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Abstract: Snowfall is one of  the dominant water resources in the mountainous regions and is closely related to 
the development of  the local ecosystem and economy. Snowfall predication plays a critical role in understanding 
hydrological processes and forecasting natural disasters in the Tianshan Mountains, where meteorological 
stations are limited. Based on climatic, geographical and topographic variables at 27 meteorological stations 
during the cold season (October to April) from 1980 to 2015 in the Tianshan Mountains located in Xinjiang of  
Northwest China, we explored the potential influence of  these variables on snowfall and predicted snowfall 
using two methods: multiple linear regression (MLR) model (a conventional measuring method) and random 
forest (RF) model (a non-parametric and non-linear machine learning algorithm). We identified the primary 
influencing factors of  snowfall by ranking the importance of  eight selected predictor variables based on the 
relative contribution of  each variable in the two models. Model simulations were compared using different 
performance indices and the results showed that the RF model performed better than the MLR model, with 
a much higher R2 value (R2=0.74; R2, coefficient of  determination) and a lower bias error (RSR=0.51; 
RSR, the ratio of  root mean square error to standard deviation of  observed dataset). This indicates that 
the non-linear trend is more applicable for explaining the relationship between the selected predictor variables 
and snowfall. Relative humidity, temperature and longitude were identified as three of  the most important 
variables influencing snowfall and snowfall prediction in both models, while elevation, aspect and latitude were 
of  secondary importance, followed by slope and wind speed. These results will be beneficial to understand 
hydrological modeling and improve management and prediction of  water resources in the Tianshan Mountains. 
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1  Introduction 

The arid and semi-arid regions in Northwest China, located in the hinterland of the Eurasian 
continent in the mid-latitudinal zone, are sensitive to global climate change (Chen et al., 2014). 
Climate in Northwest China has gradually changed from warm-dry to warm-wet since 1987 (Shi 
et al., 2007). Both temperature and precipitation have shown increasing trends in Northwest 
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China, particularly in the mountainous regions within the last 50 years (Li et al., 2013). Results 
from Füssel and Jol (2012) suggest that variations in temperature and precipitation within a wide 
range of mountainous regions are much greater than the global average. Snowfall, the major 
component of solid precipitation and the defining constituent in the mountainous regions, is 
regarded as a crucial index of climate fluctuations coupled with snow cover (Piazza et al., 2014; 
Mir et al., 2015). Winter snowfall often accumulates on the ground and translates into snow cover, 
which increases surface albedo and impacts surface runoff and energy budget (Dai, 2008).  

Mountainous regions are often characterized by complex topography and diverse landscapes, 
with various forms of precipitation occurring at different elevation gradients and seasons. For 
example, rain falls in warm areas at lower elevations while snowfall often occurs in cold areas at 
higher elevations (Marks et al., 2013). The amount of snowfall is extremely important in the 
mountainous regions because of the process of snow accumulation and melt (Zhang et al., 2012; 
Krasting et al., 2013; Yu et al., 2015). Snowfall is also closely related to local tourism and has 
attracted research interests in natural disasters, such as avalanches (Scipiõn et al., 2013; Nair et al., 
2017; Vrotsou et al., 2017).  

In Xinjiang of China, the Tianshan Mountains are typically referred to as a ''solid reservoir''. 
Precipitation primarily occurs in the form of snowfall in winter, which accounts for more than 
30% of the total annual precipitation in the western Tianshan Mountains (Lu et al., 2016). Alpine 
regions also have snowfall in summer (Shen et al., 2016). Approximately 373 rivers originate 
from the Tianshan Mountains and the variations in runoff are closely related to climate change 
(Xu et al., 2014; Wang et al., 2016). The Tianshan Mountains have an annual runoff of 47.4×109 
m3, accounting for 54% of the total river runoff from Xinjiang (Hu, 2004). Moreover, the 
Tianshan Mountains have some of the most extensive modern midlatitude glaciers, which are 
located at an altitude of 3500 m a.s.l. despite continuing glacial melt due to global warming (Sorg 
et al., 2012; Chen et al., 2017). Glacial meltwater contributes to the stable base flow for rivers in 
the alpine basins (Zhang et al., 2016). Water resources from snowmelt and glacial meltwater in 
the Tianshan Mountains play a key role in the continental hydrologic cycle, agriculture and 
industry development in Xinjiang. 

