
Vegetation Functional Properties Determine Uncertainty
of Simulated Ecosystem Productivity: A Traceability
Analysis in the East Asian Monsoon Region
Erqian Cui1,2, Kun Huang1,2 , Muhammad Altaf Arain3 , Joshua B. Fisher4 ,
Deborah N. Huntzinger5 , Akihiko Ito6 , Yiqi Luo7 , Atul K. Jain8 , Jiafu Mao9 ,
Anna M. Michalak10 , Shuli Niu11,12 , Nicholas C. Parazoo4 , Changhui Peng13,14 ,
Shushi Peng15 , Benjamin Poulter16 , Daniel M. Ricciuto9 , Kevin M. Schaefer17 ,
Christopher R. Schwalm5,18, Xiaoying Shi9, Hanqin Tian19, Weile Wang20 , Jinsong Wang11,
Yaxing Wei9, Enrong Yan1, Liming Yan1 , Ning Zeng21 , Qiuan Zhu14, and Jianyang Xia1,2

1Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban Ecological
Processes and Eco‐Restoration, Center for Global Change and Ecological Forecasting, School of Ecological and
Environmental Sciences, East China Normal University, Shanghai, China, 2Institute of Eco‐Chongming, Shanghai, China,
3School of Geography and Earth Sciences and McMaster Centre for Climate Change, McMaster University, Hamilton,
Ontario, Canada, 4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 5School of Earth
Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA, 6National Institute for
Environmental Studies, Tsukuba, Japan, 7Center for Ecosystem Science and Society, Department of Biological Sciences,
Northern Arizona University, Flagstaff, AZ, USA, 8Department of Atmospheric Sciences, University of Illinois at Urbana‐
Champaign, Urbana, IL, USA, 9Environmental Sciences Division and Climate Change Science Institute, Oak Ridge
National Laboratory, Oak Ridge, TN, USA, 10Department of Global Ecology, Carnegie Institution for Science, Stanford,
CA, USA, 11Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China, 12Key
Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences, Beijing, China, 13Department of Biology Sciences, Institute of Environment
Sciences, University of Quebec at Montreal, Quebec, Canada, 14Center for Ecological Forecasting and Global Change,
College of Forestry, Northwest A&F University, Yangling, China, 15Sino‐French Institute for Earth System Science,
College of Urban and Environmental Sciences, Peking University, Beijing, China, 16Department of Ecology, Montana
State University, Bozeman, MT, USA, 17National Snow and Ice Data Center, Cooperative Institute for Research in
Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA, 18Woods Hole Research Center, Falmouth,
MA, USA, 19International Center for Climate and Global Change Research and School of Forestry and Wildlife Sciences,
Auburn University, Auburn, AL, USA, 20Ames Research Center, National Aeronautics and Space Administration, Moffett
Field, CA, USA, 21Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA

Abstract Global and regional projections of climate change by Earth system models are limited by their
uncertain estimates of terrestrial ecosystem productivity. At the middle to low latitudes, the East Asian
monsoon region has higher productivity than forests in Europe‐Africa and North America, but its estimate
by current generation of terrestrial biosphere models (TBMs) has seldom been systematically evaluated.
Here, we developed a traceability framework to evaluate the simulated gross primary productivity (GPP) by
15 TBMs in the East Asian monsoon region. The framework links GPP to net primary productivity, biomass,
leaf area and back to GPP via incorporating multiple vegetation functional properties of carbon‐use
efficiency (CUE), vegetation C turnover time (τveg), leaf C fraction (Fleaf), specific leaf area (SLA), and leaf
area index (LAI)‐level photosynthesis (PLAI), respectively. We then applied a relative importance algorithm
to attribute intermodel variation at each node. The results showed that large intermodel variation in GPP
over 1901–2010 were mainly propagated from their different representation of vegetation functional
properties. For example, SLA explained 77% of the intermodel difference in leaf area, which contributed
90% to the simulated GPP differences. In addition, the models simulated higher CUE (18.1 ± 21.3%), τveg
(18.2 ± 26.9%), and SLA (27.4±36.5%) than observations, leading to the overestimation of simulated GPP
across the East Asian monsoon region. These results suggest the large uncertainty of current TBMs in
simulating GPP is largely propagated from their poor representation of the vegetation functional
properties and call for a better understanding of the covariations between plant functional properties in
terrestrial ecosystems.

©2019. American Geophysical Union.
All Rights Reserved.

RESEARCH ARTICLE
10.1029/2018GB005909

Key Points:
• A GPP‐traceability framework is

established to diagnose the
uncertainty sources of modeled GPP

• Large intermodel differences of
modeled GPP result from their
different representation of
vegetation functional properties

• Positive bias in simulated GPP over
the East Asian monsoon region
could be attributed to the higher
simulated CUE and SLA comparing
with observations

Supporting Information:
• Supporting Information S1

Correspondence to:
J. Xia,
jyxia@des.ecnu.edu.cn

Citation:
Cui, E., Huang, K., Arain, M. A., Fisher,
J. B., Huntzinger, D. N., Ito, A., et al.
(2019). Vegetation functional properties
determine uncertainty of simulated
ecosystem productivity: A traceability
analysis in the East Asian monsoon
region. Global Biogeochemical Cycles,
33, 668–689. https://doi.org/10.1029/
2018GB005909

Received 20 FEB 2018
Accepted 9 MAY 2019
Accepted article online 12 MAY 2019
Published online 7 JUN 2019

CUI ET AL. 668

https://orcid.org/0000-0002-5497-6696
https://orcid.org/0000-0002-1433-5173
https://orcid.org/0000-0003-4734-9085
https://orcid.org/0000-0003-2998-099X
https://orcid.org/0000-0001-5265-0791
https://orcid.org/0000-0002-4903-3095
https://orcid.org/0000-0002-4051-3228
https://orcid.org/0000-0002-2050-7373
https://orcid.org/0000-0002-6152-7979
https://orcid.org/0000-0002-2394-2864
https://orcid.org/0000-0002-4424-7780
https://orcid.org/0000-0002-6723-1343
https://orcid.org/0000-0003-0249-4588
https://orcid.org/0000-0002-9493-8600
https://orcid.org/0000-0002-3668-3021
https://orcid.org/0000-0002-5444-9917
https://orcid.org/0000-0003-3054-0705
https://orcid.org/0000-0001-7836-2763
https://orcid.org/0000-0002-7489-7629
https://orcid.org/0000-0001-5923-6665
http://dx.doi.org/10.1029/2018GB005909
http://dx.doi.org/10.1029/2018GB005909
http://dx.doi.org/10.1029/2018GB005909
http://dx.doi.org/10.1029/2018GB005909
http://dx.doi.org/10.1029/2018GB005909
mailto:jyxia@des.ecnu.edu.cn
https://doi.org/10.1029/2018GB005909
https://doi.org/10.1029/2018GB005909
http://publications.agu.org/journals/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2018GB005909&domain=pdf&date_stamp=2019-06-07


