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A B S T R A C T

Increasing climate warming is inducing drought stress and resulting in forest growth decline in many places
around the world. The recent climate of northern China has shown trends of both warming and drying. In this
study, we obtained tree ring width chronology of Quercus liaotungensis Koidz. from Dongling Mountain, Beijing,
China. We divided the temperature series of the study area into cooling (1940–1969) and warming intervals
(1970–2016). The climate–tree growth response analysis showed that temperature exerted a limiting impact on
the annual radial growth of Q. liaotungensis during the cooling period, whereas the influence of temperature was
lower during the warming period. The moving correlation analysis showed that the influence of summer tem-
perature decreased with the warming climate since the 1970s, and that the influence of winter and spring
temperatures decreased since the 2000s. The correlation values between the chronology and precipitation de-
creased during the cooling period, whereas spring and early summer precipitation correlations began to increase
in the 1970s and reached significance (p<0.05) in the 1990s. Our results show that the positive influence of
temperature on radial growth of Q. liaotungensis in the study area has weakened, whereas precipitation has
become the dominant regulator with climate warming. These findings suggest that forest growth on Dongling
Mountain will decline if climate warming continues in the future.

1. Introduction

Global climate change is projected to yield increases in frequency
and intensity of droughts under warming temperatures (IPCC, 2013;
Barber et al., 2000; Hoerling and Kumar, 2003). In recent decades,
intense droughts have led to declines of tree growth and increasing
mortality in many forest sites globally (Breshears et al., 2005; Allen
et al., 2010; Williams et al., 2010, 2013). Relevant studies have re-
ported that diminishing temperature constraints on forest growth and
shifts from temperature limitation to water limitation have been the
major drivers of declining forest growth rates (Barber et al., 2000;
Williams et al., 2011; McDowell, 2011; Charney et al., 2016; Girardin
et al., 2016; Babst et al., 2019), which implies the alteration of tree
growth response to climate through heterogeneous climatic periods.

Northern China has already started to experience climatic warming
and temperature-induced drought (Xu and Wei, 2006; Zhang et al.,
2011; Liu et al., 2013a); these factors might decrease the growth and
increase the mortality of temperate forests, as in many other places
around the world (Adams et al., 2009; Martínez-Vilalta et al., 2012;

Williams et al., 2013). Tree rings reflect different climate signals in
cool/moist and warm/arid regions (Hughes et al., 1994; Yasue et al.,
1997; Lindholm and Eronen, 2000; D’Arrigo et al., 2005; Liang et al.,
2009; Fan et al., 2009; Li et al., 2015; Yang et al., 2014; Gou et al.,
2015). It is also reasonable to hypothesize that the climate signals of
tree rings in one geographical location might vary through different
climatic periods. In the present study, we obtained ring width para-
meters of Q. liaotungensis on Dongling Mountain, Beijing, China, and
analyzed the climate response relationships between the tree ring width
chronology and climate variables. The main objectives of our in-
vestigation were to reveal the non-stationary characteristics of radial
tree growth response and shift of climate signals based on tree ring
widths under the prevailing climate warming. Our hypothesis is that
during cooling periods, the ring widths of Q. liaotungensis reflect the
temperature signal, whereas during warming periods, the climate signal
shifts to water stress. Our findings may provide evidence not only to
understand the reaction of Q. liaotungensis to ongoing regional climate
change but also to further understand the alteration of tree ring re-
sponses under different climatic periods.
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2. Materials and methods

2.1. Study area

The study area is located on Dongling Mountain (40.25 °N, 115.25
°E), Beijing, China, approximately 100 km west of the city (Fig. 1. The
highest peak of Dongling Mountain is 2,303 m a.s.l. This area is char-
acterized by a warm temperate semi-humid continental monsoon cli-
mate. The annual temperature is ranged from 5 to 10 °C from 1951 to
2008) (Feng et al., 2009), the average annual precipitation is 500–650
mm (1951–2017), and nearly 80 % of the precipitation occurs during
the summer (June–August) (Ma et al., 2018). The mountain soil is of the
brunisonic soil type, with approximate depth of 30 cm (Sun, 1997). The

main landform is eroded mountain land, and the topography is rela-
tively steep with a slope of 30–40°.

