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Abstract

Emergent aquatic plants mostly occur in shallow waters and root in bottom substrates, but their leaves emerge from 
the water surface and are thus exposed to air, similar to the leaves of terrestrial plants. Previous studies have found 
coordination between leaf water supply and demand in terrestrial plants; however, whether such a coordination exists 
in emergent aquatic plants remains unknown. In this study, we analysed leaf veins and stomatal characteristics of 14 
emergent aquatic and 13 terrestrial monocotyledonous herb species (EMH and TMH), with 5 EMH and 8 TMH belonging to 
Poaceae. We found that EMH had significantly higher mean leaf area, leaf thickness, stomatal density, stomatal number per 
vein length and major vein diameter, but lower mean major vein length per area (VLA) and total VLA than TMH. There was 
no significant difference in stomatal length, minor VLA and minor vein diameter between the two groups. Stomatal density 
and total VLA were positively correlated among the EMH, TMH, as well as the 8 Poaceae TMH species, but this correlation 
became non-significant when data from both the groups were pooled. Our results showed that the differences in water 
supply between emergent aquatic and terrestrial plants modify the coordination of their leaf veins and stomatal traits.

Keywords:  Leaf hydraulics; optimization; Poaceae; stomatal density; vein density.

  

Introduction
In leaves, the xylem supplies water to the photosynthetic 
tissues to prevent their desiccation during photosynthetic CO2 
exchange with the atmosphere (Brodribb et al. 2007; Feild and 
Brodribb 2013). Stomata control gas exchange between the leaves 
and atmosphere (Hetherington and Woodward 2003; Simonin 
and Roddy 2018). Therefore, both stomatal density and size play 

vital roles in controlling maximum transpiration, i.e. leaf water 
demand (Franks and Beerling 2009). Leaf veins transport water 
from the petiole across the lamina to the mesophyll mainly 
for transpiration (Niklas 1999). Indeed, previous studies have 
shown that vein density (vein length per leaf area, VLA) is a key 
determinant of leaf water supply capacity in terrestrial plants 
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(Sack and Scoffoni 2013; Scoffoni and Sack 2017). Coordination 
between stomatal density and VLA across species indicates 
different strategies for the maintenance of water balance 
(Brodribb et al. 2013; Schneider et al. 2017). A positive correlation 
between the minor VLA and stomatal density has been found in 
many species across different habitats (Zhang et al. 2012; Carins 
Murphy et al. 2016; Zhao et al. 2016). However, we still know little 
about this relationship in aquatic plants.

Although many species show coordination between 
stomatal density and VLA, some species have unique strategies 
for maintaining water balance. For example, no significant 
positive correlation had been found between VLA and stomatal 
density among terrestrial and epiphytic Cymbidium species, 
which is mainly due to the high water storage capacity of these 
species (Zhang et al. 2015). The high capacitance buffers water 
potential declines in the transpiration stream, and then reduces 
the dependence of transpiration on water uptake from the soil 
(Meinzer and Grantz 1991; Ogburn and Edwards 2013; Roddy 
et  al. 2018). Available water resources play important roles in 
leaf venation development (Uhl and Mosbrugger 1999; Roddy 
et al. 2019), and a negative correlation has been found between 
VLA and water availability in several herbs (Napp-Zinn 1988). 
Whereas a positive correlation between these factors has been 
found in plants growing under nearly saturated air humidity 
in tropical rainforests (Pyykkö 1979). Under arid conditions, 
some species have apparent over-investment in leaf venation 
to compensate for the adverse effect that the thicker leaves 
have on photosynthesis (de Boer et al. 2016). In contrast, plants 
growing in water may have lower drought stress given their 
submergence in water, whereas exposure of their leaves to air 
may render a high vapour pressure deficit that may influence 
the evolution of vein and stomatal traits (Fanourakis et al. 2011; 
Hovenden et al. 2012; Carins Murphy et al. 2014).

The coordination between VLA and stomatal density in 
maintaining homeostasis in leaf water content is crucial for 
continued physiological function (Brodribb et  al. 2011; Roddy 
et al. 2020). Zhao et al. (2016) found that tree species in subtropical 
mountain forest had lower VLA, but similar stomatal density 
when compared with tree species in a tropical mountain forest, 
which caused significant differences in the coordination between 
stomatal density and VLA between these two types of forests. 
The stomatal number per vein length, which is calculated from 
dividing stomatal density by VLA (Zhao et al. 2017), could also be 
used to compare the difference in the coordination between leaf 
water supply and demand. Zhao et  al. (2017) found that three 
leguminous species under certain environmental conditions 
had stable stomatal number per vein length, which showed the 
coordination between leaf water supply and demand. When 
the environmental conditions changed, the stomatal number 
per vein length would change accordingly. At present, studies 
comparing the differences between stomatal number per vein 
length and VLA and stomatal density are rare.