Previous research in the Tianshan Mountains primarily focused on describing the temporal and 
spatial variations in snowfall quantity and snow cover, such as days of snow cover and 
snow-covered area (Xu and Qiu, 1996; Li et al., 2012; Liu et al., 2012; Guo and Li, 2015; Zhang 
et al., 2015; Chen et al., 2016, 2017; Li et al., 2016; Jing et al., 2017; Tang et al., 2017). The 
northern Tianshan Mountains are the principal area of snowfall in China when considering 
snowfall quantity and day metrics (Liu et al., 2012; Zhang et al., 2015). Winter snowfall in the 
Tianshan Mountains has exhibited a significant increasing trend and cyclical variations since 
1961, and showed a clear heterogeneity at the spatial scale (Xu and Qiu, 1996; Li et al., 2012). 
Guo and Li (2015) and Chen et al. (2016) found that the ratio of snowfall to precipitation 
(snowfall fraction) has decreased in parts of the middle Tianshan Mountains in recent years, 
accompanied by increases in temperature. Jing et al. (2017) applied a general circulation model 
(GCM) to investigate future changes in snowfall and precipitation in the Tianshan Mountains and 
north of the Kunlun Mountains. They proposed that both the average annual snowfall and 
snowfall fraction will decrease significantly by the end of the 21st century. 

The numbers of meteorological stations are limited in the mountainous regions, especially at 
higher elevations with abundant snowfall. The traditional approach for estimating snowfall based 
on meteorological data assumes that the relationship between snowfall and elevation is constant 
(Clark and Andrew, 2006). However, this approach has been proven inaccurate due to the scarcity 
of meteorological stations and the spatial variability of snowfall in the mountainous regions 
(Asaoka and Kominami, 2012). Asaoka and Kominami (2012) reconstructed the distribution of 
snowfall in the mountainous regions of Japan using satellite observations, and Scipiõn et al. (2013) 
obtained estimates of alpine snowfall amount using radar application. Yet, forecasts of 
meteorological elements were inaccurate because radar coverage in the mountainous regions are 
sparse due to the influence of topographic blocking (Wetzel et al., 2004; Clark and Andrew, 2006). 
Global and regional models have both overestimated and underestimated annual snowfall at 
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different elevation levels; however, a weather research and forecasting (WRF) model could 
perform well in an area with complex topography, although it requires a high resolution (Ikeda et 
al., 2010; Rasmussen et al., 2011).  

In the mountainous regions, moist airflow is forced upward along the windward slope because 
of orographic effects, leading to increased localized precipitation. In addition, the complex terrain 
and landform of the mountainous regions have been well-characterized. Therefore, the influence 
of topography on precipitation (quantity and type) cannot be ignored in the mountainous regions. 
Recent studies have established linear relationships of precipitation with geographical and 
topographic variables, which were then used to estimate precipitation in the Tianshan Mountains 
(Ji and Chen, 2012; Zhang et al., 2015). A similar linear function was also used to model 
precipitation with three independent variables, including longitude, latitude and elevation, in the 
Appalachian Mountains (Padoan et al., 2009). Some studies parameterized only a single or a few 
variables of topography and climate to detect their impact on snowfall (Karl and Groisman, 1993; 
Davis et al., 1999; Perry and Konrad, 2006; Asaoka and Kominami, 2012). In general, most 
studies have focused on precipitation estimates or used a physical model to simulate snowfall 
with various model resolutions. There is a lack of multivariate coupled and non-linear methods to 
estimate snowfall accurately, especially in the mountainous regions where meteorological 
observations are scarce. Thus, it is critical to explore the main driving factors on snowfall to 
improve its estimation. 

In this study, we introduced a relatively novel machine learning algorithm to identify the 
primary variables influencing snowfall using the level of importance of the selected variables in 
the random forest (RF) model and multiple linear regression (MLR) model. The proposed RF 
model has been widely applied to ecological modeling (Muñoz and Felicísimo, 2004; Cutler, 
2007). Tinkham et al. (2014) recently used the model to determine the distribution of snow depth 
in a mountain catchment.  