1. Introduction

Terrestrial ecosystems, storing up to 4 times more carbon (C) than the atmosphere (Lal, 2004), play a pivotal
role in predicting future climate change (Beer et al., 2010; Heimann & Reichstein, 2008; Intergovernmental
Panel on Climate Change, 2013). The carbon sequestration function of terrestrial ecosystems is initiated with
gross primary productivity (GPP), the total CO2 uptake by plants via photosynthesis. Tropical and boreal
regions, which account for the vast majority of the global forest, have been shown to be important terrestrial
C sinks (Bunker et al., 2005; Cox et al., 2013; Pfeifer et al., 2015). The middle‐ to low‐latitude regions are
shaped by the subtropical anticyclone and are covered mainly by desert, steppe, and shrub ecosystems.
However, the East Asian monsoon region (Figure S1 in the supporting information; Yu et al., 2014), benefits
from the interaction of tropical maritime and polar continental air masses (Duan & Wu, 2005), and is typi-
cally composed of distinctive evergreen broadleaved forests (Song et al., 2015). According to field observa-
tions based on eddy covariance technique, the subtropical forests of the East Asian Monsoon region
accounts for 8% of global forests' net ecosystem productivity (NEP; 0.72 ± 0.08 Pg C/year; Yu et al., 2014).
Thus, accurately simulating the dynamics of productivity in this region is crucial for predicting the global
land‐atmosphere CO2 exchange and C feedback to climate change from subtropical ecosystems.

In recent decades, terrestrial ecosystems in the East Asian Monsoon region have been strongly shaped by
rapid climate changes as well as intense anthropogenic disturbances. Rising temperatures (R. Zhang,
2015) and increased nitrogen deposition (Wang et al., 2017) have been detected in this region. The average
summer rainfall (which accounts for more than half of the total annual precipitation) exhibits strong spatial
variability, in response to the decadal shifts of East Asian summer monsoon (Zhang et al., 2015). Land‐use
types in this region have been intensively disturbed or managed by human activities. For instance, most of
the evergreen broadleaved forest is gradually being replaced by the secondary communities (Song et al.,
2015; Tan et al., 2012), and redistribution of cropland have resulted in significant changes of carbon storage
(Tian et al., 2003). These environmental factors may have different impacts on the long‐term trend of GPP in
the East Asian Monsoon region. Terrestrial biosphere models (TBMs) are proved to be useful tools for eval-
uating regional ecosystem productivity and its variations in response to environmental changes. It is still
unclear, however, to what extent the inter‐model GPP variability can be explained by their different response
to environmental drivers.

Large uncertainty of modeled GPP has been addressed in numerous studies, based on model intercompari-
son project (MIP) or model‐data synthesis (MDS) project. The uncertainties of modeled GPP by current
TBMs include intermodel differences and model ensemble biases. Among them, model ensemble biases
result from their poor representation or lack of some key processes related to regional characteristics, for
example, agricultural shift cultivation, wildfires, insects, disease disturbance, and impacts of forest age.
Large intermodel spread of simulated GPP in the TBMs includes external environmental forcing, model
structure, and parameters (Ito et al., 2017; Schaefer et al., 2012; Schwalm et al., 2010; Xia et al., 2017).
When multiple TBMs are forced by the same environmental forcing, their differences in model structure
and parameters could induce intermodel variation of GPP via two approaches. First, many studies have
detected that the model‐to‐model variation of C cycle largely stems from their different initial conditions.
For example, there is sixfold difference in simulated soil C‐stock among models in the Coupled Model
Intercomparison Project Phase 5 at the initial condition (Exbrayat et al., 2014; Todd‐Brown et al., 2014).
Thus, intermodel difference of simulated productivity could largely result from their representation of the
initial vegetation state. Second, most models simulate an increasing trend of global or regional GPP during
the twentieth century (Huntzinger et al., 2017; Ito et al., 2017; Xia et al., 2017), but they vary in their sensi-
tivity to specific environmental factors. Thus, we need to systematically diagnosis which processes or para-
meters drive the inter‐model difference in simulating productivity without (i.e., with initial conditions) and
under environmental changes in the East Asian Monsoon region.

A large number of studies have been conducted to assess intermodel differences and model performance on
ecosystem productivity (Anav et al., 2013; Ito et al., 2016; Xia et al., 2017; Yao et al., 2017). Most of these stu-
dies have revealed a twofold to threefold difference in simulated ecosystem productivity among models.
Large model ensemble biases have also been emphasized through the comparison of simulations and
observation‐based results. Reducing such model uncertainty is difficult, because there are a series of subse-
quent transmission processes of carbon assimilation. These processes include net primary productivity
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(NPP), its allocation to various carbon pools, and leaf area dynamics. The
cumulative leaf area index (LAI) will in turn affect subsequent canopy
level photosynthesis. They are connected in a closed loop by incorporating
a set of vegetation functional properties: C‐use efficiency (CUE), vegeta-
tion C turnover time (τveg, year), leaf C fraction (Fleaf, %), specific leaf area
(SLA, cm2/g), and LAI‐level photosynthesis (PLAI, g C·m−2·year−1;
Figure 1). Most of these subsequent C‐accumulation processes and prop-
erties are not well quantified by current process‐based models (Rogers
et al., 2017), and errors in these processes and properties propagate
through the GPP‐simulation loop and even to the simulation of soil C
dynamics. Therefore, a model intercomparison on these connected vege-
tation processes and their deterministic functional properties are urgently
needed to improve the modeling of terrestrial ecosystem productivity.

Here, we examine 15 TBMs participating in the Multi‐scale Synthesis and
Terrestrial Model Intercomparison Project (MsTMIP) for their ability to
estimate GPP in the East Asian Monsoon region during 1901–2010. The
model evaluation in our study is based on a traceability framework
(Fig. 1). The logic flow of this work is that first we identify the key sources
of the intermodel difference in GPP simulation. The effects of initial con-

ditions and environmental changes on intermodel variations in GPP are separately evaluated. Then, mod-
eled GPP is further decomposed into the subsequent C‐accumulation processes and associated vegetation
functional properties. Their relative contributions in controlling model performance on GPP are also quan-
tified. Second, the key uncertainty processes and vegetation functional properties are evaluated by compar-
ing with available observations and remote sensing data products. The aim of this study is to introduce a
GPP‐traceability framework to diagnose the sources of intermodel variability in simulated GPP in current
TBMs and quantify the major uncertainty sources of modeled GPP for the East Asian Monsoon region.

