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A B S T R A C T

Flooding is a deleterious phenomenon that induces detrimental impacts on humans, properties and environment.
As a result, the knowledge of susceptible places and hazard perception is increasingly pertinent. This study
mainly aims at identifying areas susceptible to flood through the application of logistic regression model using
remote sensing data (RS) and Geographical Information System (GIS). A flood inventory was generated using
153 historical flood locations and a total of 10 predicting factors (elevation, slope, aspect, profile curvature,
distance from rivers, distance from roads, the Normalized Difference Vegetation Index (NDVI), the Normalized
Difference Soil Index (NDSI), the Topographic Wetness Index (TWI) and rainfall) were utilized. Flood points
were randomly subdivided into training (75%) for model building and testing (25%) points for validation
through the Area Under Curve (AUC) approach. The results indicated that NDVI and rainfall are the most in-
fluencing variables for estimating flood risk as they showed a high positive relationship with flood occurrence in
the study area. Testing datasets disclosed 79.8% of prediction rate using the AUC. Moreover, the results have
been linked with community perception on flood and the outcome revealed that the government is perceived as
responsible for all flood mitigation measures instead of being a shared responsibility. This perception may
contribute to the increase in susceptibility. The results of this study will be essential for upcoming development
projects from different organizations operating in many developing countries and would assist as a baseline for
flood risk reduction and management especially for Rwanda.

1. Introduction

Floods are the most common and costly natural hazard with regards
to human and economic loss worldwide [1]. It is estimated that more
than one-third of the world's land area is flood-prone [2]. They are
placed among serious disasters that occur as a result of heavy rainfall
events causing an excessive overland flow greater than the capacity of
natural or artificial movement system found in streams, canals, drai-
nages, culverts, river basins and cities [3]. Hydrological disasters
amount to 52% of natural catastrophes affecting about 140 million
people with 20.4% deaths, and a total of 19.3% damages, culminating
to $US 70.1 billion worldwide [4,5]. Also, according to the current
statistics, the induced losses from floods cover 40% among all-natural

disasters [6].
Floods incidence is a multifaceted and site-dependent event that has

always interested researchers, fascinating them to analyze, investigate
and better understand its processes. They have been known to be
caused by both anthropogenic and natural factors such as environ-
mental degradation, deforestation, intensified land use, and the in-
creasing population [7,8]. The serious influences of floods on natural
ecosystems and human activities have become an important factor to
restrict sustainable development of societies and economies [6]. As
evidenced by Termeh et al. [9], the damages caused by flood have
doubled over the past decades with a very fast increase worldwide.
Thus, the extent of impacts and the irreversible aspect of damages in-
duced by floods make the execution of flood mitigation and control
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measures a necessity [10]. The literature proved that the number of
people vulnerable to devastating floods is expected to continuously
double in the future unless adequate preventive steps are taken [11,12].
This trend calls for improvement in the management of flood, especially
within developing countries where flood is becoming more disastrous
and severe due to several reasons including high vulnerabilities, weak
infrastructure, poor population mindset, low level of resilience and lack
of strong and sustainable mitigation measures [13].

Human activities such as unplanned settlement development, un-
controlled construction of buildings and major land use changes influ-
ence the spatial and temporal pattern of the hazard. This is because
informal settlements, as the term implies unplanned and uncontrolled
settlements are usually not subject to land use restrictions, masterplan,
rules, regulation or to enforcement of building codes or drainage codes
[14]. Moreover, there are minimal or no infrastructure in these areas, in
part because they have grown in an unplanned and uncontrolled
manner, and in other part because municipal governments avoid
making the kind of infrastructure investments in these settlements ne-
cessary to support the increasing population. These activities are ex-
acerbated by environmental factors especially climate change in urban
as well as rural areas [14]. There are several factors that contribute to
floods, ranging from topographic, geomorphologic, drainage, struc-
tures, to climatic factors such as rainfall frequency, intensity and
duration [15,16].

Generally, flood risk is defined as the result of the likelihood of
flooding and its related possible damages over all flood events. These
damages associated with an event describe flood risk levels [17].
Therefore, effective modeling to comprehend and mitigate flood risks is
of great importance since it is increasingly becoming a common natural
disaster. Similarly, one of the main solutions in future flood manage-
ment and mitigation is the recognition of areas prone to flood using
suitable approaches with good precision [18,19].

In recent years, Remote Sensing (RS) techniques and Geographic
Information Systems (GIS) have been embedded in the evaluation of the
geo-environmental hazards [20,21]. The purposes of using RS, as out-
lined by Refs. [2,22] in separate studies, include, but not limited to, a)
investigating the susceptibility of the land and the vulnerability of the
society, b) constructing hazard zoning maps and potential damage
maps, c) monitoring potential hazards, and d) deal with emergency
situations after a disaster. As confirmed by previous studies [6,8], flood
susceptibility is a prerequisite for sustainable flood risk management, as
it provides valuable information about the suitable measures for miti-
gation and adaptation.

The literature on flood studies avails a wide range of methods and
techniques to be applied in natural hazards susceptibility modeling.
These methods have been extensively used throughout the world in-
cluding Artificial Neural Network (ANN) [23], Frequency Ratio (FR)
[24], Support Vector Machine (SVM) [25], Random forest (RF) [26],
Analytical hierarchy process (AHP) [27,28] etc. Additionally, other
quantitative approaches such as Fuzzy Weight of Evidence (FWoE),
data mining and Logistic Regression (LR) as proposed by Shafizadeh
[29] have also been introduced in the flood susceptibility mapping and
they have successfully proved to be promising approaches for flood
susceptibility modeling.