The objectives of this study were to (1) evaluate the main controlling factors of snowfall in the 
Tianshan Mountains in Xinjiang by identifying and ranking the order of independent variables, 
and (2) predict snowfall using the RF and MLR models. We further compared the performance of 
each model with the measured data. Accurate snowfall predictions are critical to better 
understanding surface hydrological cycle processes and parameterizing hydrological models and 
the spatial variability of snowfall distribution in the mountainous regions with complex 
topography. Furthermore, accurate modeling will also be a valuable input in assessments of water 
resources, local ecosystems and economies in the mountainous regions. 

2  Materials and methods 

2.1  Study area 

The Tianshan Mountains in Xinjiang of Northwest China extend 1700 km from east to west with 
a width of 250–300 km, which account for more than 34.5% of the total area of Xinjiang (Hu, 
2004) (Fig. 1). Far from the ocean, the mountainous regions are predominantly characterized by 
temperate continental arid climate. Geographically, the Tianshan Mountains separate the Xinjiang 
into northern and southern parts, resulting in regional climate differences. Influenced by the 
westerlies and topography, precipitation in the Tianshan Mountains shows uneven spatial and 
temporal distribution, with precipitation higher on the northern slope than the southern slope. The 
Tianshan Mountains are composed of a series of mountains, basins and plains. Less precipitation 
occurs in the intermountain basins and more precipitation in the mountain regions. The average 
elevation of the ridgeline is 4000 m a.s.l. in the Tianshan Mountains, and the temperature is 
particularly affected by the elevation. Annual average temperature in the Tianshan Mountains 
varies spatially, lower on the northern slope while higher on the southern slope, and lower in the 
mountains while higher in the plains. 

2.2  Data collection 

Generally, daily snowfall is recorded as liquid water equivalent when snow occurs. Mountainous 
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Fig. 1  Overview of the Tianshan Mountains and distribution of the 27 meteorological stations used in this study 

precipitation is measured using weighing gauges, which have not distinguished between solid and 
liquid precipitation since 1980. Thus, we obtained daily snowfall data by separating solid and 
liquid precipitation based on temperature calculated by Zhang et al. (2017) from 27 
meteorological stations in the Tianshan Mountains. The study period was defined as October to 
April (cold season) during the period from 1980 to 2015 because 99% of snowfall occurs between 
October and April annually (Guo and Li, 2015). The variables affecting snowfall mainly include 
climatic, geographical and topographic records. Climate data that included daily temperature, 
relative humidity and wind speed were derived from the National Meteorological Information 
Center in China (http://data.cma.cn). Topographic factors (including elevation, slope and aspect) 
were obtained from a digital elevation model (DEM) at a 30-m resolution provided by the 
Geospatial Data Cloud in China (http://www.gscloud.cn). A double mass curve method was 
applied to achieve data quality control by detecting outliers. The RF model is robust even with 
observations with missing and noise features. The prediction of the response variable can be 
implemented even with partially built trees; therefore, it is unnecessary to preprocess any missing 
data before inputting (Antipov and Pokryshevskaya, 2012). 

2.3  Prediction models 

In this study, we used the MLR model and RF model to predict the amount of snowfall by 
applying several predictor variables and response variable. The MLR model was used as a linear 
statistical method to explain the variance of dependent variable and multiple independent 
variables and to explore the degree of correlation among these variables. The MLR model was 
implemented using the lm function in R software. The metrics lmg was employed to evaluate the 
contribution of each predictor variable to the model because it measured the relative contribution 
of each variable to the coefficient of determination. The lmg was also executed in R software 
using the Relaimpo package (Grömping, 2006; Kousari et al., 2011; Oliveira et al., 2012).  