2. Methods
2.1. Models and Simulation Experiments

TheMsTMIP (Huntzinger et al., 2013; Wei et al., 2014b) is a formal model intercomparison effort designed to
diagnose the sources of intermodel variability in global‐scale models of historic terrestrial carbon cycle
dynamics. The TBMs participating in MsTMIP are all driven by the same environmental forcing data sets
(Wei et al., 2014a, 2014b) and a standardized spin‐up simulation protocol over a 110‐year time period from
1901–2010. The simulation protocol includes a series of sensitivity simulations where one time‐varying
driver is added at a time in order to quantify the sensitivity of simulated carbon cycle changes to four key
environmental drivers: climate forcing, land‐use change, atmospheric CO2, and nitrogen deposition
(Table S1; Huntzinger et al., 2013). In total, MsTMIP designs five simulation experiments: (1) assume all
environmental drivers constant (RG1: initial condition); (2) time‐varying historical climate only (SG1); (3)
time‐varying climate and land‐use change (SG2); (4) time‐varying climate, land‐use changes, and
atmospheric CO2 concentrations (SG3); (5) all drivers are time‐varying, including nitrogen deposition rates
(BG1). Note that half of the models participating in MsTMIP do not have a coupled C‐N cycle and therefore
do not submit BG1 simulations. For C‐onlymodels, their “best” estimate with all time‐varying drivers turned
on is SG3. The sensitivity of simulated plant productivity to individual environmental drivers is determined
by simulation differencing: climate change = SG1−RG1, land‐use change = SG2− SG1, atmospheric CO2 =
SG3 − SG2, and nitrogen deposition = BG1 − SG3.

The model outputs used here are taken from the version 1.0 release of MsTMIP yearly retrievals (1901–2010)
with a spatial resolution of 0.5° × 0.5° (Huntzinger et al., 2018). The model ensemble includes BIOME‐BGC
(e.g., Thornton et al., 2002), CLASS‐CTEM‐N (e.g., Huang et al., 2011), CLM4 (e.g., Mao et al., 2012),
CLM4VIC (e.g., Li et al., 2011), DLEM (e.g., Tian et al., 2011), GTEC (e.g., Wang et al., 2011), ISAM (e.g.,
Jain et al., 2009), LPJ‐wsl (e.g., Poulter et al., 2010), ORCHIDEE‐LSCE (e.g., Krinner et al., 2005), SiB3
(e.g., Baker et al., 2008), SiBCASA (e.g., Schaefer et al., 2009), TEM6 (e.g., Hayes et al., 2011), TRIPLEX‐GHG
(e.g., Peng et al., 2013; Zhu et al., 2014), VISIT (e.g., Ito, 2010), and VEGAS2.1 (e.g., Zeng et al., 2005). A

Figure 1. Schematic diagram of the GPP‐traceability framework introduced
in this study. CUE, C‐use efficiency; τveg, vegetation C turnover time; Fleaf,
leaf C fraction; SLA, specific leaf area; PLAI, LAI‐level photosynthesis. GPP,
gross primary productivity; LAI, leaf area index; NPP, net primary
productivity.
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detailed description of variables included in this study is provided in Table S2. Thus, we separated out mod-
els with both BG1 and SG3 as the subensembles (7 models) for nitrogen deposition experiment. Likewise, we
got the subensembles to conduct the factorial experiments for climate change (14 models), land‐use change
(13 models), and atmospheric CO2 (14 models). Note that the vegetation functional properties, such as CUE,
τveg, Fleaf, SLA, and PLAI, are not true model parameters (Figure. 1). Here, we used Fleaf instead of NPP allo-
cation because of the following reasons: first, almost no MIP has listed the NPP allocation to new growth as
standard outputs; second, the limited in situ observations of NPP allocation with its difficult measurements
in the natural ecosystems; third, the major contribution of vegetation C turnover time to NPP simulation
should be considered in the loop.

2.2. Satellite‐Derived GPP and FLUXNET MTE GPP

The modeled GPP over 2000–2010 in the East Asian Monsoon region was evaluated against satellite‐derived
GPP and FLUXNET measurements with a machine learning technique termed model tree ensemble (here-
after MTE GPP). Satellite‐derived GPP was obtained from MODIS on board the National Aeronautics and
Space Administration Terra satellite (MOD17A2 GPP: 2000–2010; Running & Zhao, 2015). This product pro-
vides a globally consistent and continuous estimation of vegetation productivity at 1‐km spatial resolution
and 8‐day intervals and has been widely used to evaluate modeled GPP (e.g., Anav et al., 2015; Mao et al.,
2012). In this study, the MOD17A2 GPP estimates were re‐sampled into 0.5° × 0.5° spatial resolution using
a nearest neighbor algorithm. The MTE GPP (1982–2010) is based on a global monthly gridded GPP product
derived from FLUXNET observations with a machine learning technique termedmodel tree ensemble (Jung
et al., 2011). The MTE GPP product, with a relatively small uncertainty (~120 ± 6 Pg C/year globally), has
been extensively used for evaluating model performance in recent years (e.g., Peng et al., 2015; Tjiputra
et al., 2013). It should be noted that the existing observation‐based GPP datasets also rely upon assumptions
and none of them based only on measurements, which may generate some uncertainty for estimating GPP
(Anav et al., 2015).

2.3. Satellite‐Derived NPP and FLUXNET MTE NPP, Satellite‐Derived CUE and LAI Data

Satellite‐derived NPP from the MODIS (MOD17A3 NPP) and FLUXNETMTE NPP was used to evaluate the
modeled NPP over 2000–2010. The version 55 of this product (Running & Zhao, 2015) includes global NPP at
1 km spatial resolution during 2000–2014. The accuracy of this product has been widely evaluated for a range
of regional and global applications (e.g., Rawlins et al., 2015; Xia et al., 2017). In this study, the MOD17A3
NPP was resampled into 0.5° × 0.5° spatial resolution using the nearest neighbor algorithm. Following
Smith et al. (2015), the FLUXNET MTE data were converted from GPP to NPP by using a fixed factor 0.5.
The CUEwas calculated as NPP divided by GPP in the East AsianMonsoon region. The regional distribution
of CUE was calculated from MODIS NPP and MODIS GPP at 0.5° spatial resolution.

Two satellite‐derived LAI data sets (MOD15A2‐LAI and GIMMS3g‐LAI) were used to evaluate modeled LAI
over 2000–2010 in the East Asian Monsoon region. The MOD15A2‐LAI data from the MODIS (MOD15A2
LAI) are an 8‐day composite at 1‐km spatial resolution (Yan et al., 2016). Defined as the number of equiva-
lent layers of leaves relative to a unit of ground area, satellite‐derived LAI is commonly used to calculate sur-
face photosynthesis and evapotranspiration. The GIMMS3g LAI product was produced by Boston University
and was derived from the GIMMS Normalized Difference Vegetation Index data set using Feed‐Forward
Neural Networks (Zhu et al., 2013). The GIMMS3g LAI product provides a global LAI data set at 15‐day tem-
poral resolution and 1/12° spatial resolution from 1981 to 2011. We composited the 15‐day GIMMS3g LAI
data to monthly temporal resolution by averaging the two composites in the same month and resampled
them to 0.5° spatial resolution by using the nearest neighbor algorithm (Zhu et al., 2016).