Emergent aquatic plants mostly occur in shallow waters and 
root in the bottom substrates, but their leaves emerge from the 
water surface and are thus exposed to air, which are similar to 
terrestrial plant leaves (Golub et al. 1991; Lacoul and Freedman 
2006). Approximately 11 % of monocotyledonous plants are 
aquatic (Les and Schneider 1995; Lacoul and Freedman 2006; 
Conklin et  al. 2019). Most monocots have a distinct hierarchy 
of gridded ‘parallel’ or ‘striate’ major veins with midribs, large 
and intermediate longitudinal veins that are analogous to major 
vein orders and small longitudinal veins and transverse veins 
that are analogous to minor veins (Ueno et  al. 2006; Sack and 
Scoffoni 2013). The pan-tropical Ochnaceae species have dense 

major veins, whereas the coordination of total VLA and stomatal 
density across 55 species in this family is maintained (Schneider 
et al. 2017). The dense major veins also exist in emergent aquatic 
monocotyledonous herbs (EMH), while the relationship between 
the total VLA and stomatal density of those species is still 
unclear.

Noticeably, water supply is not a limiting factor for EMH, but 
it is for terrestrial monocotyledonous herbs (TMH), especially 
in the dry season. With sufficient water supply, plants typically 
have higher photosynthesis and transpiration rates (Passioura 
2002). Under sufficient water supply, a low VLA has the potential 
benefits of reducing construction costs and displacing mesophyll 
(Baresch et  al. 2019; Sporck and Sack 2010). In this study, we 
chose EMH as the subject and TMH as the baseline to clarify the 
relationship between VLA and stomatal density in these two 
groups. We hypothesized that compared with terrestrial species, 
the emergent aquatic species would have higher vein diameter 
but lower VLA, and higher stomatal number per vein length. 
The results of this study may deepen the understanding of the 
relationship between leaf vein and stomatal traits.

Methods

Site and sampling

This study was carried out in the South China Botanical Garden 
(SCBG; 23°10′N, 113°21′E, elevation 41 m), Chinese Academy 
of Sciences, Guangzhou City, Guangdong Province, China. The 
mean annual temperature in the garden is 21.7 °C and the mean 
annual precipitation is 1761 mm (with more than 80 % rain from 
May to September).

EMH grow in a shallow freshwater pool at SCBG (Fig. 1) and 
TMH are common and grow along the roads. We collected 4–6 
mature leaves from 4 to 6 individual plants in full sunlight of 
each species and stored them in a refrigerator at 4  °C in July 
2017. In total, 14 EMH, belonging to eight families and 13 TMH 
belonging to six families, were collected (Table 1). As 5 EMH and 
8 TMH of the 27 species in this study belonged to Poaceae (EMHp 
and TMHp, respectively), we also checked our hypothesis at the 
family level, which would reduce the influence of phylogenetic 
factors.

The leaves were scanned using an HP CLJM277 scanner, and 
leaf area was measured using Image J software (http://rsbweb.
nih.gov/ij/index.html).

Stomatal density and modelled maximum stomatal 
conductance

As all the species in this study were amphistomatous, stomatal 
density, stomatal length and width (refer to guard cell length 
and width, respectively) were determined from both adaxial and 
abaxial cuticles of EMH and TMH. The leaves were prepared and 
measured following the protocols of Zhao et al. (2016). Because 
of stomatal size–number trade-off, we also estimated the 
theoretical modelled maximum stomatal conductance (gmax) as 
reported by Franks and Farquhar (2001):

gmax =
d
v
× D× a

l+ (π/2)
√
a/π

, (1)

where d is the diffusivity of water in air (m2 s−1); υ is the molar 
volume of air (m3 mol−1); D is the stomatal density; a is the 
maximum pore area approximated as π(p/2)2, where p is 1/2 
guard cell length; l is the pore depth that is represented by 1/2 
guard cell width, assuming guard cells inflate to a circular cross-
section (Franks and Beerling 2009).
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Leaf vein measurements and categories

