatments were fitted with the final model 
(Fig. 6), which explained 94 % of the N runoff losses. Generally, the 
straw return modes (rd = 0.08, rd: direct regression weight coefficient) 
and rice growth stages (rd = 0.11) were found to directly affect runoff 
losses. SOC directly (rd = -0.33) and indirectly (ri = -0.05, ri: indirect 
regression weight coefficient) affected the Nr loss by mediating α-di-
versity (r = 0.98); SIN (rd = 0.53) showed the maximum positive coef-
ficient directly affecting the N runoff loss and contributed to reductions 
in N loss by mediating bacterial community composition (r = -0.76), as 
did soil pH (rd = -0.15, r = -0.47). However, only direct and weaker 

Fig. 1. Surface water changes and cumulative runoff losses of nitrate nitrogen (NO3
− -N, A, B), ammonium nitrogen (NH4

+-N, C, D), and total nitrogen (TN, E, F) during 
the entire rice-growing period. The arrows indicate fertilizer applications. Error bars represent standard errors of the mean values. Different letters above the bars 
indicate statistically significant differences at P < 0.05. 
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effects were detected with respect to bacterial community composition 
(rd = -0.10) and α-diversity (rd = -0.04). 

4. Discussion 

4.1. Response of Nr runoff losses risks to straw retention 

Prominent differences in N losses through the hydrologic pathways 
are driven by regional differences in climatic conditions (Pandey et al., 
2018), whereas appropriate fertilization measures have been found to 
effectively reduce N runoff loss (Wang et al., 2015a; Xia et al., 2016; Li 
et al., 2018; Zhang et al., 2018b). In the experimental rice–wheat 
cropping system investigated in the present study, we found that all 
straw return treatments significantly reduced N loss loads, although our 
results indicated that single-season straw incorporation (W and R) was 
less effective in this regard than double-season incorporation (S). Pre-
vious studies have speculated that this reductive effect could be attrib-
uted to the stimulation of bacterially mediated N immobilization 
(Moreno-Cornejo et al., 2014; Xia et al., 2017; Zhao et al., 2018a), which 
is consistent with findings that increases in the soil N immobilization 
rate and soil microbial biomass nitrogen (MBN) promote a decrease in N 
runoff and leaching (Wang et al., 2015b; Xia et al., 2018). In the present 
study, we noted that Nr loss was the lowest across all treatments at the 
basal fertilization stage, when urea was applied at a 4:2:4 (basal: 
tillering: panicle fertilization) ratio. We further discovered that the 
reduction in N loss indeed occurred during the earlier stages following 
the incorporation of crop residues, which exceeded the increasing effect 
at the panicle fertilization stage. These observed reductions in N con-
centrations can be explained in terms of the absorptive properties of 
straw and microbial immobilization of inorganic N (Kahlon et al., 2013), 
the latter of which has been shown to be strongly stimulated by residues 
with a high C:N ratio early after straw application. Furthermore, the 
immobilization of inorganic N temporarily exceeded the amount of Nr 
released from straw decomposition (Trinsoutrot et al., 2000; Nicolardot 
et al., 2001; Zhao et al., 2018b). Despite these findings, evidence for 
more direct and comprehensive causal factors is needed. 

4.2. Changes in soil properties and bacterial communities 

Physical and chemical gradients in agricultural soils are known to be 
dependent on crop growth and development over time (Krause et al., 
2010). In the present study, we observed decreasing trends for all the 
assessed soil chemical factors (SOC, SN, SIN, AP, and AK) from the rice 
tillering to ripening stage. This pattern was anticipated, given the pe-
riodic supply of exogenous fertilizer in conjunction with a high micro-
bial activity, which contributed to the effective tillering and prolific root 
growth in rice, is associated with a high accumulation and consumption 
of critical nutrients during the tillering stage (Sheehy et al., 1998; Ye 
et al., 2013). Expectedly and consistent with the findings of most pre-
vious studies, we found that 6 years of straw return, either as a single- or 
double-season application, promoted an increase in soil SOC, SN, AP, 
and AK (Smith et al., 2007; Powlson et al., 2008; Blanco-Canqui and Lal, 
2009). More importantly, we found that crop residues, particularly those 
with double-season application, significantly reduced the SIN content 
during the tillering stage, whereas it promoted an increase during the 
ripening stage; the latter effect has also been found in a global 
meta-analysis (Wang et al., 2018b). Crop growth and N uptake could 
directly benefit from a higher content of organic matters continually 
supplied by seasonal straw input of the S mode (Wang et al., 2018b; Xia 
et al., 2018). These findings accordingly indicate that there may be a 
higher NUE during the tillering period or under the S mode, and thus a 
concomitant reduction in Nr losses (Staver and Brinsfield, 1998). 

Fertilization regimes can have notable effects on the structure of soil 
bacterial communities, as previously demonstrated by long-term field 
experiments (Zhou et al., 2015; Zhang et al., 2018a). Generally, in the 
present study, there was little evidence of substantial changes in Ta
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bacterial α-diversity indices among different treatments at the tillering 
and ripening stages of rice growth, which is consistent with the findings 
of Wang et al. (2019a). This can probably be attributed to the fact that 
there was little change in soil pH, which is the primary factor affecting 
microbial richness and diversity (Guo et al., 2010; Siciliano et al., 2014; 
Zeng et al., 2016), and is influenced by the interactions among fertilizer 
release, uptake of nutrients by rice, and diverse root secretions (Ram-
anathan and Krishnamoorthy, 1973; Huang et al., 2014; Riah-Anglet 
et al., 2015; Li et al., 2019). Nevertheless, we observed significant dif-
ferences in the bacterial community in response to different straw return 
modes and at different stages of rice growth, which could be affected by 
variations in soil hydrothermal conditions (Karhu et al., 2014). In 
addition, the PCoA and PERMANOVA analyses indicated that differ-
ences in bacterial community compositions associated with distinct 
straw return modes were the most apparent during the tillering stage, 
which again is consistent with the findings of Wang et al. (2019b). 
Others also established that the soil bacterial community is relatively 