Among these approaches, LR has been applied in different natural
hazards modeling including flood, landslide [30–32] and has been of
great importance in producing susceptibility maps as well as explaining
the roles of effective casual factors across the globe [29]. However, its
application has never been previously used in central and east African
regions, which present a uniqueness to test and investigate the pre-
diction capability of flood prone zones for mitigation and management.
The geographical feature of any given area can make such an en-
vironment prone to flooding. This can be said to be true in Rwanda
since its geographical features and climatic profile have made it prone
to various hazards especially localized floods and landslides [33,34].
According to Asumadu [35], flood is the most recurrent environmental

incident that constitutes the majority of disasters hitting many parts of
Rwanda. As previously stated by Englhardt [36], urban floods should be
distinguished from rural floods based on the extent of damages and
geographical area covered. This is because urban floods occur in
smaller geographical areas and such disasters record higher intensity of
damages, whereas rural floods happen over a considerable large area
accompanied by damages highly resulting from several reasons in-
cluding weak construction materials, encroachment of fragile eco-
system and low capacity of its community to cope with the incident.
Therefore, major flood events that have occurred within both areas of
Rwanda resulted in infrastructural damages, fatalities and injuries,
landslides, loss and damage to crops, and soil erosion with damages
highly recorded in rural areas [37].

Although flooding is a serious hazard for Rwanda, insufficient at-
tention has been paid to flood susceptibility prediction. In Rwanda,
there have been recent studies about geo-environmental disaster man-
agement with significant emphasis on the description of hazards [33],
awareness and capacity building [38], early alert and vulnerability
[39]. Many of these studies were not conducted countrywide, but rather
limited to district and province level using social and descriptive ap-
proaches with secondary data sources. Furthermore, these studies were
conducted with a limited focus on flood predicting factors [39,40]. This
outlines the limitation in these studies for susceptibility assessment
while studies involving hazard mapping related to disaster risk have to
be highlighted by a susceptibility assessment involving important pre-
dicting variables [26]. Existing studies that involved susceptibility
modeling in the study area are only related to landslide [41,42].
Therefore, this present study seeks to address the spatial distribution of
flood susceptibility and the main factors behind this distribution which
influences have been left uncertain and critical high prone zones un-
known. This will guide and inform decision/policy makers in the re-
location process, land use planning and sustainable environmental
management toward flood resilience building in the study area.

On the other hand, community perception of geo-environmental
hazards has been a significant factor in determining how the society
will evolve and deal with the incident [43]. Experience of the hazard,
different historical background, and the lack of suitable information
about the likelihood of a hazard incidence in a region may influence the
way the community perceives the hazard and their associated effects in
a different perspective, and shape the way effective mitigation actions
can be adopted [43]. Nevertheless, the inability to appropriately per-
ceive a hazard may make some regions susceptible and increase high
risk of loss. For instance, the community may be more interested in
living in a floodplain area based on the prospects found in the area,
subsequently subject themselves to ineffective actions of flood risk
management [44]. Once the perception of flood is low in a region,
probably because flood events hardly occur, the community may lack
preparedness and will be prone to likely disaster. In contrary, a com-
munity with good perception of the hazard, owing to their experience
with changing severity, they tend to be better informed and well pre-
pared [45]. Hence, the design of appropriate mitigation and adaptation
measures will not progress from physical science knowledge alone, but
in combination with an understanding of community knowledge, per-
ception of the hazard and behavior when faced with hazards [46].
Therefore, understanding how individuals perceive the hazard can re-
veal the level of susceptibility.

From the above literature review, it was noted that little attention
has been paid to the comparison of model results alongside community
perception for flood susceptibility prediction especially for prone zones
in central and east Africa. Thus, taking Rwanda as a case, this study
comes to bridge the gap identified in the literature related to the nexus
between modeling results and community perception on the hazard.
Nonetheless, this study will thoroughly serve as a baseline for further
flood modeling studies in order to overcome substantial impacts in-
curred by flood in the study area. The objectives of this study are
therefore to: (1) determine factors mostly responsible for flood
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susceptibility in Rwanda; (2) identify both prone and the safest areas to
floods; and (3) link community perception on flood hazard to the pro-
duced flood susceptibility.

2. Datasets and methods

2.1. The study area

This study focuses on the entire territory of Rwanda located in East
Africa and bordered by Uganda to the north, Tanzania to the east,
Burundi to the south and the Democratic Republic of Congo in the west
(Fig. 1). It covers a total estimated area of 26,338 km2 that is situated in
the tropical belt geographically. The country is characterized by hilly
and mountainous relief with a minimum elevation of about 921m and
its high elevation found in the northwest region (4501m) above sea
level. The relief feature contributes to the change in weather patterns
and disaster incidence in different areas of the country [47].