Most of the warm temperate deciduous broad-leaved forests in
China have been lost because of human-induced disturbances. Dongling
Mountain is an area relatively well preserved from vegetation ex-
ploitation (Ma et al., 1995a). The vegetation structure has a typical
characteristics of the northern sub zone of the warm temperate decid-
uous broad-leaved forest region (Liu et al., 2011). Thus, Dongling
Mountain has high research value to study a warm temperate forest
community in northern China (Ma et al., 1995b; Wu et al., 2002; Zhang
et al., 2009; Ma et al., 2018). Quercus liaotungensis Koidz. is a native tree
species, and the most abundant tree species in the study area (Feng
et al., 2009). It is also the oldest in comparison with other tree species

Fig. 1. Locations of the tree ring sampling site and the meteorological station in Beijing, China.
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present in the area; therefore, it is an important dendrochronological
resource to study the impact of climate change on forest growth in
northern China. The other main arbor species are Betula dahurica Pall.
and Populus davidiana Dode. The main shrub species are Syringa pub-
escens Turcz., Abelia biflora Turcz., Corylus mandshurica Maxim., Deutzia
parviflora Bge., and Rhododendron micranthum Turz. (Liu et al., 2011).

2.2. Climate data

The length of the climate dataset from the China Meteorological
Administration weather station in Beijing was only 66 yrs (1951–2016),
which was too short to split into periods of temperature increase and
decrease. Therefore, we used the gridded datasets of the Climate
Research Unit (CRU) TS 3.22 (Zhang et al., 2019) to carry out tree
growth–climate response analysis. Temperature and precipitation data
were obtained using the KNMI Climate Explorer (data first access was
on 12 November 2018, updated access was on 18 April 2019). Before
using the CRU data, we developed correction equations (Fig. 3) based
on the correlation between weather station data and CRU data (Cao
et al., 2018), and then calculated temperature and precipitation before
the 1950s. Finally, the corrected climatic data were used for the ana-
lysis of climate and tree growth relationships. According to the climate
data, Dongling Mountain has experienced clear climate fluctuation
from 1910 to 2016. We divided the temperature series into three time
spans: warming (1910–1939), cooling (1940–1969), and warming
(1970–2016) periods. We used Spearman rank correlation to confirm
this variation of temperature (Table 1).

2.3. Tree ring data and chronology development

The tree ring samples of Q. liaotungensis were collected on Dongling
Mountain at the elevation of 1,800 m a.s.l. upper treeline. Tree ring
cores n = 37) were extracted from each tree along an axis perpendi-
cular to the slope inclination to avoid the impact of tension wood, at
approximate breast height (1.3 m) using 5-mm increment borers. In the
laboratory, the samples were processed following standard den-
drochronological techniques (Stokes and Smiley, 1996). Air-dried and
mounted cores were sanded to a flat surface using successively finer
sandpaper grits from 300 to 1,200, and were subsequently scanned
using a TSD4800 flatbed scanner to generate digital images for den-
drochronological analysis. The scanner was pre-calibrated for pixel size
to measure the sizes of objects (ring widths). We used the WinDENDRO
2017a tree ring measurement system (Regent Instrument, 2020) to

determine the ring widths from the scanned images. The data were
subsequently converted to Tucson (decadal) format. The cross-dating
was first checked visually, and quality was then controlled by the CO-
FECHA program (Holmes, 1983). Following the standard order of
dendrochronological study, we detrended the original chronology to
remove ring width variation unrelated to climate (i.e., tree age-related
growth traits) using a negative exponential model (Cook and
Kairiukstis, 1990; Carrer and Urbinati, 2006; Fan et al., 2010). The
dimensionless index of tree ring width after detrending was then
averaged to achieve standard chronology using Tukey’s biweight robust
mean, which enhances the common signal and reduces the effect of
outliers (Cook, 1985). Detrending and chronology development were
carried out using the “dplR” package (Bunn, 2008; Bunn and Korpela,
2018) in R (R Core Team, 2019). The common statistics of mean sen-
sitivity, standard deviation, inter-series correlation (rbar), first order
auto-correlation (AC), expressed population signal (EPS), and signal-to-
noise ratio (SNR) were used to evaluate the chronology. The length of
the most reliable chronology was truncated at the EPS reaching a
threshold value of 0.85 (Wigley et al., 1984).