RF model, a non-linear and non-parametric machine learning algorithm proposed by Breiman 
(2001), is assembled with a variety of decision trees generated from classification and regression 
trees (CART). The regression technique was selected to make predictions combining with 
multiple regression trees. Each regression tree was built by bootstrap samples, which were from 
the whole calibration datasets by randomly selecting a characteristic subset of the predictor 
variables to split at each node (Genuer et al., 2010). The corresponding output is the average of 
the individual regression tree. It is less susceptible to the problem of overfitting and no pruning 
step is required with the improved prediction accuracy compared with CART (Antipov and 
Pokryshevskaya, 2012). A prominent feature of the RF model is that it leaves out one third of the 
samples from the original sets as out-of-bag (OOB) samples to validate forecast accuracy 
(Oliveira et al., 2012). OOB samples were not used for fitting the regression tree in the process of 
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the RF model construction but were used to calculate the importance of predictor variables and 
estimate the prediction error. In other words, unbiased estimation of prediction error was built 
using OOB samples without any other independent test sets or cross-validation. 

There is a criteria to measure the variable importance on the basis of the mean decrease in 
accuracy (%IncMSE) in the RF model, which is more reliable than the Gini importance, a biased 
measure of impurity decrease (Strobl et al., 2008; Genuer et al., 2010). The RF model was 
implemented using the Random Forest package in R software. To run the model, it is essential to 
define three prior parameters (ntree, the number of trees to grow in the model; mtry, the number 
of variables randomly sampled as candidates at each split; and nodesize, the minimum size of 
terminal nodes) in the forest. An optimal ntree value was set as 500 (see Palmer et al. (2007) for a 
detailed explanation). The value of mtry was set to 3 for 8 predictor variables (the number of 
predictor variables divided by 3 for the regression). Increasing or decreasing the mtry value had 
very little impact on model performance while a small change was found in the ranking of 
variable importance. Oliveira et al. (2012) also found that the mtry value had an insignificant 
effect on the sequence of variable importance. The value of nodesize was set to 5 (default value) 
when building regression trees, namely the minimum number of the leaf. A larger nodesize would 
cause smaller trees to grow but take less time. 

2.4  Model performance 

The dataset was randomly divided into two independent sections: 70% of data for calibration and 
remaining 30% of data for validation (period from October 1980 to April 2015). The evaluation 
indices of model performance for calibration and validation are as follows: coefficient of 
determination (R2), index of agreement (d) and the ratio of root mean square error to standard 
deviation of observed dataset (RSR). They are described as: 
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where Oi and Pi are the observed and predicted values, respectively; O  and P  are the mean 
observed and predicted values, respectively; and N is the number of observations. 

The R2 index was employed to characterize the degree of collinearity between the predicted and 
observed values and to describe the proportion of the variance that the prediction model could 
explain. A higher R2 value often expresses the lower error of the variance. The parameter d 
proposed by Willmott (1981) is a normalizing measure index concerning the extent of forecast 
error and variation of the model. The d value ranges from 0 to 1. The complete agreement between 
the outcome of predictions and observations results in a value of 1. A higher d value corresponds to 
a better consistency in terms of the predicted and observed data. The d value index is sensitive to 
detect the additive and proportional variances between the predicted and observed values, while 
the R2 value index is insensitive. Moreover, the R2 and d indices are equally hypersensitive to 
extremely observed values (Legates and McCabe Jr, 1999). Another performance index, RSR 
(ranging from 0 to ∞), was employed to standardize the model error estimates in combination with 
an statistical index of root mean square error and the standard deviation of observations (Moriasi et 
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al., 2007). A lower RSR value indicates a better model simulation accuracy. The model prediction 
result is regarded as perfect when the RSR value is calculated as 0. Meanwhile, the value of root 
mean square error for a well-described error index is 0. 

3  Results 

3.1  Descriptive statistics of environmental variables 

A statistical description of snowfall and climatic, geographical and topographic variables during 
the model calibration and validation periods during 1960–2015 is presented in Table 1. Highly 
similar statistical results for each variable are shown. It is possible that there was no significant 
difference between the two groups (calibration and validation) of variables (P>0.05) based on the 
results of variance analysis (ANOVA). This similarity revealed that the validation dataset can be 
representative of the calibration dataset. The response variable, i.e., snowfall, had higher standard 
deviation (SD) and coefficient of variation (CV) values, indicating a greater variability in 
snowfall over the year during both calibration and validation periods. The mean value of 
temperature was negative, resulting in a negative CV value. The CV value of temperature 
exhibited the strongest variation among variables. In comparison, relative humidity exhibited a 
moderate variation and geographical factors (longitude and latitude) showed a lower variation 
with CV values less than 7.00%. The CV values for other topographic properties ranged from 
54.85% to 162.53% in both datasets, indicating that topographic factors had a greater 
heterogeneity in the study area. 