2.4. Data‐Oriented Aboveground Biomass Carbon and SLA

The passive microwave‐based global aboveground biomass C product (1993–2012) version 1.0 (Liu et al.,
2015) was used to evaluate the modeled aboveground biomass over 2000–2010 in the East Asian Monsoon
region. The data sources of this product were from the aboveground biomass map for tropical regions by
Saatchi andMorel (2011). Saatchi andMorel (2011) used a data fusion model to extrapolate 4,079 in situ field
plots and 160,918 lidar‐derived AGB values from Latin America, Africa, and Asia to the entire tropical
regions. The uncertainty of this benchmark biomass map over Asia is ∼30%. Thus, the passive
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microwave‐based global aboveground biomass C product has relatively higher performance in
tropical regions.

Given that plant communities can adjust to the environment via changes in mean trait values, trait‐climate
relationships are useful to predict spatial distribution of community mean trait values (Swenson & Weiser,
2010). Here an environmental drivers‐based SLA data set for subtropical evergreen forests was developed to
evaluate the spatial distribution of modeled SLA over 2000–2010 in the East Asian Monsoon region. This
SLA dataset is based on the SLA‐environment relationship that provided by Verheijen et al. (2013). The
inversion process of this SLA product and the associated environmental drivers (Allen et al., 1998; New
et al., 2002) are detailed in the supplementary materials. The spatial distribution of evergreen forests in
the East Asian Monsoon region is derived from the Land Cover project of the Climate Change Initiative
led by the European Space Agency (European Space Agency, 2014). Considering the limited SLA observa-
tions for other ecosystems to develop a reliable SLA‐environment relationship, the comparison here only
for model pixel with subtropical evergreen forests.

2.5. Observation‐Based Leaf C Fraction and Vegetation C Turnover Time Data

We used plant C records from datasets developed by Luo et al. (2014) and Zhang et al. (2015) to evaluate the
modeled leaf C fraction in the East Asian Monsoon region. The data set consists of plant biomass (root, leaf,
and stem biomass) and stand age at 2,048 sites. The observations at different sites were obtained directly
from harvest or indirectly from allometric growth equations at ecosystem scale. Leaf C fraction was calcu-
lated by Fleaf = leaf C/total plant C. The observations of vegetation C turnover time were derived from the
database developed by Wang et al. (2017). In order to better match the spatial resolution of modeled results,
the observation‐based dataset was converted into gridded dataset (pixel size: 0.5°) through the conversion
tools (“Point to raster”) with “mean” method by using ArcGIS 10.1. The conversion process in this study
did not use any environmental covariates. The used method here didn't intend to extrapolate or extend
the original data set but just assigned a “mean value” to the grids with more than one values. The grid cell
without values is still left blank (Figure S2).

The accuracy of these gridded products has been evaluated by comparing with various field observations.
The eddy covariance‐based GPP observations in the East Asian monsoon region were listed in Table S4
(Chen et al., 2013; Du et al., 2012; Fang, 2011; Geng, 2011; Guo, 2010; Han, 2008; Hirata et al., 2008;
Huang et al., 2011; Kato et al., 2006; Kosugi et al., 2005; Kwon et al., 2010; Lei & Yang, 2010a; Lei &
Yang, 2010b; Ono et al., 2013; Saigusa et al., 2005; Saito et al., 2006; Saitoh et al., 2010; Shimoda et al.,
2005; Sun, 2012; Takanashi et al., 2005; Tan et al., 2011; Wang et al., 2012; Wu et al., 2010; Yan, 2009; Yu
et al., 2013; Zha, 2007; Zhang, 2010; Zhang et al., 2010; Zhao, 2011; Zhu, 2005). The SLA observations were
collected from 12 typical subtropical evergreen forests (Guo et al., 2015; Iida et al., 2014; Kröber et al., 2012;
Le et al., 2015; Luo et al., 2011; Wang et al., 2012; Xu et al., 2016; Yin et al., 2018). The R2, root‐mean‐square
error were used to assess the accuracy of gridded products (Tables S3–S6 and Figures S3–S6). In summary,
these global products perform well over the East Asian monsoon region (R2 = 0.51 − 0.70).

2.6. The Global Forest Age Data Set

The global forest age data set was used to test the age‐dependent leaf biomass fraction distribution in current
models. This dataset describes the age distributions of plant functional types (PFT) on a 0.5° grid during
2000–2010 (Poulter et al., 2018). Each grid cell contains information on the fraction of each PFT within an
age class. The grid cells with >50% fraction of forest cover were extracted in this study, and the average forest
age of each grid cell was calculated by weighting stand age from different PFTs.

2.7. Analytical Methods

To identify the major uncertainty source of modeled ecosystem productivity in the East Asian monsoon
region, we first derived the different metrics for each model in each grid over 1901–2010 and then analyzed
their contributions to intermodel difference. The final attributions were calculated by averaging the values of
contributors at the pixel level. The relative importance analysis was conducted with the “relaimpo” package
in R (R Development Core Team, 2011), which is based on variance decomposition for multiple linear
regression models (Grömping, 2007). The relaimpo package provides six different methods for analyzing
relative importance of each variable in linear regression. We chose one of the most computer intensive
and common‐used method named ‘Lindeman‐Merenda‐Gold (LMG)’. The LMG method averages the
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sequential sum of squares for all possible orders of terms to estimate the percentage of the variance from
each term (Lindeman et al., 1980). This method has been widely used in ecological studies for quantifying
the relative importance of various factors (Fernández‐martínez et al., 2014; Musavi et al., 2017; Xia
et al., 2015).

We evaluated performance (“best” estimates from BG1 or SG3) of the TBMs in simulating the key carbon
processes using Taylor diagrams (Taylor, 2001). The standard deviation (SD) ratio is an alternative measure
of the magnitudes of spatial variation, and correlation coefficient presents the spatial pattern similarity of
modeled and satellite‐derived/data‐oriented carbon processes. An ideal model should have a SD ratio of
1.0 and a correlation coefficient of 1.0.

3. Results
3.1. Temporal and Spatial Variability of Modeled GPP

Even with consistent environmental drivers and simulation protocol, there is a huge intermodel difference
in simulated GPP over the East Asian Monsoon region, which significantly larger than the globally averaged
twofold to threefold discrepancy (Schwalm et al., 2015). The estimated mean annual GPP of this region dur-
ing 1901–2010 was 1280 ± 422 g C·m−2·year−1, ranging from 201 ± 13 g C·m−2·year−1 in CLASS to 1996 ±
111 g C·m−2·year−1 in CLM4 (Figure 2a). The ensemble mean GPP is higher over the southwestern region
and lower in the grass‐covered northern part. Interannual variability of modeled GPP is rather small before
1980 (the average annual growth rate is 1.55 g C·m−2·year−2), but a significant increase during 1981–2010
with an average annual growth rate of 3.33 g C·m−2·year−2. The spatial pattern of model spread (represented
as SD) is similar to the distribution of GPP. Regions with greater model disagreement in GPP were typically
composed of subtropical evergreen forest and cropland, especially in southeastern China (Figure 2b).
Despite the large spatial difference, the models agreed well in the seasonal pattern of monthly GPP. The
large spread in annual GPP among models was mainly attributed to the inconsistency of simulated GPP
in summer, with an approximately twofold greater difference in summer than other seasons.