2.4. Climate–tree growth relationship analysis

Correlation analysis function of the Dendroclim 2002 program was
used to carry out tree growth–climate relationship analysis (Biondi and
Waikul, 2004; Zang and Biondi, 2015). Static correlation between the
chronology and monthly temperature was run in three different cli-
matic periods (first warming, cooling, and second warming) using
Pearson correlation coefficients (at the 95 % significance level). How-
ever, the correlation results during the first warming period was not as
strong as the second warming period. Therefore, the static correlation
focused on the cooling and second warming periods. The static corre-
lation between chronology and monthly precipitation also focused the
period from 1940 to 2016 in parallel to the chronology – temperature
correlation. We also carried out moving correlation analysis between
the ring width indices and monthly climate variables using the Den-
droclim 2002 program at a 32-year moving interval. Aggregated tem-
perature and precipitation of three, four, and five month seasons were
investigated for moving correlation analysis as well. Considering the
“legacy effect” of previous-year climatic conditions on the current year
tree growth (Fritts, 1976), the climate–tree growth relationship analysis
period included the months from June of the previous year (P) to Oc-
tober of the current year (C). Correlation results were adjusted with a
Bonferroni multiple analysis correction (Cerrato et al., 2019).

3. Results

3.1. Statistical characteristics of tree ring width chronology

Fig. 4 depicts the tree ring width chronology of Q. liaotungensis on
Dongling Mountain. The length of the reliable chronology (EPS> 0.85)
extended from 1910 to 2016, and included a minimum of five tree ring
samples. The inter-series correlation (rbar) of the chronology was 0.31,
implying a higher common signal among the individual trees of the
chronology. The mean sensitivity and standard deviation of the
chronology were 0.30 and 0.57, respectively, indicating relatively
strong inter-annual variations in the ring-width series. The first order
autocorrelation was 0.55, which implies that the conditions that caused
a ring to be narrow (or wide) in a given year carried over their effect on
growth in the following year. The SNR was 12.00, which indicates that
the radial growth of individual trees responded to common factors.

3.2. Climate–tree growth response analyses

The results of correlation analysis between chronology and monthly
temperature were different during the heterogeneous climate periods.
During the cooling period (1940–1969), the correlation between

Fig. 2. Trends of climate variables include annual temperature and precipita-
tion on Dongling Mountain, Beijing, China, based on CRU gridded data; time
span: 1901–2016.
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chronology and temperature was positive in P-June (r = 0.39,
p<0.05) and P-July (r = 0.49, p<0.01), as well as in C-January (r =
0.43, p<0.05) (Fig. 5a). Although this correlation reached significance
only in three months, the correlation values were positive during most
of the time windows except in P-November (r = −0.01, p>0.05). In
the warming period (1970–2016), the chronology was positively cor-
related with the monthly temperatures of P-December (r = 0.36,
p<0.05) and C-September (r= 0.35, p<0.05) (Fig. 5b). In contrast to
the cooling period, the correlation between chronology and tempera-
ture has weakened during the warming period (Fig. 6).

Seasonal correlation analysis between chronology and temperature

(3, 4, and 5 months) in the two different climate periods showed that
the correlation between temperature and chronology strengthened with
aggregating temperature over 5 months during the cooling period
(Fig. 7, upper panel). However, the effect of aggregating different
months was not obvious during the warming period (Fig. 7, lower
panel).

We also performed moving correlation analysis between chronology
and monthly temperature (Fig. 8). Chronology showed increasing cor-
relation values with P-June and P-July temperature during the cooling
period of 1940–1969, with significance (p<0.05) reached around the
1950s. Correlation with C-January also increased, but reached sig-
nificance earlier in contrast to P-June and P-July, and remained rela-
tively stable. In the warming period of 1970–2016, the correlations
with P-June, P-July, and C-January decreased. After the 1980s, the
correlations with P-June and P-July remained below the level of sig-
nificance (p>0.05), and the C-January correlation decreased from the
1990s onward. The general variation of correlation values in P-Sep-
tember, P-October, P-December, and C-February increased from the
1940s until the 2000s, and all of them started decreasing afterward.