Table 1  Descriptive statistics for snowfall and climatic, geographical and topographic factors for the calibration 
and validation datasets 

Statistic Snowfall (mm) T (C) RH (%) WS (m/s) Lo () La () Ele (m) Aspect () Slope () 

Max 
C 149.10  7.09 197.17  7.47 94.70 44.97 3545.00 353.66  34.90 

V 133.30  7.05  77.84  7.52 94.70 44.97 3545.00 353.66  34.90 

Min 
C  0.10 –17.68  33.47  0.36 75.25 39.47 –8.00  8.13  0.75 

V  0.10 –16.50  33.77  0.32 75.25 39.47 –8.00  8.13  0.75 

Mean 
C  31.75 –0.85  60.52  1.93 84.70 42.74 1216.75 177.25  4.05 

V  29.79 –0.98  59.22  2.08 84.78 42.65 1234.64 172.82  4.08 

SD 
C  30.47  4.24  13.28  1.11  5.28  1.52  721.19 100.49  6.41 

V  29.02  4.53  11.10  1.33  5.30  1.46  769.66  94.80  6.62 

CV 
(%) 

C  95.99 –498.26  21.94 57.50  6.24  3.55  59.27  56.69 158.38 

V  97.39 –460.40  18.75 63.84  6.25  3.43  62.34  54.85 162.53 

Note: T, temperature; RH, relative humidity; WS, wind speed; Lo, longitude; La, latitude; Ele, elevation; Max, maximum; Min, 
minimum; SD, standard deviation; CV, coefficient of variation; C, calibration (n=632); V, validation (n=274). The units of maximum, 
minimum, mean and standard deviation are consistent with the variables. 

3.2  Importance of predictor variables 

Table 2 shows significant correlations of snowfall with all variables (P<0.05) excluding wind 
speed, although most r values have a lower number (|r|<0.50). Climatic variables, including 
relative humidity and temperature, were strongly positively and negatively correlated with 
snowfall, with r values of 0.64 and –0.53, respectively. A moderate correlation was obtained 
between latitude and snowfall (r=0.38), whereas the remaining predictor variables were weakly 
(positively or negatively) correlated with snowfall (r<0.22). The results indicate that the 
relationships between the predictor variables and snowfall may be difficult to model as an 
absolutely linear correlation. However, the RF model provides a non-linear estimation method to 
explore their correlations. The relative importance of the selected predictor variables in the RF 
model is presented in Figure 2. The relative humidity, temperature and longitude are the three 
most important predictor variables influencing snowfall variance. The correlation analysis results 
also showed the highest relevance for relative humidity and temperature. The other predictor 
variables, including elevation, aspect, latitude and slope, are of secondary importance for snowfall 
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dynamics. Although the ranking of wind speed was identified as the lowest, its minor importance 
for snowfall variance should not be ignored. 

Table 2  Correlation coefficients between snowfall and predictor variables 

 Temperature RH Elevation Longitude Latitude Aspect Slope Wind speed 

P value 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.367 

r –0.53 0.64 0.12 –0.21 0.38 –0.20 0.15  0.03

Note: RH, relative humidity; **, significant correlation at P<0.05 level. 

Fig. 2  Importance of predictor variables obtained from the random forest model. RH, relative humidity; IncMSE, 
mean decrease in accuracy. 

3.3  Performance of the MLR model 

The model parameters for the eight predictor variables obtained from the MLR model are 
presented in Table 3. A moderate correlation between snowfall and covariates was derived, with 
R2 value of 0.41 (adjusted R2=0.40), implying that 40% of the total variance in snowfall can be 
explained by the MLR model. All estimated parameters for the selected predictor variables 
displayed a high level of significance (P<0.001), except for elevation, wind speed and slope, 
which had a low significance level (P>0.100). According to the lmg sorting results, relative 
humidity, temperature and longitude had greater contributions in the regression model, followed 
by latitude, aspect and elevation, while wind speed and slope contributed the least to the 
regression model with lmg values less than 1.000%. 