Based on outputs from simulation experiments, the relative contributions of initial conditions (RG1) and
environmental impacts (BG1‐RG1 for C‐N cycle models or SG3‐RG1 for C‐only models) to the intermodel
variation in GPP were successfully separated. As shown in Figure 3, large intermodel differences existed
in the responses of GPP to environmental changes, ranging from −11 g C·m−2·year−1 in ISAM to 344 g
C·m−2·year−1 in SIB3, with most models indicating a positive environmental impact on GPP, which
increases with time. Modeled GPP derived from initial conditions varies from 170 g C·m−2·year−1

(CLASS) to 1,853 g C·m−2·year−1 (CLM4), a range that is approximately fourfold of the intermodel variation
attributable to environmental impacts. Therefore, the intermodel variation in initial conditions is the pri-
mary driver of differences in modeled GPP (with the relative contributions of initial conditions and environ-
mental impacts are 90.8% and 9.2%, respectively). The result from C‐only models (Figure 3b) was consistent
with that of coupled C‐N models (Figure 3a). However, the C‐only models had a much smaller spread than
C‐Nmodels, implying that the incorporation of C‐N coupling module enlarged model uncertainty (Du et al.,
2018). To better understand the intermodel differences of modeled GPP over the East AsianMonsoon region,
we further separately identified the uncertainty sources underlying in initial conditions and
environmental impacts.

3.2. Intermodel Variation of Initial Conditions

Based on MsTMIP outputs under initial conditions with constant environmental drivers (RG1), we assessed
the intermodel difference in modeled key C processes derived from model structure and parameters. The
intermodel variability in key C processes was represented by the coefficient of variation of model simulations
(CV: CV = 100% × SD/mean). Here mean and SD values were calculated for mean annual outputs among
different models for each pixel. The final results were calculated by averaging the values at the pixel level.
As shown in Figure 4a, the modeled LAI and SLA showed the highest CV (53% and 50%, respectively), fol-
lowed by plant biomass (46%), Fleaf (38%), NPP (37%), and GPP (35%). Large intermodel difference in mod-
eled GPP propagated through the closed loop to NPP and biomass, finally condensed to a small range when
incorporated into leaf dry matter. But the intermodel difference was further amplified by the extremely dif-
ferent representation of SLA among models.
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We then identified the relative importance of the uncertainty sources in modeled key C processes
(Figure 4b). The intermodel differences in NPP can be decomposed into that of GPP and CUE. According
to the results of variance decomposition, the intermodel variation of simulated NPP is dominated by GPP
(~72%) while the relative importance of CUE is only 26%. The lower contribution of τveg indicated that var-
iation of simulated biomass C mainly resulted from modeled NPP. In addition, intermodel variability of leaf
C is largely determined by Fleaf (~81%). Considering the higher consistency of modeled leaf C, the differences
among modeled LAI were derived from the parameterization of SLA (~77%). Furthermore, the inter‐model
difference in annual GPP was well explained by LAI (~90%). It should be noted that PLAI here not only
included leaf‐level photosynthesis but also included how different models treat the canopy. The big leaf
model and the sunlit/shaded leaf model could have similar leaf‐level photosynthesis but different PLAI.
The variations in leaf‐level photosynthesis and variations in scaling‐up from leaf to canopy jointly controlled
the fluctuations of PLAI. For sunlit/shaded leaf models (only 4 of 12 models that provided LAI outputs; Table
S2), PLAI was defined as the average LAI‐level photosynthesis of sunlit and shaded leaves.

Figure 2. Spatial distributions of (a) multimodel mean GPP and (b) SD of modeled GPP in the East Asian monsoon region deriving fromMulti‐scale Synthesis and
Terrestrial Model Intercomparison Project models. In the insert panel of (a), yearly averaged GPP between 1901 and 2010 from models; in the insert panel of (b),
monthly dynamics of GPP from models. The gray lines of insert panels are results from individual models, and the shaded areas are the calculated SD among
models. The bold blue line, green line, red line and black line in insert panels are respectively average yearly GPP, average monthly GPP among models, MTE GPP
and MODIS GPP. SD, standard deviation.
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For a better understanding of plant functional properties in controlling the intermodel difference of simu-
lated GPP, we applied a relative importance algorithm (see section 2) to attribute the inter‐model variation
in GPP. In each grid cell, we fit the data to a multiple linear regression (GPb0+b1 × CUE+b2 × τveg+b3 × Fleaf
+b4 × SLA+b5 × PLAI). Then the relative importance of each variable was estimated by splitting the total
correlation coefficient (R2; Figure S7) of multiple linear regression. Finally, the relative importance of each
variable was normalized (divided by R2) to sum to 1. The factors that made the greatest contribution to GPP
variation was identified as the dominant driver. Spatially, intermodel variation of GPP in around 85% of the
areas could be explained by the difference in SLA (54%), Fleaf (17%), and PLAI (14%). The attribution analysis
further proved that large spread in modeled GPP predominantly resulted from differences of SLA and Fleaf
among models.

3.3. Model sensitivity to the Changing Environmental Drivers

All of the models showed that the modeled annual GPP was relatively stable during 1901–1960, while a sig-
nificant increase occurred after the sixtieth over the East Asian Monsoon region. Based on the outputs from
different simulation experiments, we found that the increase of ensemble mean GPP predominantly resulted
from increasing atmospheric CO2 concentration and nitrogen deposition, while the effect of climate forcing
was nearly neutral (Figure 5a). Land‐use change during the past century showed a slightly negative effect on
GPP and partly counteracted the effects of other environmental drivers. There are large model‐to‐model dif-
ferences in both the direction and magnitude of the effects induced by climate forcing and land‐use change.
Furthermore, the trends in GPP driven by climate forcing, atmospheric CO2, land‐use change and nitrogen
deposition were computed by using segmented linear regression breaking at the sixtieth (Zhu et al., 2017).
The model factorial simulations suggested that the dominant environmental drivers were consistent