The moving correlation analysis between the chronology and ag-
gregated temperature (3–5 months) also showed unstable character-
istics of temperature influence on tree growth during the different cli-
matic periods (Fig. 9). The correlation values of chronology with
temperature in all aggregation forms progressively increased during the
cooling period. The correlation values with summer temperature de-
creased steadily after the 1970s, whereas the correlation values with
winter, spring, and autumn temperatures continuously increased. The
general trend of chronology–temperature correlations decreased after
the 2000s.

The fluctuation features of precipitation in the study area were not
as obvious as those of temperature. Therefore, we have not divided the
precipitation series into different intervals. We carried out Pearson
correlation analysis on the relation between the chronology and pre-
cipitation for the period 1940–2016 (Fig. 10). The results showed that
the chronology was positively correlated with P-September (r = 0.31,
p<0.01), C-February (r = 0.23, p<0.05), C-April (r = 0.30,
p<0.01), and C-May (r = 0.36, p<0.001) precipitation values.

Fig. 3. Correction equations and corrected climatic data of annual mean temperature (left) and annual total precipitation (right).

Table 1
The mean of climate parameters, standard deviation, and Spearman rank cor-
relations.

Climate data Period Temperature (℃) Precipitation (mm)

CRU 1910–1939 0.65 (p < 0.001) −0.04 (p > 0.05)
Mean (SD) 4.52 (0.45) 436.84 (90.48)
1940–1969 −0.42 (p < 0.05) 0.29 (p > 0.05)
Mean (SD) 4.79 (0.55) 475.67 (107.15)
1970–2016 0.75 (p < 0.001) −0.03 (p > 0.05)
Mean (SD) 5.52 (0.69) 448.3 (78.49)

Weather station 1970–2016 0.84 (p < 0.001) −0.12 (p > 0.05)
Mean (SD) 12.6 (0.87) 550.27 (141.21)

SD: standard deviation, p: significant level.

Fig. 4. Tree ring width chronology of Q. liaotungensis on Dongling Mountain,
Beijing, China. The time span of reliable chronology is 1910–2016.

M. Keyimu, et al. Dendrochronologia 60 (2020) 125683

4



The moving correlation analysis between chronology and monthly
precipitation showed that the correlation values of chronology with C-
April and C-May precipitations first decreased and then progressively
increased after the 1970s (Fig. 11). The variation of P-September pre-
cipitation correlation showed a fluctuation pattern, but increased after
the 1990s. The correlation values between chronology and precipita-
tion of C-February, and C-March also increased with climatic warming
and reached significance (p<0.05) around the 1980s–1990s.

Correlation between chronology and precipitation of aggregated
months demonstrated that the chronology had higher correlation with
precipitation of spring and early summer (Fig. 12). The consistent
higher correlation values were appeared in April, May, and June.

The results of moving correlation analysis between chronology and
aggregated precipitation of 3–5 months showed increasing correlation

values after the 1970s (Fig. 12). In particular, the correlation values of
chronology with precipitations in winter, spring, and early summer
became more prominent with rising temperature.

4. Discussion

Ring width of Q. liaotungensis positively responded to temperature
during the cooling period (1940–1969) in most of the months examined
(Fig. 5a), indicating that temperature limited radial tree growth under
these climatic conditions. Increasing correlation values between tem-
perature and chronology further confirmed the importance of tem-
perature on annual radial growth of Q. liaotungensis during the cooling
period. In contrast, the correlation between chronology and precipita-
tion weakened with decreasing temperature; this decline was especially
obvious with spring and early summer precipitation (Fig. 13). These
results are in accordance with the findings of Carrer and Urbinati
(2006) and Coppola et al. (2012) on conifer tree species (Larix decidua
Mill.) in the Italian Alps, which showed that the correlation shift was
more consistent for the climate variables that primarily drive tree
growth, whereas variables without significant influence on radial tree
growth showed relatively stationary climate–tree growth relationships.
However, the correlation of ring width and temperature has weakened
following temperature rise since the 1970s (Fig. 6). Since then, the
influence of precipitation on radial tree growth has started to increase
(Fig. 13), which suggests that warming-induced drought stress has
shifted as the limiting factor on the radial tree growth of Q.