3.4  Performance of the RF model 

The ntree, mtry and nodesize parameters in the calibration period of the RF model were 500, 3 
and 5, respectively, according to the selection standard for the specific parameter (see Section 2.3). 
A larger proportion of the total variance in snowfall was explained in this model, with R2 values of 
0.70 and 0.74, d values of 0.90 and 0.93, and RSR values of 0.55 and 0.51 during the calibration 
and validation periods, respectively (Table 4). These results clearly showed the desirable 
performance and prediction capability of the RF model. The observed and predicted values of 
snowfall for the validation samples from the RF and MLR models are presented in Figure 3. 
Generally speaking, the RF model performed much better than the MLR model in predicting 
snowfall. The predicted results are better when the observed snowfall values are less than 30 mm 
in both models. However, the overall predicted snowfall amounts were overestimated for low 
values and underestimated for high values. 
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Table 3  Parameter estimation results from the multiple linear regression model 

Variable Estimate Standard error t value P value lmg (%) 

Constant –10.119 56.747 –0.178 0.858

RH  0.319  0.098  3.248 0.000 8.391 

Temperature –2.104  0.410 –5.121 0.000 7.978 

Longitude –2.561  0.271 –9.439 0.000 7.864 

Latitude  5.835  1.210  4.821 0.000 6.149 

Aspect –0.072  0.012 –5.997 0.000 5.152 

Elevation  0.002  0.002  0.553 0.580 3.341 

Wind speed –0.694  0.975 –0.712 0.476 0.770 

Slope  0.098  0.191  0.512 0.608 0.389 

Note: RH, relative humidity. 

Table 4  Results of the random forest model 

Evaluation indices Calibration sample Validation sample

R2 0.70 0.74

RSR 0.55 0.51

d 0.90 0.93

Note: R2, coefficient of determination; RSR, the ratio of root mean square error to standard deviation of observed dataset; d, index of 
agreement. 

Fig. 3  Correlation of observed and predicted snowfall results obtained from the (a) random forest model and (b) 
multiple linear regression model using the validation samples 

4  Discussion 

4.1  Impacts of predictor variables on snowfall 

Results from both the RF and MLR models indicate that relative humidity and temperature had 
particularly important effects on snowfall. Relative humidity and air temperature at low levels are 
strongly affected by the liquid water amounts and the density of snowflakes at the near surface 
(Roebber et al., 2003). Karl and Groisman (1993) found that the liquid water equivalent of fresh 
snow is a function of temperature, relative humidity and other factors. Temperature changes will 
affect the percentage of precipitation forms and snowmelt regimes, and the amount of snowfall 
would decrease with a decreasing ratio of snowfall to total precipitation (Kousari et al., 2011; 
Krasting et al., 2013; Kapnick et al., 2014). Changes in relative humidity may influence the 
variation in the rate of water vapor formation in the troposphere. O'Gorman and Muller (2010) 
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and Kousari et al. (2011) found that precipitation evaporation would increase with increasing 
temperature and decreasing relative humidity. Thus, we propose that changes in temperature and 
relative humidity may also impact the forms of precipitation. According to Figure 4a, temperature 
generally exhibited an increasing trend at all the 27 meteorological stations (stations that above 
the auxiliary line of y=0), with 14 stations showing a statistically significant increasing trend 
(P<0.05) based on the Mann-Kendall trend test. In contrast, relative humidity showed a 
decreasing trend in the majority of the 27 meteorological stations (stations that below the 
auxiliary line of y=0), with 11 stations exhibiting a statistical significance at the P<0.05 level (Fig. 
4a). Snowfall changes showed an upward trend at most stations, with only 6 stations showing a 
statistically significant increasing trend (Fig. 4b). Furthermore, the increase in temperature and 
decrease in relative humidity were not correlated with a coherent decrease in snowfall for 
statistically significant stations at elevations below 1500 m. There are two explanations for this 
observation. First, the significant increase in snowfall in the Tianshan Mountains probably offsets 
the partial decrease in snowfall arising from the increase in temperature (Guo and Li, 2015). 
Second, the limited meteorological stations at higher elevation highlight the clear changes in 
relative humidity and snowfall at lower elevation under the marked increase in temperature. 