In fact, the northwest and a part of south regions receive much
rainfall resulting in more landslides and floods, while the eastern part of
the country is the most vulnerable region to droughts due to low rainfall
intensities [48]. The climate of the country is made up of four seasons;
long dry (June–September), short dry (mid- December –mid-February),
long rainy (late February – late May) and short rainy (late September –
early December) [49]. Under ordinary conditions, much of the rainfall
is expected to occur during the long rainy season. Generally, floods in
Rwanda occur as a result of different factors such as climatic, topo-
graphic nature, environmental settings, fragile ecosystem and pressure
on land. Thus, the increase in flood is mostly experienced for each rain
year [35].

Flood affected people and properties situated in flood prone areas,
and the recording system has shown agriculture to be the most affected
sector across the country (Fig. 1). Consequently, mapping flood sus-
ceptibility will be significant and helpful to identify the zones under
risks.

Table 1 below shows some of the main flood events that occurred in
the last twenty years with their related impacts in different districts of
the country which increased the attention in reducing the related im-
pacts.

2.2. Datasets

Adequate recording of historical flood events over a period has a
huge impact on the precise reliability of flood susceptibility mapping
[51]. The success of this analysis was achieved using current informa-
tion and detection of the historical flood extent data acquired from the
Ministry of Disaster Management and Refugees (MIDIMAR) in the dis-
aster loss inventory database (Desinventar database) containing records
of flood events that happened from 2012 to 2017 countrywide. These
events were mapped as flood inventory and used together with different
conditioning factors for susceptibility modeling.

2.2.1. Flood inventory and conditioning factors
A data inventory was generated using 153 flood location points

(Fig. 1). The x, y coordinates of each of flood sites were collected from
MIDIMAR and upon field survey conducted by authors from February to
October 2017. Generally, there are no rules of thumb for selecting the
proportion of training and testing datasets [1]. Therefore, the generated
inventory map was randomly split into a 75%–25% proportion for
training (115 random points to run the model) and testing the sus-
ceptibility model (38 remaining points for validation step). The com-
plete historical data concerning flood frequency and intensity were
deficient for some flood-prone areas. Consequently, there might be
some gaps in the existing flood database which may contribute to some
degree of uncertainties. Generally, the effect of these uncertainties is
considered not significant for the purpose of this study as it does not
want to portray an exact event but to give a comprehensive under-
standing of the likely future scenarios for researchers and policymakers.

Furthermore, the physical attributes of the study locations can de-
termine the characteristics of predicting factors to be used in any re-
search. While only one variable may, to a large extent, contribute to
flooding in a specific area, it may have no impact in another region
[52]. The factors used in this study were selected after consulting dif-
ferent literature namely the national risk atlas of Rwanda, the national
disaster management policy, the national risk management plan as well
as the contingency plan for flood in Rwanda [50,53,54], expert's
knowledge, study objectives, field investigation and observation, the
study area context and indigenous knowledge.

To map flood susceptibility, a total of 10 conditioning factors were
selected. These include: (1) elevation, (2) slope, (3) aspect, (4) profile

Fig. 1. Study area location and flood inventory (B) within the world map (A).
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curvature, (5) distance from rivers, (6) distance from roads, (7) NDSI,
(8) NDVI, (9) mean annual rainfall and (10) topographic Wetness Index
(TWI) as shown in Table 2 (see Table 3).

In most cases, low elevation and plain areas might be more prone to
floods. Therefore, to assess flood susceptibility, it is better to under-
stand the topography and the derivative factors of the area [55]. To
that, the Digital Elevation Model (DEM) from the Shuttle Radar Topo-
graphy Mission (SRTM), with a resolution of 30m provided by National
Aeronautics and Space Administration (NASA) (http://www.dwtkns.
com/srtm30m) was used to generate different factors (Fig. 2 a–f). The
layers of distance from rivers (Fig. 2d) and distance from roads (Fig. 2e)
were generated by applying the Euclidean distance tool of the Spatial
Analyst tool in ArcMap 10.2. Additionally, this study used the profile
curvature (Fig. 2f) as this affects the flow velocity of water draining the
surface. It was therefore estimated by ArcMap using the spatial analyst
tool.

Vegetation and soil are also important factors for flood suscept-
ibility assessment [56]. Therefore, the Normalized Difference Vegeta-
tion Index (NDVI) and the Normalized Difference Soil Index (NDSI)
were calculated using different bands from Landsat 8 OLI satellite
images assembled by the United States Geological Survey (USGS) EROS
data center. NDSI (Fig. 2h) is an empirical approach for improving soil
information from vegetation and impermeable surface areas. It was
computed to separate soil with other land cover types to a certain de-
gree using band ratio method in ArcGIS (Raster calculator) whereby its
high values indicate bare soil areas while the lower values depict dif-
ferent categories including vegetated area [57]. Additionally, NDVI
(Fig. 2g) was also calculated to highlight the difference of the spectral

responses of vegetation at the red and near infrared bands where low
values correspond to barren areas of rock, sand, or snow while high
values indicate temperate and tropical rainforests. They were then
computed using equations (1) and (2) respectively.