The leaves that had been used to measure stomatal traits were 
also used to measure the VLA. The leaves were placed in bottles 
containing 5 % NaOH aqueous solution and were heated in a 
water bath (Yiheng HWS24, Shanghai, China) until the veins 
were exposed. We used distilled water to soak the leaves for 
30 min, and then the leaves were dyed with 1 % methylene blue 
solution, rinsed again, mounted on slides and photographed. 
For the species with reticulate pattern veins, we distinguished 
vein order hierarchy according to Sack et  al. (2012), and for 
other species with parallel or striate venation, we distinguished 
vein order hierarchy according to Christin et al. (2013). Image J 
(http://rsbweb.nih.gov/ij/index.html) was employed to measure 
the VLA of different vein categories. Although the transverse 
veins of parallel or striate venation have an important role 
in leaves, the proportion of them was small in the whole leaf 
venation (McKown and Dengler 2010; Lundgren et  al. 2019), 
and we excluded them in this study. We measured major VLA 
(1°–3°) separately, but for minor VLA, 4° and higher orders 
were grouped into one class. The major vein diameters were 
performed including the bundle sheath, and we measured the 
different orders from the middle of the leaves, and the mean 
minor vein diameter was calculated for orders 4° and higher. 
Stomata number per vein length (no. mm-1) was calculated from 
dividing stomatal density by total VLA.

We roughly estimated the xylem construction cost of leaf 
veins with a dimensionless index of cell wall volume per leaf 
area (CC, McKown et al. 2010). A modified, yet simplified, method 
of Schneider et al. (2017) for lumen diameter and conduit density 

per vein order determination was applied for total vein diameter 
determination based on the assumption that both variables 
correlate with vein diameter. Thus, we used the following 
equation to calculate the xylem construction cost of leaf veins:

CC =
v∑

i = 1

π× di × Di, (2)

where di is the diameter of vein order i and Di is the density of 
the same order.

Leaf thickness

After measuring stomatal density and VLA, the same leaves 
were used to measure leaf thickness using freehand sections. 
The leaf sections were placed in water, and then mounted on 
slides and photographed. We measured the leaf thickness using 
Image J (http://rsbweb.nih.gov/ij/index.html) software.

Data analysis

Independent t-tests were used to assess differences in leaf 
functional traits between EMH and TMH. Correlations between 
leaf traits were analysed with Pearson’s correlation coefficients. 
Principal component analysis (PCA) was used to analyse the 
correlations among the 18 plant functional traits and the 
distributions of the 27 species along the PCA axes by using 
‘FactoMineR’ and ‘factoextra’ packages in R ver. 3.6.3 (R Core 
Team 2020). The phylogeny tree of the 27 studied species was 
generated from Phylomatic web site (http://phylodiversity.net/
phylomatic/) by using the stored tree ‘zanne2014’ (Zanne et al. 
2014). Phylogenetic ANOVA were used to test the differences in 

Figure 1. Habitat of emergent aquatic (A) and terrestrial (B) herbs. Photos by WL Zhao and QG Mao.
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Table 2. Leaf traits (mean ± SE) and the results of independent samples t-test between the 14 emergent aquatic and the 13 terrestrial 
monocotyledonous herb species (EMH and TMH), as well as 5 EMHp and 8 TMHp, which belong to Poaceae. LA = leaf area, LT = leaf thickness, 
SD = stomatal density, SL = stomatal length, gmax = maximum modelled stomatal conductance, VLA = vein length per area, VD = vein diameter, 
CC= the xylem construction cost of leaf veins, SV = stomatal number per vein length.

Trait  Unit 

For all Poaceae

EMH TMH EMHp TMHp 

LA cm2 77.1 ± 10.1 41.4 ± 9.5* 58.1 ± 11.7 25.6 ± 3.9ns

LT μm 498.7 ± 107.8 216.1 ± 33.1* 397.3 ± 48.9 147.7 ± 6.2**
SD no. mm-2 514.7 ± 102.0 254.8 ± 43.2* 724.8 ± 84.4 316.3 ± 43.1**
SL μm 24.8 ± 2.0 25.4 ± 2.2ns 21.7 ± 1.5 24.2 ± 2.5ns

gmax molm-2s-1 0.47 ± 0.06 0.26 ± 0.03** 0.63 ± 0.06 0.30 ± 0.02** 
1°VLA mm mm-2 0.15 ± 0.06 0.07 ± 0.01ns 0.11 ± 0.01 0.09 ± 0.01ns