Fig. 5. Pearson correlation between chronology of Q. liaotungensis and temperature (a, b) for the different periods (1940–1969 and 1970–2016). The vertical dashed
line represents the border of previous and current growing years. Horizontal solid, dashed, and dotted lines represent Bonferroni-corrected p-value levels of 0.05,
0.01, and 0.001, respectively. Numbers below the x-axis refer to the corresponding months from previous June (−6) to current September (9) in the correlation
analysis.

Fig. 6. Linear correlations between temperature and chronology of Q. liaotu-
nensis in two different climatic periods.

Fig. 7. Pearson correlations between aggregated temperature and chronology of Q. liaotungensis. Each month represents the end of 3, 4 or 5-month analyzed seasons.
Solid, dashed and dotted lines represent Bonferroni-corrected p-value levels of 0.05, 0.01, and 0.001, respectively.
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liaotungensis. Our findings are consistent with reports from the Medi-
terranean forest (Shestakova et al., 2016), the boreal forest region of
Alaska (Barber et al., 2000; D’Arrigo et al., 2005), and even forest–-
tundra margins (Jacoby and D’Arrigo, 1995; Briffa et al., 1998). The
positive correlation between ring width and temperature during the
cooling period was attributed to the fact that temperature mainly
controlled photosynthetic activity, which provides carbohydrates and
energy for tree ring cell development and xylem formation, because
precipitation was relatively high during this period (Fig. 2, lower panel).
In contrast, temperature has become sufficient during the warming
period, and water availability has become the main regulator de-
termining tree radial growth. Our results match with the reports of
Williams et al. (2011) on the change of climatic limiting factors af-
fecting annual radial growth of white spruce trees in Alaska. Q. liao-
tungensis has a larger leaf area, and the energy budget through its leaves
therefore is of great importance for tree growth. The mechanism for the
weakened correlation between temperature and ring width may be

through the influence of temperature on leaf-to-air vapor pressure
deficit and tree evapotranspiration rate (Choat et al., 2012). When
evaporative demand increases because of higher temperatures, leaf
stomata tend to close to reduce water loss, resulting in lower CO2 up-
take and a decreased carbon assimilation rate (Lloyd and Farquhar,
2008), which ultimately hamper tree radial growth.

The moving correlation analysis between the chronology and tem-
perature of aggregated months showed that the correlation values of
chronology with temperature in all the aggregation forms increased
with climatic cooling. The correlation values between chronology and
summer temperature (June–July–August) began to decrease following
increasing temperature since the 1970s, which leads us to hypothesize
that the radial growth of Q. liaotungensis is very sensitive to the varia-
tion of summer temperature. However, the general variation of corre-
lations of chronology with spring and autumn temperatures con-
tinuously increased after the 1970s, which indicated the possibility of a
positive influence on the radial tree growth of Q. liaotungensis resulting
from extending the growing season. A number of studies have reported
that the warming climate has resulted in prolongation of the growing
season in many places around the world (Menzel et al., 2006; Piao
et al., 2007; Peng et al., 2011; Liu et al., 2013b). Coppola et al. (2012)
reported the possibility of particular importance of a prolonged
growing season on radial tree growth at treeline sites where tree growth
is sensitive to climate change. Another possible explanation for the
increasing importance of spring temperature on radial tree growth is
that a warmer spring facilitates the melting of the frost soil layer, which
increases soil water availability. As a result, roots grow faster, and
developed root structures enable the uptake of more water and nu-
trients, which contribute to the early activation of xylogenesis and the
formation of vessel structures, ultimately enhancing the carbon assim-
ilation process (Lebourgeois et al., 2004).