Fig. 4  Scatterplots of (a) change rates of temperature and RH (relative humidity) versus elevation, (b) change 
rate of snowfall versus elevation, and (c) change rate of snowfall versus longitude. RL, regression line; open 
boxes () indicate change rate of RH at non-statistically significant stations; black boxes () indicate change rate 
of RH at statistically significant stations; Open upward triangles () indicate change rate of temperature at 
non-statistically significant meteorological stations; black upward triangles () indicate change rate of 
temperature at statistically significant stations; open downward triangles (○) indicate change rate of snowfall at 
non-statistically significant stations; and black downward triangles (●) indicate change rate of snowfall at 
statistically significant stations. 

Snowfall amount is considered closely related to elevation due to the decrease in temperature 
with increasing elevation, and temperature can more easily reach the melting point at lower 
elevation than at higher elevation (Serquet et al., 2011; Rahman et al., 2013). As shown in Figure 
4b, there was a significant negative correlation between the change rate of snowfall and elevation. 
However, the changes in both temperature and relative humidity exhibited a non-significant 
correlation with elevation. Therefore, the impacts of other potential factors and even 
microphysical process on the relationship of the change rate in snowfall and elevation should be 
studied more comprehensively in the future. 

Longitude, a geographical factor, was the third most important variable in both the RF and 
MLR models in our study. The impact of latitude in the RF model was considerably less 
important, but it ranked the fourth in the MLR model. A significant positive correlation between 
the change rate of snowfall and longitude is shown in Figure 4c. Latitude can impact the spatial 
changes in air temperature while longitude may have an influence on wind speed (Kwon and Fu, 
2013). Snow may be redistributed by the wind when it falls on the surface (Erickson et al., 2005). 
Nonetheless, the east-west extension of the Tianshan Mountains is mainly influenced by westerly 
circulation and wet arctic air masses. Prevailing westerlies can bring moist air masses to the 
mountains from the Atlantic and Arctic Oceans. However, the high mountains in the west prevent 
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wet airflow from the westerlies, leading to variations in precipitation with longitude at a local 
scale (Zhang et al., 2015; Lu et al., 2016). In addition, meteorological stations in the Tianshan 
Mountains are unevenly distributed in space; hence, longitudinal zonality of snowfall would be 
more pronounced than latitude under the influence of topography. Similar studies also found a 
correlation between different forms of precipitation and these two variables (longitude and 
latitude). Zhang et al. (2015) found that annual precipitation has a distinct longitudinal and 
latitudinal zonality in the Tianshan Mountains, with an M-shaped distribution of precipitation 
with longitude and a saddle-shaped distribution of precipitation with latitude. Ji and Chen (2012) 
revealed that longitude primarily impacts the distribution of precipitation in the middle Tianshan 
Mountains. Wi et al. (2012) pointed out that in the Colorado River Basin, snowfall shows a 
significant decrease in all latitude-altitude bands except the highest latitude and altitude.  

In this study, aspect was considered as a moderately important factor on snowfall and it ranked 
the fifth position in the RF model and MLR model. The north and south aspects tend to be 
dominate in the Tianshan Mountains. The northern and southern slopes are the shade and sunny 
slopes, respectively. The shade and sunny slopes present different regional climate regimes due to 
distinct differences in solar radiation, water vapor sources and topographic feature. The shade 
slope tends to be on the windward side, mainly influenced by westerly airflows with associated 
precipitation from orographic lifting. The sunny slope is likewise a leeward slope, which is 
controlled by downward flow with less precipitation compared with the shade slope (Yang et al., 
2007; Guo and Li, 2015). Throughout the study period, snowfall and relative humidity on the 
northern slope were clearly larger than those on the southern slope, while wind speed exhibited 
the opposite tendency (Fig. 5). Li et al. (2012) also found that winter snowfall on the northern 
slope of the Tianshan Mountains is significantly greater than that on the southern slope. Moreover, 
relative humidity is generally higher on the northern slope than on the southern slope, while 
near-surface temperature lapse rate shows an inverted pattern in this area (Shen et al., 2016). A 
higher wind speed would decrease the temperature gradient through its influence on air flow. 
Therefore, the spatial variation in relative humidity, wind speed and near-surface temperature 
lapse rate influenced by topography and local climate could result in a spatial variation in 
snowfall between the northern and southern slopes. For both the RF and MLR models, slope and 
wind speed were the least important variables. However, these two variables are influenced by 
aspect, which would develop some primary control on snow accumulation and redistribution 
(Anderton et al., 2004; Anderson et al., 2014).  