2°VLA mm mm-2 0.76 ± 0.16 0.69 ± 0.11ns 1.09 ± 0.1 0.83 ± 0.12ns

3°VLA mm mm-2 2.57 ± 0.55 6.29 ± 1.18** 3.49 ± 0.51 8.44 ± 1.07*
major VLA mm mm-2 3.48 ± 0.72 7.05 ± 1.26* 4.69 ± 0.6 9.36 ± 1.15*
minor VLA mm mm-2 3.44 ± 0.34 1.88 ± 0.52ns   
total VLA mm mm-2 4.7 ± 0.54 7.49 ± 1.13* 4.69 ± 0.6 9.47 ± 1.09*
1°VD μm 800.0 ± 160.7 484.5 ± 69.9 439.2 ± 93.6 388.7 ± 56.6ns

2°VD μm 143.8 ± 21.8 73.9 ± 8.7** 94.1 ± 7.1 73.3 ± 4.7ns

3°VD μm 46.1 ± 3.2 31.6 ± 4.3* 50.2 ± 2.4 28.7 ± 3.8**
minor VD μm 21.7 ± 1.9 16.3 ± 2ns   
1 °CC / 0.12 ± 0.02 0.09 ± 0.01 0.12 ± 0.02 0.09 ± 0.01ns

2 °CC / 0.23 ± 0.04 0.15 ± 0.02* 0.3 ± 0.02 0.18 ± 0.02**
3 °CC / 0.32 ± 0.06 0.5 ± 0.07ns 0.51 ± 0.05 0.63 ± 0.06ns

minor CC / 0.25 ± 0.03 0.07 ± 0.01*   
total CC / 0.76 ± 0.07 0.75 ± 0.08ns 0.93 ± 0.04 0.91 ± 0.06ns

gmax/ total VLA 10-4molm-1s-1 1.10 ± 0.12 0.42 ± 0.07*** 1.40 ± 0.10 0.36 ± 0.04***
SV no.mm-1 106.3 ± 14.6 37.1 ± 6.4*** 155.6 ± 11.0 33.5 ± 3.0***

*P < 0.05; **P < 0.01; ***P < 0.001; ns: P > 0.05.

Table 1.  The code, Latin names, Family, photosynthetic pathway as well as leaf vein type of the 14 emergent aquatic and 13 terrestrial 
monocotyledonous herbs (EMH and TMH) species. RV = reticulate venation, PV = parallel venation.

code Species Family C3/C4 Leaf vein type

 EMH    
1 Alisma canaliculatum Alismataceae C3 RV
2 Arundo donax Poaceae C3 PV
3 Canna glauca Cannaceae C3 RV
4 Canna indica Cannaceae C3 RV
5 Cortaderia selloana Poaceae C3 PV
6 Cyperus alternifolius Cyperaceae C4 PV
7 Limnocharis flava Alismataceae C3 RV
8 Oryza rufipogon Poaceae C3 PV
9 Oryza sativa Poaceae C3 PV

10 Phragmites australis Poaceae C4 PV
11 Pontederia cordata Pontederiaceae C3 RV
12 Thalia dealbata Marantaceae C3 PV
13 Typha angustifolia Typhaceae C3 PV
14 Typha orientalis Typhaceae C3 PV

 TMH    
15 Alpinia japonica Zingiberaceae C3 PV
16 Axonopus compressus Poaceae C4 PV
17 Coix lacrymajobi Poaceae C4 PV
18 Commelina communis Commelinaceae C3 RV
19 Cordyline fruticosa Asparagaceae C3 PV
20 Cyperus rotundus Cyperaceae C4 PV
21 Digitaria sanguinalis Poaceae C4 PV
22 Fargesia spathacea Poaceae C3 PV
23 Imperata cylindrica Poaceae C4 PV
24 Maranta arundinacea Marantaceae C3 PV
25 Oplismenus undulatifolius Poaceae C3 PV
26 Panicum bisulcatum Poaceae C4 PV
27 Setaria viridis Poaceae C4 PV
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leaf traits between EMH and TMH by using the ‘geiger’ package 
(Pennell et al. 2014) in R. We used the linear descriptive analysis 
to select the most important variables for separating EMH and 
TMH by using ‘caret’ packages in R. SMATR v2.0 software was 
used to examine the differences in linear relationships between 
EMH and TMH (Warton et al. 2006).