stable during the latter stages of rice growth (Noll et al., 2005; Wang 
et al., 2019a). In the present study, we found that, when compared with 
the CK treatment in which only N fertilizer was applied to soil, all 
straw-return treatments significantly contributed to an increase in the 
relative abundances of Proteobacteria and Nitrospirae during the early 
(tillering) stage. We suspect that this may be indirect evidence indi-
cating a lower SIN content and reduced Nr loss potential during the 
tillering period, given that the phylum Proteobacteria includes numerous 
N-fixing bacteria, which play vital roles in enhancing N retention (Wang 
et al., 2015c; Yang et al., 2015). In this regard, the species of Nitrospirae 
are known to be sensitive to soil N profiles (Fierer et al., 2012), which 
determine N metabolism and the nitrification process that are of 
importance in the biogeochemical N cycling (Daebeler et al., 2014; 
Kumar et al., 2018). A positive relationship between the Nitrospirae 
community and available nutrients, including SIN, AP, and AK, has been 
previously reported in a long-term straw-return experiment (Luo et al., 
2017). 

Fig. 2. Relative abundances of bacterial phyla under straw return during the two rice growth stages. The differences among treatments at the same stage were 
analyzed using Duncan test (P < 0.05). 

Fig. 3. Hierarchical clustering and heat map showing the percentage abundances (log2 scale) of the top 10 phyla (rows) during the two rice growth stages (columns). 
Phyla that were significantly more abundant (enriched) or less abundant (depleted) in samples with respect to stages are denoted in different blocks. The phyla are 
color coded as in Fig. 2. 
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4.3. Relationship between soil biotic and abiotic factors and N runoff 
losses 

Although Nr runoff losses showed a significantly higher reduction 

during the rice tillering stage, relationship coefficients with Nr loss were 
found to be higher for straw return treatments, as indicated by our SEM 
analysis. With respect to the interactive effect of straw return modes and 
growth stages, we anticipated that the SIN content would be the most 
significantly positive factor relevant to Nr runoff loss, which was 
reduced by straw application during the tillering stage. In contrast, both 
SOC and pH were observed to have a significant negative effect on Nr 
loss. In this regard, it has previously been reported that an enhancement 
in soil C sequestration may contribute to a decrease in Nr loss (Xia et al., 
2018) by facilitating a better synchronization between crop demand and 
soil nutrient supply under conditions of straw return (Shan et al., 2008; 
Blanco-Canqui and Lal, 2009). Abiotic factors should also be taken into 
account, given that N undergoes a cycle of transformation in response to 
the addition of crop residues to soil (Chen et al., 2014; Zhang et al., 
2016a). The interaction among N mineralization, immobilization, and 
nitrification in soil regulates the amounts of plant-available N and thus 
influences the loss of Nr from soils (Wang et al., 2015b), and in this 
respect, we found that bacterial community composition had weaker but 
significant relationships with Nr runoff loss. The microbial N immobi-
lization promoted by straw return contributes to a reduction in N loss 
loads via it effects on hydrological pathways (Cheng et al., 2017; Xia 
et al., 2017), which is consistent with our observation of a significant 
increase in the abundance of Proteobacteria in response to the 
double-season treatment, particularly during the tillering stage. 

5. Conclusions 

Our results obtained from a field experiment following the 6-year 
program of straw retention yielded solid data related to soil abiotic 
and biotic factors for us to elucidate putative mechanisms underlying 
the reduction in Nr runoff loss associated with straw retention. We found 
that all three modes of straw return evaluated in the present study were 

Fig. 4. Significant genera of top five phyla between the tillering and ripening stages as determined by Welch’s t-test at the 95 % confidence interval (P < 0.05, n=3).  

Fig. 5. Principal coordinate analysis (PCoA) plot of the bacterial community.  

Table 3 
Dissimilarity test of bacterial communities using Permutational multivariate 
(PERMANOVA) analysis based on Bray-Curtis distance.  

PERMANOVA test MeanSqs R2 P value 

Tillering VS Ripening 0.211 0.190 0.005 
Four treatments (Tillering) 0.054 0.439 0.006 
Four treatments (Ripening) 0.046 0.452 0.030 
Four treatments (the whole stage) 0.086 0.309 0.012  
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effective in reducing Nr discharge loads in the rice growing season, 
particularly with the double-season straw return mode and during the 
rice tillering stage in the rice-wheat cropping system in the Yangtze 
Delta region. Furthermore, we found that both soil physicochemical and 
bacterial properties play important roles in influencing N runoff loss. 
Our assessment of the interaction between straw return modes and rice 
growth stages indicated that the SOC content and pH had direct negative 
effects on Nr runoff loss, whereas the SIN content showed the most direct 
positive effect. A significant increase in the abundance of Proteobacteria, 
particularly at the tillering stage in response to double-season straw 
return, indicated the prominent effect of microbial N immobilization in 
reducing N loss potential under straw return. These findings support our 
research hypothesis and highlight the significance of investigations into 
the relationships between Nr runoff loss and soil factors under different 
straw retention modes. However, given the complexities of N cycling 
and the diverse N fates, further studies focusing on N transformation 
processes and the associated specific microbial communities, based on 
functional gene analyses, will be necessary to gain a more comprehen-
sive understanding of the mechanisms underlying the beneficial effect of 
straw amendment with respect to N losses from soil. 
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