Positive correlation values between chronology and winter tem-
perature continuously increased after the 1970s, indicating that winter
temperature started to exert significant impact on the radial tree growth
of Q. liaotungensis. Increasing importance of winter temperature on
radial tree growth can be explained by the fact that warmer winter

Fig. 8. Moving correlations between chronology and the temperatures of important months. Solid, dashed, and dotted lines represent Bonferroni-corrected p-value
levels of 0.05, 0.01, and 0.001, respectively. Gray line represents the zero correlation value.

Fig. 9. Moving correlation values between chronologies of Q. liaotungensis and mean seasonal temperatures. Solid, dashed, and dotted lines represent Bonferroni-
corrected p-value levels of 0.05, 0.01, and 0.001, respectively. Gray line represents the zero correlation value.

Fig. 10. Pearson correlation between chronology of Q. liaotungensis and pre-
cipitation for the period 1940–2016. The vertical dashed line represents the
boundary of previous and current growing years. Horizontal solid, dashed, and
dotted lines represent Bonferroni-corrected p-value levels of 0.05, 0.01, and
0.001, respectively. Numbers below the x-axis refer to the corresponding
months from previous June (-6) to current September (9) in the correlation
analysis.
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temperature reduces cold damage on the fine roots of Q. liaotungensis,
which are mostly distributed in the 30 cm upper soil layer (Qin, 2006).
The energy stored in the parenchyma during previous-year tree growth
that might otherwise be spent on the recovery of damaged roots or
producing new roots in the following growing season (Secchi and
Zwieniecki, 2011) would likely be used on the activation of the cam-
bium layer instead, which facilitates carbon uptake and contributes to
tree growth. The importance of the winter temperature on tree growth
has also been reported by other studies (Bräuning, 2001; Pederson
et al., 2004; Duan et al., 2012). The moving correlation analysis be-
tween chronology and precipitation showed that the correlation values
started to increase after the 1970s, and the increase of correlation with
spring and early summer precipitation was more obvious (Fig. 13).
Spring and early summer are the most important periods when xylo-
genesis starts and vessel structures of Q. liaotungensis form; therefore,
sufficient water availability not only contributes to but also guarantees
nutrient transportation for these processes.

After the 2000s, the correlation values between chronology and
temperature through all the months examined dramatically decreased
(Fig. 9), and dropped below the level of significance except in autumn

(August-September-October). Temperature increase in May, June and
July probably exceeded the maximum threshold value for xylogenesis
of Q. liaotungensis, and thus no longer contributed to radial tree growth.
If warming continues, autumn temperature may also exceed the
threshold value, radial tree growth of Q. liaotungensis may completely
lose its connection with temperature, and decreasing regional pre-
cipitation may strengthen drought stress and cause the eventual decline
of this tree species on Dongling Mountain.

5. Conclusions

Our results demonstrate the non-stationary characteristics of the
climate–tree growth response of Q. liaotungensis on Dongling Mountain,
Beijing. According to the climate–tree growth response analysis, tem-
perature mainly controlled radial tree growth during the cooling
period, whereas the influence of precipitation has increased with
strengthening climate warming and has become the dominant regulator
of radial tree growth. Our investigation revealed that climate warming
has altered the relationship between climate and annual radial tree
growth of Q. liaotungensis on Dongling Mountain. This change suggests

Fig. 11. Moving correlation values between chronologies of Q. liaotungensis and the precipitations of important months. Solid, dashed, and dotted lines represent
Bonferroni-corrected p-value levels of 0.05, 0.01, and 0.001, respectively. Gray line represents the zero correlation value.

Fig. 12. Pearson correlations between aggregated precipitation and chronology of Q. liaotungensis. Each month represents the end of an analyzed 3, 4, or 5 month
season. Solid, dashed, and dotted lines represent Bonferroni-corrected p-value levels of 0.05, 0.01, and 0.001, respectively.

Fig. 13. Moving correlation values between chronology of Q. liaotungensis and mean seasonal precipitation. Solid, dashed, and dotted lines represent Bonferroni-
corrected p-value levels of 0.05, 0.01 and 0.001, respectively. Gray line represents the zero correlation value.
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that this area may undergo forest decline under the influence of
warming-induced drought stress if climate warming continues.
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