Results
We found that EMH had significantly higher mean leaf area, 
leaf thickness, stomatal density, gmax, major vein diameter 
(including 1° VD, 2° VD and 3° VD) and stomatal number per 
vein length, but had lower mean major VLA, total VLA and the 
xylem construction cost of leaf veins than TMH (Table 2). The 
results of phylogenetic ANOVA followed the similar pattern with 
the results of normal one-way ANOVA; however, the differences 
in stomatal density and total VLA between EMH and TMH 
became marginally significant when considering the phylogeny 
relationships [see Supporting Information—Table S1].

Axis 1 and axis 2 of the PCA explained 42.6 and 21.2 % of 
the total variance, respectively. Axis 1 was loaded by stomatal 
density and VLA on the positive side and by leaf thickness and 
vein diameter on the negative side, whereas Axis 2 was loaded 
by stomatal number per vein length on the positive side (Fig. 2A). 
EMH and TMH can be separated from one another along axis 
2, with EMH distributed on the positive side of axis 2 and TMH 
distributed on the negative side of axis 2 (Fig. 2B). There were 11 
variables selected for the classification of the two groups with 
the linear discriminant analysis [see Supporting Information—
Table S2]. Within the 11 variables, stomatal number per vein 
length, leaf thickness, second vein diameter, third vein diameter 
and the xylem construction cost of the third leaf veins were the 
top five important variables.

A significant and positive correlation between total VLA and 
stomatal density was found in both EMH and TMH (Fig. 3A; EMH, 
r2 = 0.34, P < 0.05; TMH, r2 = 0.40, P < 0.05), and the linear regression 
slope for these variables in EMH was significantly greater than 
that of TMH (Fig.  3A). Similarly, the relationships were also 
significant for TMH of Poaceae species (Fig. 3B; r2 = 0.66, P < 0.05), 
but not significant for EMH of Poaceae species (Fig. 3B; r2 = 0.72, 
P = 0.07).

Stomatal length was significantly and negatively correlated 
with stomatal density in both EMH and TMH (Fig.  4A; EMH, 
r2 = 0.82, P < 0.001; TMH, r2 = 0.85, P < 0.001), and the intercept of 
the regression line in EMH was significantly higher than that in 
TMH. The stomatal length was also significantly and negatively 
correlated with total VLA in both EMH and TMH (Fig. 4B; EMH, 
r2 = 0.56, P < 0.01; TMH, r2 = 0.34, P = 0.03), and the intercept of the 
regression line in EMH was significantly lower than that in TMH.

Discussion
An important finding of this study is that the mean stomatal 
density of EMH was more than 2-fold that of TMH, whereas 
the total VLA of TMH was also significantly higher than that 
of EMH, which lead to the stomatal number per vein length of 
EMH was nearly 3-fold as that of TMH. For the Poaceae species 
only, the stomatal number per vein length in EMH was 5-fold 
as that of TMH. Compared with TMH, EMH appeared to have 
adapted to aquatic conditions via enlarged vein diameter and 
leaf thickness rather than increased VLA. However, we did not 
observe a positive linear correlation between VLA and stomatal 
density when the data of all species in both groups were pooled, 

although this relationship was found when the data of EMH and 
TMH were evaluated separately. Thus, our results showed that 
the coordination between leaf water supply and demand was 
environment-specific.

The results of the present study deepen the understanding 
of the coordination between stomatal density and VLA 
in emergent aquatic species. Although the positive linear 
correlation between stomatal density and VLA has been found in 
many terrestrial species under various conditions (Brodribb and 
Jordan 2011; Sun et al. 2014; Carins Murphy et al. 2016; Schneider 
et al. 2017; Zhao et al. 2017), we extended this correlation to the 
emergent aquatic herbs in this study. The intercept of the linear 
relationship between the stomatal density and total VLA in EMH 
was significantly lower than that of TMH, which indicated on a 
given value of stomatal density, TMH generally had higher VLA. 
The significant difference in the average stomatal number per 
vein length between the two groups also showed the difference 
in leaf water supply and demand coordination. EMH had 
significantly higher average stomatal density and lower average 
total VLA than TMH, which might be mainly because EMH had 
larger vein diameters (Table 2).