= −
+

NDSI Band Band
Band Band

7 3
7 3 (1)

= −
+

NDVI Band Band
Band Band

5 4
5 4 (2)

Given the incompleteness of the gauged meteorological data in
Rwanda, as confirmed by the Diagram of Station data against time
delivered by the Rwandan Meteorological Agency (www.meteorwanda.
gov.rw), we have been constrained to use the satellite-derived mean
annual rainfall data. Previous studies [47,49] have echoed the lack of
complete field datasets mainly because most of the meteorological in-
frastructure was devastated during the 1994 war and genocide.
Nevertheless, the mean annual rainfall of the past 30 years
(1986–2016) was derived from the datasets provided by the Climate
Hazards Group Infrared Precipitation (CHIRPS) at 0.05ο spatial re-
solution (Fig. 2i). However, gridded and modeled rainfall data is often
unable to effectively capture climate variability compared to station
data [58]. Lack of variability in modeled data may also cause some
uncertainties when modeling flood susceptibility. Lastly, Topography is
a first-order control on spatial variation of hydrological conditions in-
fluencing the spatial distribution of soil humidity and groundwater
movement. Therefore, the Topographic Wetness Index (TWI) is usually
used to measure topographic control on water processes [59]. In this
study, TWI (Fig. 2j) was computed using the flow accumulation ob-
tained from the flow direction extracted from DEM [60] where its high
values refer to high potential of runoff generation while the low values
correspond to lower runoff generation. All processes were done in the
hydrological toolset from spatial analyst Tool of ArcGIS 10.2. TWI was
obtained from equation (3) below:

=TWI Aln
tan α

s
(3)

where As is the flow accumulation, and α is the slope (in degree).
Finally, all these factors were resampled to the same spatial re-

solution and transformed into a grid spatial database using GIS before
running logistic regression model.

Table 1
Main disasters caused by floods in Rwanda (MIDIMAR [50]).

Year Number of deaths Affected people Damages Affected areas (District)

1988 48 21,678 1225 houses, 19 bridges, 7 roads cut off Districts15, 10, 25, 14, 20

2000 0 1000 200 houses, roads, crops Districts25,3

2001 12 3000 100 houses, 60 schools, crops Districts20, 25,10,15,7

2002 69 20,000 NA Districts10,7,4,28

2003 0 7016 NA Districts19,7,12

2005 27 25,003 5000 houses, 3000 plantations Districts23,15,7

2007 45 7310 1057 houses, 562 homeless families Districts25,18,7

2008 15 3000 4000 ha crops, 500 homeless, bridges, roads W-S-N
2009 NA NA infrastructures and crops destroyed Districts25,6,12

2010 3 NA 1 industrial site, houses and crops K
2011 1 NA 19 houses, 152 ha of land Districts18,2,19,22,30

2012 26 NA 593 houses, 183 ha of land Districts1,2,7,15,25,28,4,12,20

2013 15 64 201 houses, 411 ha of land Districts10,18,25,24,26,4,12,23,15

2014 18 6 houses, 1110.5 ha of cropland Districts7,11,18,20,21,23,24,29

2015 24 3425 34 houses, 206 ha of crops, water supply Districts1,14,10,15,17,25,26,27,28,29

2016 54 2317 222 houses collapse, 448.2 ha of crops, Districts2,10,15,18,23,25,26,29

2017 7 5850 640 homeless, 1036 ha of crops, farms Districts1,8,16,21,28,5,9,13,17,29

District:1 Bugesera, 2 Burera, 3 Gakenke, 4 Gasabo, 5 Gatsibo, 6 Gisagara, 7 Gicumbi, 8 Huye, 9 Kamonyi, 10 Karongi, 11 Kayonza, 12 Kicukiro, 13 Kirehe, 14 Muhanga, 15

Musanze, 16 Ngoma, 17 Ngororero, 18 Nyabihu, 19 Nyagatare, 20 Nyamagabe, 21 Nyamasheke, 22 Nyanza, 23 Nyarugenge, 24 Nyaruguru, 25 Rubavu, 26 Ruhango, 27

Rulindo, 28 Rusizi, 29 Rutsiro, 30 Rwamagana. NA: Not available, W: western province, S: southern province, N: Northern province, K: Kigali city.

Table 2
Flood predicting factors and their cell size.

Parameters Sub classification Resolution

Flood records area Flood extent Point coordinates
Elevation (m) 30m
Slope angle (degree) 30m
Aspect 30m
Profile curvature 30m

Flood predicting factors Distance from rivers (m) 30m
Distance from roads (m) 30m
NDSI 30m
NDVI 30m
Mean annual rainfall (mm) 0.05°
TWI 30m
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2.3. Logistic regression (LR)

Though various modeling approaches exist, the prediction and
forecast of flood disasters are always a challenging and puzzling task
[61]. It has therefore been noted that the choice and selection of sui-
table approaches to apply while studying susceptibility is often re-
stricted to data availability, quantity and quality, study objectives and
to the scope of the study. Also, models must be simple, easy and
straightforward for planners to use in policy making [5]. Logistic re-
gressions are simple powerful tools to support policy and decision
makers using limited available data.

This method is most useful for understanding the influence of

several independent variables on a single dichotomous outcome vari-
able. And it produces good results based on one or more independent
variables. These results make it easy to be interpreted through the
coefficients that this model generates to predict flood occurrence in
different regions [55]. Thus, for this study, LR has been selected to
assess and predict flood occurrence in Rwanda and calculates the var-
iations in the probability of an event occurring in a class. This is to find
the best suitable model to describe the association between flood de-
pendent variable (presence or absence of flood) and independent
variables such as slope, aspects, and elevation, and then refereeing
factors according to the highest numerical code.