Figure 3. Yearly averaged GPP from initial condition (with constant environment conditions: solid line) and under envir-
onmental changes (shade outline) for coupled C‐N models (a) and C‐only models (b). The shades show the effects of
environmental drivers (positive above the solid lines, and negative below the solid lines).
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during 1901–2010 (Figure 5b). The dramatic environmental changes after the sixtieth significantly shaped
the dynamic in GPP, CO2 fertilization was the largest contributor to the modeled GPP trend (1.89 ± 0.47 g
C·m−2·year−1 for coupled C‐N models and 3.36 ± 0.92 g C m‐2 year‐1 for C‐only models), followed by
nitrogen deposition (1.62 ± 1.71 g C·m−2·year−1), land‐use change (−0.92 ± 0.93 g C·m−2·year−1 for
coupled C‐N models and −0.28 ± 1.88 g C·m−2·year‐1 for C‐only models), and climate forcing (0.14 ± 0.74
g C·m−2·year−1 for coupled C‐N models and 0.80 ± 0.66 g C·m−2 year−1 for C‐only models; Figure 5b).
On average, the C‐N cycle models lead to a dampened sensitivity of GPP to atmospheric CO2 and
historical climate change, and this weaker response was consistent with the global results (Huntzinger
et al., 2017). This large difference of atmospheric CO2 effect between coupled C‐N models and C‐only
models might due to the unrealistic unconstrained CO2 fertilization response in C‐only models. But it is
hard to say whether this unrealistic constraint resulted from N availability or other structural differences.
However, the effects of nitrogen deposition should be interpreted with caution, because only seven of the
models performed the factorial simulations with and without nitrogen cycling (Table S2).

The models differently simulated the contributions of environmental factors in driving the increasing trend
of GPP across the East Asian monsoon region. This was largely due to their different representations of the
environmental impacts on vegetation functional properties among models. The model factorial simulations
suggested that the effect of climate forcing on vegetation functional properties was much lower than other

Figure 4. (a) Intermodel variability (coefficient of variation: CV = 100% × SD/mean) of key carbon processes and vegeta-
tion functional properties. Numbers behind the bars indicate the number of models provide outputs for the carbon pro-
cesses and vegetation functional properties. (b) Relative importance of key carbon processes and the associated vegetation
functional properties in controlling model performance on GPP. (c) Contributions of the five vegetation functional
properties in driving GPP.
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environmental factors (Figure 6a). Increasing CO2 had a positive effect on most vegetation functional
properties, but lead to a significant decrease of Fleaf (Figure 6b). Land‐use change also stimulated the
increase of most vegetation functional properties, but negatively affected GPP mainly by reducing τveg
(Figure 6c). The positive contribution of nitrogen deposition to GPP was mainly attributed to the increase
of Fleaf and SLA (Figure 6d). In addition, τveg, Fleaf, and SLA were more sensitive to environmental
changes with the relative higher response ratios. The response of τveg to climate forcing and atmospheric
CO2 remained highly uncertain, while intermodel variation of the land‐use change and nitrogen
deposition effect was greatest in CUE. Overall, model representation and integration of these properties'
individual and combined responses to environmental drivers will be critical to capture whole
system responses.

Figure 5. (a) The impact of climate forcing, atmospheric CO2, land‐use change and nitrogen deposition on the dynamics
of GPP in the East Asian monsoon region between 1901 and 2010. The gray lines are results from individual models, and
the bold colored lines and the shaded areas are respectively the calculated average and standard deviation among models.
The number of models is shown in parentheses. (b) Trends in GPP driven by climate forcing, atmospheric CO2, land‐use
change and nitrogen deposition using segmented linear regression breaking at the sixtieth. Error bars show the standard
deviation among models.
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3.4. Comparison of Modeled Variables Against Observation‐Based Products

The performances of 15 TBMs in simulating the GPP, NPP, LAI, and aboveground biomass C were
evaluated against the satellite‐derived and data‐oriented products. Analysis was carried out on years
overlapping with the observation periods at 0.5° × 0.5° resolution. As shown in Figure 7, the position of
each letter appearing in the plot represents how closely that model's simulation matches the
satellite‐derived/data‐oriented value. Presented by Taylor diagram, the SD ratios of TBMs ranging from
0.42 to 1.98, and 9 out of 15 models overestimate the GPP spatial amplitude over the East Asian
Monsoon region. The models showed correlation coefficient (R) between 0.32 and 0.94, indicating
substantial variations in how well they captured the spatial pattern in annual GPP. Four models (i.e.,
DLEM, ORCHIDEE‐LSCE, ISAM, and LPJ‐wsl) had SD ratios near 1.0, which suggests these models have
similar magnitudes of spatial variation with the MODIS GPP and MTE GPP (Figure 7a). The modeled NPP
showed large disagreement on the spatial pattern with the MODIS NPP but fit the MTE NPP well, with the
corresponding R ranging from 0.15 to 0.6 and 0.2 to 0.9, respectively. In addition, the models produced
comparable SDs of NPP among all grid cells to the MODIS NPP and MTE NPP, with most of the models
had SD ratios near 1.0 (Figure 7b). None of the models in this study achieved a good overall performance
of root‐mean‐square error less than one for the aboveground biomass C (Figure 7c). Most of the models
overestimated the magnitude of spatial variation in LAI, with the SD ratios larger than 1.0 (Figure 7d).
Ten out of eleven models had R > 0.5 for LAI, indicating that the modeled spatial patterns of LAI were
comparable to the satellite‐derived products.

A large number of field observations and data‐oriented products provide continuous and effective
benchmarks to assess modeled vegetation functional properties (CUE, τveg, Fleaf, and SLA; Figure 8a).
Spatially, the modeled vegetation functional properties had very low correspondence with observations

Figure 6. The simulated response ratios of vegetation functional properties to climate forcing (a), atmospheric CO2 (b),
land‐use change (c) and nitrogen deposition (d). Error bars show the standard deviation of response ratios among models.
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(Figures 8b–8e). Large disagreement of Fleaf may result from the mechanized allocation strategy, that is,
some of the models preset a max LAI threshold beyond which no allocation of biomass to leaves (Table
S2). In reality, the leaf fraction will be changing as a function of age, having a large value for young forest
and a small value for mature forest (Reich et al., 2014). In addition, τveg is also closely related to forest age
and soil nutrient (Wang, Sun, et al., 2017). However, the effects of forest age are rarely considered in
current models. The spatial mismatch between the modeled SLA and environmental drivers‐based SLA
may be due to the PFT‐based parameterization process in models, which was poorly situated to capture
key differences within PFT and the effects of environmental filtering (Yang et al., 2015). Our study
presented a range of modeled CUE between 0.35 and 0.65, while the observed CUE showed higher
variability (Figures 8e and S8). Such underestimated variation of CUE in the models also been detected in