Figure 2.  First two axes of the principal component analysis for the leaf 

functional traits and loading of the 27 species along the first two PC axes. The 

trait codes are as in Table 2 and species codes are as in Table 1.
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A comparison of the specific changes in coordination 
between leaf water supply and demand of different plants 
could help explain the changes in leaf water-use strategies. Vein 
density and diameter determine the water transport efficiency 
of the leaves and reflects transpirational characteristics (Boyce 
2009; Sack and Scoffoni 2013). In aquatic environments, a low 
VLA reduces mesophyll displacement inside leaves (Carins 
Murphy et al. 2014). Higher major vein diameter might results 
in larger vessels within these veins, thereby providing greater 
maximum hydraulic conductivity in EMH species. EMH species 
evolved higher stomatal density to match this greater flow and 
theoretical gmax. Furthermore, these leaves are rarely exposed 
to substrate water deficit so evolving very large major vein 
diameters and vessels would not be maladaptive because these 
veins would be rarely exposed to embolism or cell collapse. On 
the contrary, TMH usually endure more drought stress in the 
dry season than EMH. Consequently, TMH invest more energy 
to build denser veins with a smaller diameter in their leaves. 
Actually, species in drier areas do have higher VLA (Sack and 
Scoffoni 2013). In this study, we also found that the TMH have 
significantly higher VLA than EMH species, which might be 
because of TMH species are more prone to xylem embolism 
induced by drought. Increasing vein density may provide 
increasingly redundant pathways for water flow (Scoffoni et al. 
2017; Scoffoni and Sack 2017).

The emergent aquatic environment also deeply influenced 
the stomatal traits of EMH, as the average stomatal density 
of them was more than 2-fold that of TMH, but the stomatal 
length of both groups was not significantly different. Monocots 
have distinctly lower leaf vein densities than other angiosperm 
subclades (Roddy et al. 2013; de Boer et al. 2016), which indicated 
that monocots may experience less evolutionary pressure 
to increase leaf gas exchange capacity despite having both 
leaf sides available to allocate to stomata (Rudall et  al. 2017; 
Haworth et  al. 2018). Alternatively, monocots do experience 
selection for increased gas exchange capacity, but because of 
C4 photosynthetic pathway, the scaling of VLA and the maximal 
photosynthesis is different than in C3 plants (Sack and Scoffoni 
2013). Hence, the competitive advantage of spatially optimal 

Figure 3. Stomatal density in relation to total vein length per area (total VLA) of terrestrial and emergent aquatic monocotyledonous herbs (TMH and EMH, respectively). 

Each point represents one species: (A) was for all species and (B) was for Poaceae species. The x-axis and y-axis are logarithmic. The correlations were statistically 

significant for both 14 EMH (total VLA = -0.17 + 0.31 × SD, r2 = 0.34*), 13 TMH (total VLA = -0.38 + 0.52 × SD, r2 = 0.40*) and 8 TMHp (Poaceae species, total VLA = -0.65 + 0.65 × 

SD, r2 = 0.66*), but not significant for all the 27 species (r2 = 0.11, P = 0.08) and 5 EMHp (r
2 = 0.72, P = 0.07).*P < 0.05.

Figure 4.  Stomatal length in relation to stomatal density (A) and total vein 

length per area (B) for 13 terrestrial and 14 emergent aquatic monocotyledonous 

herbs (TMH and EMH, respectively). Each point represents one species. The 

x-axis and y-axis are logarithmic. Correlations were statistically significant for 

both EMH and TMH in (A) (EMH, SD = 5.8–2.3 × SL, r2 = 0.82***; TMH, SD = 5.2–2.1 × 

SL, r2  =  0.85***) and (B) (EMH, total VLA  =  2.0 - 1.0  × SL, r2  =  0.56**; TMH, total 

VLA = 2.3 - 1.1 × SL, r2 = 0.34*). *P < 0.05;**P < 0.01; ***P < 0.001; ns, P > 0.05.
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location of leaf epidermal area to stomata could be negated by 
specific growth conditions in relation to leaf hydraulics and leaf 
morphology (de Boer et  al. 2016). In this study, when the data 
of both the groups were pooled, the stomatal length and total 
VLA were still significantly and negatively correlated (Fig.  4B; 
r2 = 0.34, P < 0.01), although the intercept of the regression line in 
EMH was significantly higher than that in TMH. Previous studies 
had also reported this relationship in other species (Zhang et al. 
2012; Zhao et al. 2016).

Conclusions
The emergent aquatic herbs exhibited considerable differences in 
their water-related functional traits when compared with terrestrial 
herbs, with the former having greater water transport capacity and 
stomatal conductance potential. Although a correlation between 
stomatal density and total vein density was found in each group, 
this correlation became non-significant when the data from both 
the groups were pooled. Our results showed that different water 
conditions modified the coordination between leaf veins and 
stomatal traits of emergent aquatic and terrestrial plants. The 
present study also provided new evidence that supporting the 
hypothesis of a leaf water supply and demand hypothesis.
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