Fig. 5  Variations in (a) snowfall and (b) RH (relative humidity) and wind speed during the period 1980–2015 on 
the northern and southern slopes in the Tianshan Mountains 

4.2  Comparison of the RF and MLR models 

Results of the RF and MLR models indicate a distinct difference in model performance during 
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both the calibration and validation periods. The RF model obtained an obviously higher predictive 
accuracy than the MLR model, with R2 values of 0.74 and 0.44, d values of 0.93 and 0.77, and 
RSR values of 0.51 and 0.75 for the two models, respectively (Fig. 3). The RF model reflected a 
robust predictive ability, indicating its good applicability in explaining non-linear relationships 
between the predictor variables and response variable. The MLR model could only partly 
interpret the variance in snowfall. Notably, the RF model does not need to assume a correlation 
between the dependent variable and independent variables, and it is less sensitive to some datasets 
with improper error distributions. Similar comparisons between the RF and MLR models have 
been proposed by Lopatin et al. (2016) and Zhang et al. (2017) for ecological studies. We found 
that relative humidity, temperature and longitude were the top three most important contributors 
to snowfall among all the predictor variables from both the two models. The similar ranking of 
variable importance in both models showed that climatic factors played a major role in 
influencing snowfall compared with other influencing variables. It is likely that the RF model 
could accurately identify the degree of relative importance of variables while it is still being 
unable to characterize the kinds of effect that these variables may have on the results (Kovdienko 
et al., 2010). Elevation was the fourth most important variable in the RF model, but it ranked the 
sixth in the MLR model, which demonstrated that the non-linear relationship was an excellent 
interpretation of the association between elevation and snowfall. Ning (2013) also found a 
parabolic-shaped relationship between elevation and mean annual precipitation in the Tianshan 
Mountains. Temperature will generally vary with the change in elevation. Greater snowfall 
usually occurs at higher elevation, where the temperature is commonly lower than 0C.  

Varying the out-of-bag samples and rerunning the RF model during the calibration period 
would generate different rankings of variable importance (Goudarzi, 2016). When the RF 
algorithm was repeated several times and trained with the same datasets, the first three most 
important variables were broadly identical at the completion of each model while the rankings of 
other less important predictor variables changed slightly. In addition, removing lesser important 
variables, such as slope and wind speed, did not improve the prediction performance of the model. 
Other studies also found that removing unconnected variables in the RF model had little impact 
on the results (Palmer et al., 2007). Similarly, in the MLR model, when variables that are 
insignificantly related or have a minor relative contribution (lmg<1%), such as slope and wind 
speed, were removed, the adjusted coefficient of determination of the model was similar to the 
original model, indicating that simplifying the model will not impact the model accuracy. 

5  Conclusions 

Snowfall prediction is scarce and difficult in the Tianshan Mountains due to regional differences 
and complex topography. In this study, we utilized different regression approaches to explore the 
potential driving factors influencing snowfall, i.e., climate, geography and topography. The RF 
model performed better than the MLR model. It (out-of-bag method) is insensitive to outliers or 
missing data, and has improved prediction ability for non-linear correlations compared with a 
similar model (CART). Relative humidity, temperature and longitude were the three most 
important variables influencing snowfall. Elevation, aspect and latitude were of secondary 
importance, followed by slope and wind speed. We propose that the impact of climate on snowfall 
is larger than the topography in general.  

Despite the difference in results between the two models, the order of the three most important 
variables was the same in each model. Furthermore, the significantly important variables listed in 
this study may be limited, and it may be possible to identify more variables which may influence 
snowfall. Future studies may focus on identifying more closely related variables to better 
understand the influences these factors on snowfall in the Tianshan Mountains and to further 
improve model precision. The RF method could be extended to different regions with superior 
predictor variables, providing potential insights into regional differences in snowfall amount. In 
addition, these results will be beneficial to understand hydrological modeling and improve 
management and prediction of water resources in the mountainous regions. 
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