In the current research, flood point is used as a dependent variable

Fig. 2. Conditioning factors used to derive flood susceptibility map: (a) Elevation, (b) Slope, (c) Aspect, (d) Distance to rivers, (e) Distance to roads, (f) Profile
curvature, (g) NDVI, (h) NDSI, (i) Mean annual rainfall, (j) TWI.
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representing the presence or absence of flooding. LR involves fitting an
equation of the below form:

= + + + + ⋯+Z b b x b x b x b xn n0 1 1 2 2 3 3 (4)

where Z represents the linear combination of the dependent variables
(absence or presence of flood), and its values range from -∞ to +∞, b0
is the intercept of the model, bi (i= 0,1,2,3,4 …, n) represents the
coefficients of the LR model, and xi (i= 1,2,3 …., n) denotes the pre-
dicting factors [62]. To estimate the intercept and the coefficients of LR,
the generated predicting factors were analyzed in R statistical en-
vironment then produced the LR model to finally map flood suscept-
ibility (Fig. 3). The estimated probability of occurrence (p) represents
any pixel that is susceptible to flooding, and can be denoted as the
conditional probability in the LR model by the following expression:

⎜ ⎟= ⎛
⎝ −

⎞
⎠

=
+ −p ln

p
p e1

1
1 z (5)

where p, a probability, ranges being between 0 and 1 and Z is the linear
combination of dependent variables defined in equation (4). Finally, the
Susceptibility Index (SI) that shows the possibility of flooded areas is
calculated using equation (6).

= +SI exp z exp z( )/(1 ( )) (6)

A positive LR coefficient value signifies the presence of the factor in
the area and increases the probability of flood occurrence, while the
negative LR coefficient value indicates that the occurrence of flood is
negatively related to that specific factor [51].

2.4. Perception of flood and mitigation

The SI is linked with the community perception on flood and miti-
gation. In this regard, a field investigation was conducted, and ques-
tionnaires designed by the authors of this manuscript were distributed

in districts with frequent flood events based on flood occurrence rather
than population size. The sampled areas were selected based on the past
flood records with affected areas shown in Table 1. Eleven districts
were therefore selected based on the frequency of occurrence within the
five provinces that make Rwanda. In Western province (Nyabihu, Ru-
bavu, Rusizi, Karongi and Rutsiro), Northern Province (Musanze, Ru-
lindo, and Burera), southern province (Nyaruguru) Eastern province
(Rwamagana) and finally in Kigali city (Gasabo) were part of the in-
vestigation. In general, the questionnaires were administered to 550
respondents such that in each selected district, 50 participants were
randomly selected. This investigation was mostly conducted in rural
areas because floods was mostly observed in these areas with different
socio-economic factors such as poverty, lack of education and in-
adequate warning system.

The investigation aimed to assess the perception of the local com-
munity on flood and mitigation in relation to flood susceptibility map
produced using logistic regression model. The questionnaire was di-
vided into two categories: a) the first three questions were close-ended
(Q1-Q3) to elicit the experience and concern of the community and b)
the last two questions were multiple choice (Q4-Q5) focusing on their
capacity and mitigation measures as illustrated in the below Table 3.

Fig. 3. Methodological flowchat of the susceptibility assessment.

Table 3
Questions asked and choice.

Question Choice

Q1. Have you ever experienced a flood? yes/no
Q2. Do you think that your region is under risk of flooding? yes/no
Q3. Do you believe that any action may be taken to mitigate

the effects of flood?
yes/no

Q4. Who do you think is responsible to mitigate flood? multiple choice
Q5. Which measures do you think can be used to mitigate the

effects of flood?
multiple choice
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3. Results and discussion

3.1. Flood susceptibility and responsible factors

The logistic regression model is beneficial for predicting the pre-
sence or absence of various hazards based on values of different pre-
dicting factors and the combination of flood inventory data from the
area of study. It is imperative to make an effective modeling of flood
susceptibility [9] so as to provide a good understanding of the factors
predicting the hazard in the area being investigated.

ArcMap/ArcGIS and R software were used as analytical tools for
spatial and statistical manipulations. The values obtained from R were
applied in the function Z (equation (4)). These values are therefore
displayed in Table 4 where alpha (α) constitutes the obtained coeffi-
cients of LR for all the predicting factors.

From the produced coefficients, NDVI, NDSI, rainfall, elevation,
profile curvature, and aspect factors showed a positive relationship
with flood incidence while TWI, distance from roads, distance from
rivers and the slope have exhibited negative relationships (Table 4).

Out of all these, NDVI and rainfall have shown the highest coefficients
(0.5938 and 0.5159 respectively) while the distance from roads has the
lowest (−7.6265). This expresses that NDVI and rainfall have a great
impact on flood occurrence within the area as testified by the collected
past flood locations through the inventory map where heavy rain zones
and areas with positive NDVI values accounted for a big number of
flood events. These results were in coherence with those of the previous
studies [51,55,63] which used multivariate statistical approaches such
as LR and other models for flood susceptibility and achieved a strong
correlation between vegetation coverage (through NDVI and LCLU
factors), amount of rainfall and flooding with the high LR coefficients
among the used conditioning factors in their study areas. This led them
to conclude that areas receiving higher rainfall amount with some ve-
getation are predicted as very highly susceptible to flooding which is
the case in this study. Similarly to the results of this study, Shafapour
[51] also found slope and TWI with negative relationship with flooding
occurrence in his study.