Figure 7. Taylor plots by Multi‐scale Synthesis and Terrestrial Model Intercomparison Project models for (a) GPP, (b)
NPP, (c) aboveground biomass carbon, and (d) LAI. The correlation coefficient measures how well the simulated fluxes
capture the spatial distribution of the observed fluxes. The radial direction is the ratio of simulated to observed standard
deviation. The green lines represent root‐mean‐square error (RMSE) normalized by standard deviation. An ideal model
would have a standard deviation ratio of 1.0 and a correlation of 1.0 (point A).
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the permafrost regions by Xia et al. (2017). The low variability of modeled CUE is likely associated with a
simplistic representation of plant respiration in models. However, improving the simulation of respiration
in current models is still challenging (Atkin et al., 2015). As shown in Table S7, the maintenance
respiration (Rm) is closely related with different plant functional properties in models (e.g., LAI in
ORCHIDEE, tissue‐specific nitrogen content in CLM4.5, and Vmax in CLASS; Arora, 2003; Krinner et al.,
2005; Oleson et al., 2013). In addition, the growth respiration (Rg) is defined as divergent ratio of the total
carbon in new growth (20–30%; Clein et al., 2007; Ito et al., 2007; Sitch et al., 2003). Furthermore, the
temperature limitation on carbon sink for assimilates in the plant is probably missing in models (Fatichi
et al., 2014). Thus, more research is still needed on the exploration of the underlying mechanisms
regulating variability of plant respiration and therefore CUE. The comparison analysis suggested more
research is still needed to improve the spatial representation of plant functional properties in current models.

In addition, the modeled τveg, SLA and CUE were significantly higher than those calculated from
observation‐based datasets, suggesting overestimates of CUE (18.1±21.3%), τveg (18.2±26.9%), and SLA
(29.8±9.9% in two‐leaf models and 25.9±16.9% in big‐leaf models) by MsTMIP models in the East Asian
Monsoon region. Conversely, Fleaf was significantly underestimated by models (21.7±52.2%).

4. Discussion
4.1. Improving GPP Simulation With Initial Vegetation States

Previous studies have identified relevant sources of uncertainty for predicting terrestrial ecosystem produc-
tivity, such as vegetation properties (Walker et al., 2017), initial conditions (Carvalhais et al., 2010;
Carvalhais et al., 2010), and environmental response (Rollinson et al., 2017; Wu et al., 2017). Here we show
that the intermodel variation of terrestrial ecosystem productivity in the East Asian Monsoon region criti-
cally depends on their initial representations of GPP‐related processes and vegetation functional

Figure 8. (a) The location of observations in the assemble database of leaf C fraction and vegetation C turnover time. (b–e) Comparison of model‐derived and obser-
vation‐based leaf C fraction, vegetation C turnover time, specific leaf area and C‐use efficiency. The asterisk (*) represents the statistical significance at p < 0.05.
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properties rather than their different simulations of environmental impacts. The difference of simulated GPP
at the initial condition will propagate to not only the historical simulations but also the future predictions
with different climate scenarios. This could be one important reason for the commonly reported large inter-
model variation of GPP for both historical and scenario‐based simulations in almost all existing MIPs, such
as TRENDY (Peng et al., 2015), Coupled Model Intercomparison Project Phase 5 (Anav et al., 2013), C4MIP
(Qian et al., 2010), and ISI‐MIP2a (Ito et al., 2017). In fact, this propagation of model uncertainty begins from
initial conditions also existed in the simulation of soil organic C by current Earth system models (Exbrayat
et al., 2014; Todd‐Brown et al., 2014). These findings together suggest a high priority to reduce model differ-
ence in the initial conditions of terrestrial C cycle in current TBMs.

Intermodel disagreement of ecosystem production based on divergence in initial condition is difficult to
diagnose and reduce, mainly because of the fast propagation of simulation uncertainty among the internal
processes. We have identified that the large spread of modeled GPP predominantly resulted from differences
in LAI and SLA among models. The underlying error in simulated GPP will then propagate through the
GPP‐simulation loop and introduce some additional errors in subsequent transmission processes carbon
assimilation (e.g., NPP, carbon allocation, and leaf area dynamics; Rogers et al., 2017). Therefore, the initial
parameterization of leaf‐level functional properties is critical to ensure the reliable values of terrestrial
carbon cycle.

4.2. Model Uncertainty on Vegetation Functional Properties and Their Responses to
Environmental Changes

The large spread of initial conditions predominantly resulted from the difference in vegetation functional
properties (e.g., CUE, τveg, Fleaf, and SLA) among models. The modeled ensemble mean functional proper-
ties were larger than the observations, and these properties vary largely among different models. Most of the
current TBMs condense functional diversity to PFTs with parameterized properties (Sakschewski et al.,
2015), thus allowing for only limited variation and similar responses patterns to environmental changes
within and between PFTs (Kunstler et al., 2016; Reichstein et al., 2014). In fact, there is substantial inter
and intraspecific functional variation that will largely affect community assembly and vegetation‐
atmosphere carbon exchange. PFTs were poorly situated to capture key differences in plant traits across spe-
cies (Anderegg, 2014). Some recent studies have suggested that greater effort is needed to understand varia-
tion of field plant traits and assess the uncertainties of different upscaling methods (Musavi et al., 2015;
Walker et al., 2017). In the GPP‐simulation loop, we used Fleaf instead of NPP allocation representing plants
partitioning strategy. Here Fleaf can be regarded as a model‐derived functional property that reflects the inte-
grated effect of new biomass allocation and max LAI threshold in models. Accumulation of plant biomass is
a function of NPP, allocation, and mortality (turnover time), but most forests, once they reach a closed
canopy state, continue to accumulate woody biomass without undergoing commensurate increases in leaf
C. Therefore, the leaf fraction will be changing as a function of age. The field observations indeed proved
a larger Fleaf value for young forest and a smaller Fleaf value for mature forest (Figure 9a). However, the gen-
eral pattern of the age‐related changes Fleaf could be captured by CLM4 and CLM4VIC, which have no max-
imal LAI limitation, but not shown in some models (e.g., ORCHIDEE and VISIT) with the max‐LAI
threshold (Figures 9b–9g). Thus, we suggested that the age‐dependence of biomass and NPP allocation need
improvements in the forest carbon cycle modeling.

Moreover, the terrestrial ecosystem in the East Asian Monsoon region is strongly shaped by anthropogenic
perturbations in terms of species composition and community structure in recent years (Qin et al., 2016;
Yang et al., 2015). However, most of the models do not simulate human management including fertilization
and irrigation (Tian et al., 2003). Some models still use potential vegetation map or treat cropland as grass-
land, which to a large extent explains the large divergence in initial vegetation properties. Furthermore, we
still have limited understanding of the natural plasticity of these properties under considerable environmen-
tal changes in the future (Verheijen et al., 2013). Overall, a more realistic representation of vegetation func-
tional properties, with the consideration of their biogeographical and ecological variability, would improve
the simulation and prediction of GPP in the East Asian monsoon region. Reducing the simulation biases on
environmental impacts on vegetation functional properties is urgently needed in the East Asian monsoon
region. The importance of improved CUE in current TBMs has been highlighted by a recent model evalua-
tion on ecosystem productivity over the northern permafrost regions (Xia et al., 2017). This study also
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supports the analysis of ISI‐MIP models (Friend et al., 2014), which found that τveg is one major uncertainty
source for simulating long‐term dynamics of terrestrial ecosystem productivity. The CO2‐induced decrease
of Fleaf could be attributed to the increased plant demand for nutrients with a larger carbon allocation to
roots (Poorter et al., 2012). However, our confidence in the modeled impacts of increasing CO2