To produce flood susceptibility map, the values obtained from R
software were exported into ArcGIS software to build and simulate the
model using equations (4)–(6). The derived susceptibility map (Fig. 4)
was subdivided into five classes: very high, high, moderate, low, and
very low susceptibility using natural breaks method. Moreover, the
natural breaks have become the most widely applied method in clas-
sifying susceptibility map [10,64].

The model output (Fig. 4) has revealed the spatial distribution of
flood susceptibility across Rwanda. It showed that the eastern province
is the part of the country with low flood susceptibility while the urban
area (Kigali) ranged from moderate to high susceptibility; the northern,
western and southern provinces were found highly susceptible to
floods. This situation can be justified by the topographic nature and the
geomorphological aspect of the country in line with the considered
conditioning factors (Fig. 2).

The results of the present flood susceptibility modeling is in ac-
cordance with previous studies [37,50] which concluded that the study
area is prone and vulnerable to the recurrent flood hazard. Though it
covers several water bodies with low elevation, the eastern part of
Rwanda was modeled as low susceptible to flood. This could be at-
tributed to its high rainfall deficit and late rainfall onsets (Fig. 2i) over a
long period of time as confirmed by previous studies [37,65]. In the
Northern part, the eroded soil from agricultural activities practiced on
steep slopes eventually ends up in water channels, thus reducing the
drainage capacity to accommodate peak runoff and sediments accu-
mulation which accelerate the likelihood of flooding [66].

On the other hand, the western part is mostly dominated by ridges
and plateaus including the Congo Nile with a topographic feature that is
entirely hilly [67]. As a result, rain water originating from these ridges,
flows towards the valleys which cannot effectively absorb and accom-
modate all the water owing to the increase in solid wastes from an-
thropogenic activities that clog culverts, water drainage systems within
the area. Moreover, in the southern part, heavy rains coupled with
severe environmental damages ensuing from deforestation and poor
land use practices have resulted in soil erosion and floods [68]. Ad-
ditionally, the reason of this part being highly susceptible as previously
discussed by MIDIMAR [50] can be justified by the geomorphologic
characteristics of these areas whereby they cover around 90% of the
major water catchments (Nyabarongo, Mukungwa, Sebeya, Akanyaru,
Rusizi, etc.). The latter catchments are always saturated in areas where
water is stagnant for a long period of rainy seasons which eventually
result into severe flood events. Generally, the problem of flood in urban
zones (Kigali city) of the study area has been exacerbated by rapid
urbanization in combination with extreme weather, poor drainage
system, less infiltration that contributes to high runoff, rapid structural
development and the presence of unplanned and poor urban settlement.
This last have increased anthropogenic activities resulting into sedi-
mentation of culverts and dumping of wastes which block drainage
systems.

Table 4
Coefficient of Logistic regression per factor.

Predicting Factors Classes α

921–1546
1546–1839

Elevation 1839–2202 0.0009533
2202–2808
2808–4501
0–4.81
4.81–11.32

Slope (degree) 11.32–18.67 −0.0225,357
18.67–26.88
26.88–72.16
< −54.18
−54.18–129.16

Aspect 129.16–205.57 0.002161
205.57–281.97
> 281.97
−13.77–−0.55
−0.55–−0.22

Profile curvature −0.22–0.11 0.4898334
0.11–0.55
0.55–22.77
0–1700.94
1700.94–4476.16

Distance from rivers 4476.16–8773.29 −0.0001162
8773.29–14,055.16
14,055.16–22,828.50
0–2485.65
2485.65–5592.71

Distance from roads 5592.71–9217.63 −7.6264587
9217.63–13,878.23
13,878–26,410.16
−0.2–0.18
0.18–0.43

NDVI 0.43–0.59 0.5937508
0.59–0.71
0.71–0.99
−0.99 – - 0.55
−0.55–−0.10

NDSI −0.10–0.19 0.0012,615
0.19–0.32
0.32–1
2.05–4.61
4.61–6.40

TWI 6.40–8.78 −0.0004931
8.78–12.36
12.36–23.76
< 956.34
956.34–1081.87

Mean annual rainfall 1081.87–1231.81 0.5159183
1231.81–1413.13
> 1413.13
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The results (Table 4) disclosed that NDVI, rainfall and profile cur-
vature among others are the factors that highly induce flood suscept-
ibility in different regions of the study area. Accordingly, as indicated in
Fig. 4, steep slope areas (northern, western and southern parts of the
study area) fell into highly susceptible classes, and after modeling, the
slope portrayed a negative spatial correlation with flood occurrences.
This can be scientifically justified by the amount of heavy downpours
that these areas receive in terms of frequency, intensity and magnitude
of rainfall. From the analysis, rainfall was confirmed among the influ-
ential factors that presented very high positive correlation with flood
occurrences. Moreover, NDVI influenced flood occurrence due to ac-
celerated deforestation caused by agricultural activities and infra-
structure developmental facilities (roads, recreational, grouped settle-
ment) taking place in these areas that were modeled as highly
susceptible. Additionally, the curvature was considered for flood sus-
ceptibility modeling due to the fact that its values denote several ero-
sive settings of water, runoff conditions and topographical structures
[69]. Therefore, the profile curvature was used and found positively
correlated to flood susceptibility, which can be attributed to its ability
in controlling the flow of water influencing the occurrence of flood
within the area.