concentration and nitrogen deposition is low. This is because experimental evidence on CO2 effects in the
East Asian monsoon region is scarce (Figure S2), and there are inconsistent findings for N effects on PLAI
(Mao et al., 2015; Strengbom & Reich, 2006). Fortunately, a large number of global change manipulative
experiments have been conducted in this region to test the vegetation response to environmental changes
(Fu et al., 2015). Nitrogen addition was the most frequently manipulated treatment, identified in 28 of the
total 49 experiments, while other treatments were only manipulated in limited experiments (Table S8 and
Figure S10). The utility of these experiments for constraining responses in models may be controversial,
as the mismatch of the corresponding vegetation properties and environmental drivers, the limited
duration to induce critical feedbacks (Luo et al., 2011). Globally, the FACE‐MDS project, incorporating
synchronous simulated and experimental results, provide valuable guidance in identifying critical model
assumptions (Medlyn et al., 2015). However, the universality of these assumptions needs more validation
for the limited climate space and biodiversity (Norby et al., 2016). We encourage the application of such
MDS or “assumption‐centered” approach in the East Asian monsoon region to fundamentally improve
understanding of feedbacks between terrestrial ecosystem and the atmosphere accompanied by
subtropical monsoon.

4.3. Overestimated GPP and Implications for Data‐Model Integration in the East Asian
Monsoon Region

Many previous studies have reported the overestimation of global or regional GPP by current TBMs (Peng
et al., 2015; Xia et al., 2017; Yao et al., 2017). In the East Asian monsoon region, such model overestimation
is mainly attributable to the overestimation of vegetation functional properties (especially in SLA and LAI).
The modeled CUE in the East Asian monsoon region (52±1%) is higher than those derived from global
gridded data products (44±2%) and globally distributed in situ measurements across 131 sites (46±1%;
Campioli et al., 2015). However, the observation‐based CUE was calculated from two dependent data

Figure 9. Age‐related dynamics of leaf C fraction from field observations (a) andMulti‐scale Synthesis and Terrestrial Model Intercomparison Project models (b–g).
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products, which may generate some uncertainty for estimating the CUE. To avoid the effect of autocorrela-
tion, we also calculated the CUE values from MTE GPP (Jung et al., 2011) and MODIS NPP and this over-
estimation trend was still validated (Figure S8). The overestimation of τveg in the East Asian Monsoon
region was also found in global vegetation models participating in ISI‐MIP (Thurner et al., 2017). Long‐
term satellite‐derived LAI products (MOD15A2‐LAI, GLOPMAP‐LAI, GLASS‐LAI, GIMMS3g LAI, etc.)
are often used to evaluate the models. However, a relatively large discrepancy among these long‐term
LAI products has also been reported in some recent studies (Xiao et al., 2017; Zhu et al., 2017).
Therefore, the uncertainty of LAI data itself (Jiang et al., 2017) should be considered when evaluating
model performances.

The positive GPP bias does not necessary mean the ecosystem C sink is also overestimated by current TBMs
in the East Asian monsoon region. Conversely, a recent study showed that current models tend to underes-
timate NEP fivefold to sevenfold (Yu et al., 2014), consistent with the results computed from MsTMIP mod-
els (Figure S9). The diametrically opposed performance of models in simulating GPP and NEP reveals that
the modeled ecosystem respiration has a larger relative bias compared to GPP. This large “missing” or “resi-
dual” terrestrial carbon sink may be due to the lateral flows of sequestered C to aquatic ecosystems, which is
rarely considered in most of the current TBMs. Recent evidence has suggested that this non‐biological pro-
cess sustains an important C sinks in this region (Li et al., 2017). Therefore, we recommend the inclusion of
dissolved C coupled with hydrologic processes in the modeled soil C cycling. In addition, a more accurate
prediction of the C sink dynamic in the East Asian monsoon region requires more observations of specific
processes linked to both ecosystem C uptake and losses in this region.

The multiple observational networks in the East Asian monsoon region can potentially provide useful
benchmarks for the TBMs (Figure S10). For example, there are currently 78 flux towers in the East Asian
monsoon region (Tables S9 and S10), which could offer reliable benchmarks for the modeled dynamics of
C and water processes in terrestrial ecosystems (He et al., 2010; Ichii et al., 2013). The Center for Tropical
Forest Science and Forest Global Earth Observatories (CTFS‐ForestGEO) is a global network of forest
research plots, and has established 12 large permanent forest plots in the East Asian monsoon region to
monitor the long‐term changes of vegetation and species coexistence (Table S11; Cao et al., 2013; Chao et al.,
2010; Chen, 2009; Ding et al., 2013; Feng et al., 2016; Guo et al., 2015; Hau et al., 2005; Lan et al., 2009; Lu
et al., 2013; Song et al., 2015; Su et al., 2007; Yang et al., 2011; Chang et al., 2012). These observational net-
works, together with the field experiments, could be excellent platforms to improve the modeling of vegeta-
tion functional properties in the East Asian monsoon region.

5. Conclusions

In conclusion, we identified the uncertainty sources of intermodel differences and model ensemble biases in
the simulated GPP across the East Asian monsoon region. The limitations of different presentations of plant
traits among current models have been widely discussed by recent studies (Anderegg et al., 2014; Verheijen
et al., 2013). This study identified the dominant roles of SLA (LAI) and Fleaf in the simulated intermodel var-
iation of GPP. In addition, the model ensemble overestimation in simulated GPP in the East Asian monsoon
region was mainly attributed to the relatively higher modeled SLA and CUE. The field measurements
showed that Fleaf changes as a function of age but the observed age‐related pattern was not well captured
by these models. Thus, we suggest a high priority to add the age dependence of biomass and NPP allocations
into the current models. Our traceability framework is applicable to most existing MIPs to diagnose the
sources of intermodel variability in simulated GPP. Furthermore, some key questions need to be addressed
in future researches. First, only C‐related vegetation functional properties were included in this framework.
It remains unclear how simulated GPP simulation is impacted by those water‐ and nutrient‐related proper-
ties among models (Reichstein et al., 2014). Second, large differences in the vegetation functional properties
amongmodels should be attributed to the diverse representations of PFTmaps and the inconsistent parame-
terizations of functional properties within the same PFT (Bloom et al., 2016; Xia et al., 2017). The relative
contributions of PFTmaps and inconsistent parameters to the intermodel difference in vegetation functional
properties need to be further quantified. Overall, this study highlights that the modeling of ecosystem pro-
ductivity at middle‐to‐low latitudes could benefit from a better understanding of the biogeographical and
ecological variations in plant traits and vegetation functional properties.
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