From the above detailed discussion, it can be confirmed that
Rwanda is a country susceptible to flood hazard. Previous studies
[35,70] stressed that during the rainy seasons, the regions with high
precipitation are exposed to flood disaster, which corroborates with the
results of the present study where regions with high amount of pre-
cipitation fell into high to very high susceptibility to flood occurrence.

Rwanda, as a developing country, has to take serious measures to
control floods. Because once they happen, many different effects occur,
and they destroy some development activities. According to Ref. [71],
flooding usually causes different effects which can be categorized as
follows: (1) Primary effects: Physical damage which can damage any
type of structure including bridges, cars, buildings, sewerage systems,
roadways and canals; (2) Secondary effects: Water supplies, diseases,
crops and flood supplies, trees, vegetation and transport; (3) Tertiary

and long-term effects: Economic. In the same line, a large part of the
study area is covered by cropland (Fig. 1), so floods impact a huge
number of crops and many hectares are washed away (Table 1). Thus,
hampering the agricultural productivities and the country's economy as
well. Besides, a significant number of houses and infrastructure have
been demolished as a result of previous flood events [50]. Hence, all
these effects should be mostly expected in areas susceptible to flood and
mitigation efforts should be mostly deployed in areas modeled as high
and very highly susceptible. This should be based on factors that have
proved to be positively correlated to flood occurrence (Fig. 4). Among
these efforts, the monitoring and forecasting of meteorological and
hydrological data has to feed flood early warning systems to predict and
anticipate extremes related events [72]. This would be so significant to
minimize the level of the aforementioned categories of effects and im-
pacts in order to quickly and timely respond once disasters occur. Being
proactive to flood management entails a continuous monitoring of in-
dicators to support predicting the onset and level of flood, as well as to
help determine when and how-to bring things to normal towards
building back better and flood resilience attainment.

3.2. Validation through the area under the curve (AUC)

The prediction rate of flooding is decided from the prediction curve.
Thus, it has to be assessed as an essential result of a model to examine
flood susceptibility mapping efficiency [25]. In the present study, AUC
parameter (Fig. 5), which plots sensitivity on the y-axis against 1 spe-
cificity on the x-axis, was used to validate the model and was estimated
using equation (7):

= +
+

AUC ΣTP ΣTN
P N (7)

where P is the total number of floods and N is the total number of non-
floods; TP (true positive) and TN (true negative) are the number of
pixels that are correctly classified [73]. Among the total number of
flood points, 25% were utilized in the validation step. After testing, the

Fig. 4. Flood susceptibility map generated using LR model.
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AUC showed the model's performance of 0.798 (Fig. 5), corresponding
to 79.8% of performance rate. This percentage is considered satisfac-
tory despite the input data limitation and accuracy. It also explains how
well LR model and factors performed or predicted flood in the study
area.

3.3. Perception of flood and mitigation

3.3.1. Flood experience and concern
Previous studies have stressed the importance of past hazard ex-

periences in local community's judgments [43,74]. As illustrated in
Table 5, the majority of respondents (76%) have experienced flood.
This percentage was expected since the areas were selected based on
flood frequency and occurrence (Table 1). Results of Q2 revealed that a
high percentage (74%) of respondents believe that their residences are
at risk of flooding. This was in line with studies stipulating that the local
community respond sincerely based on earlier experiences, and their
judgment depends on qualitative aspects such as severity of the con-
sequences, sense of control, perceived frequency of the hazard and

feelings [75,76]. As argued by Anilan [77] in his study, disaster ex-
perience is a good predictor of many risk perceptions. Also, studies
conducted by Refs. [46,78] analyzed flood experiences of communities
by requesting their assessment of the incidence of flood events in their
regions and found that community’ experiences with flooding are
connected to levels of risk perception. Individual experiences like suf-
fering damage or loss of assets are known to result in increased risk
perception and past experience shape people's attitude as well as re-
sponse to future flood events. This makes sense in the current study
since the results obtained from Q2 were totally related and not far from
those in Q1.

Finally, the majority of the respondents (81%) on Q3 believed that
actions could be taken to mitigate flood and be helpful to reduce flood
effects in their regions, which implies a positive perspective on future
flood risk reduction if well adopted and implemented.

3.3.2. Capacity and mitigation measures
The capacity of people to cope with hazards, to a large extent,

minimizes their vulnerability and susceptibility to an exposure [79].
Multiple choice questions were intended to ascertain the capacity of
participants to deal with flood and get to know about their awareness
and skill levels to carry out mitigation measures and finally have an
insight on what is expected.

With the aim of knowing local community's perception on who is
responsible for taking and implementing flood mitigation measures, the
results revealed that high percentage of participants among the selected
districts think that the government is responsible for adopting and
implementing measures. This result was highly observed in rural areas

Fig. 5. AUC for model performance and validation.

Table 5
Flood experience and concern (answers to the close-ended questions).

Question Yes (%) No (%)

Have you ever experienced flood? 76 24
Do you think that your region is under risk of flooding? 74 26
Do you believe that any action may be taken to mitigate the

effects of flood?
81 19
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than in urban area (Gasabo) where 64% of the respondents argued that
flood mitigation measures are under everyone's responsibility. The
UNISDR [80] argued that disaster risk reduction is a collective re-
sponsibility between the government, partners and community mem-
bers; and a previous study [79] echoed that the risk profile of citizens
and disaster fatalities somewhat depend on the organizations that serve
them and control social life. Thus, the findings imply that probably, the
relevant institutions in charge of community awareness, education and
social protection guarantee do not go great length in disseminating
information related to the responsibility of developing and im-
plementing flood mitigation measures as well as the role of community
members in the process of reducing the impacts and effects caused by
the hazard.

The opinion of the majority (Fig. 6) on this question has significant
implications on people's development of mitigation measures, pre-
paredness as well as coping measures such that this strand of thinking
can serve the community members as a way to escape responsibility
and leave nothing done regarding measures to cope with the hazard,
which may consequently lead to the community's lack of resilience as
well as increases in vulnerability and susceptibility of their areas.

The results in Fig. 7 reveal that relocation and resettlement from
flood prone to safe zones is one of the best measures to be adopted to
reduce flood impacts; a prevalent phenomenon in Nyabihu and Rubavu
districts (western province) and Burera district (northern province).
This result is in agreement with the inventory map (Fig. 1) because the
three districts contain several floods points and different losses have
been encountered during past flood events as observed in Table 1. The
results also matched the generated susceptibility map because the
spatial distribution of the susceptibility showed that the three districts
are highly flood susceptible zones. For the current study, results gen-
erated from LR model revealed NDVI as a significant factor contributing
to flood occurrence in different regions, which means that some dis-
tricts are flood prone due to vegetation loss resulting from different
anthropogenic activities such as agriculture, mining, deforestation,
housing among others. Generally, in the rural areas of Rwanda, the
majority of the residents depend on agriculture as means of livelihood.
Due to the shortage of land for agriculture and the increasing demand
for agricultural commodities, these people incentively change forest
and grass lands to cultivated lands. Thus, meaning that afforestation is
not of interest to the inhabitant and comes at their economical loss.
Consequently, when flood occur, the agricultural sector is seriously
affected (Table 1). Due to their economic interest, these community

members are seriously contributing to factors leading to the increase in
flood susceptibility. This justifies the small percentage of participants
on afforestation as a measure to be taken into consideration as far as
flood mitigation is concerned for the study area.

In contrast, the respondents in Rwamagana district have mentioned
afforestation as a good measure (Fig. 7). This district appears to be in
the eastern province with rainfall deficit and which is mostly impacted
by drought. The region lacks forest cover and can easily face the pro-
blem of flood events when it rains heavily. In the urban area (Gasabo
district), the 32% of the participants argued that community partici-
pation is a good measure to deal with flood as well as the construction
of waterways (24%), a result implying a different mindset from that of
rural community members. Finally, the result has also revealed that the
community in rural areas does not participate in the process of reducing
flood impacts. This corroborates with the results in Fig. 6 where citizens
leave flood mitigation issues under government responsibility. Eiser,
Bostrom [81] stressed that the risk related to disasters depends not only
on physical conditions and procedures but also on human perceptions,
conditions (vulnerability factors, etc.), decisions, and culture toward
risk reduction. The gravity of the impacts of any disaster will rest on
how many people choose, or sense that they have no choice but to live
and work in areas at higher risk by adopting strong mitigation mea-
sures.

In a nutshell, many community members especially in rural areas
are unaware and lack enough information and knowledge on their roles
and responsibilities in flood risk reduction. This makes their immediate
environment more susceptible to flood since they do not take measures
to lessen flood occurrence but instead, expect the government and local
leaders to take actions on their behalf.

4. Conclusion

Flood susceptibility mapping is essential to delineate flood-prone
areas and assess mitigation measures. This research applied logistic
regression model using flood inventory and ten predicting factors to
study and map flood susceptibility in Rwanda. The relationships be-
tween the occurrence of flooding and the variables were evaluated, and
the outcomes showed NDVI and rainfall to have a significant relation-
ship with floods. This was in conformity with other previous studies
confirming rainfall as a major trigger of flood events in any study area.
Thus, it implied that less vegetated with higher rainfall areas are sup-
posed to have greater susceptibility to floods. The study also assessed

Fig. 6. Community perception on flood mitigation responsibility.
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community's perception on flood mitigation about the produced sus-
ceptibility map and was, therefore, noted that majority of community
members perceive the government as the key actor and implementor of
flood mitigation ignoring that flood risk reduction has to be everyone's
responsibility [80]. Thus, this perception may contribute to the risk and
susceptibility increase of the area, a finding that implicates the need of
establishing programs to inculcate a sense of mitigation and prevention
in communities, especially in rural areas.

Basically, flood risk maps contain information of flood hazard in
terms of available data on population, properties and resources prone to
hazard [2]. This information can be used as a baseline for planners,
future researchers, disaster risk managers and be used as a supple-
mentary decision-making tool in the country as far as flood risk main-
streaming is concerned. Hence, the results of this study could be of help
to citizens and engineers to reduce losses using appropriate measures.
As a recommendation to future works, it will be significant to conduct
further studies on flood susceptibility using other current modeling
approaches such RF, Logistic Model Tree (LMT), SVM among others
considering more predicting factors and seek for high resolution sa-
tellite images interpretation to use in mapping flood susceptibility. As
well, further studies should use appropriate methods such as ReliefF
and information gain (IG) in selecting conditioning factors, so as to
address uncertainties inherent to inventory datasets and conditioning
factors. Thus, this will assist and help in finding sustainable solutions to
flood in the study area.
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