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ABSTRACT
Phytoremediation is considered as a promising soil remediation technique. In the present study,
the growth responses, cadmium (Cd) accumulation and uptake capability of six popular composi-
tae species, namely, Taraxacum mongolicum Hand.-Mazz., Tagetes erecta L., Tagetes patula L.,
Zinnia elegans Jacq., Centaurea cyanus L. and Gerbera jamesonii Bolus under Cd stress were investi-
gated. Among the six compositae species, the growth of T. erecta L. and T. patula L. improved
under 10mg kg�1 Cd exposure in term of the total biomass and height increased along with the
increased Cd concentration in soil, and the growth of the two plants had no significant differences
at the high Cd concentration (100mg kg�1), which indicated that they have good tolerance to Cd
toxicity. At the same time, the two plants have higher biomass than four other plants.
Furthermore, they can accumulate Cd above 100lg g�1dry tissue, which is the threshold value of
a Cd-hyperaccumulator, and have higher Cd uptake ability, translocation factor (TF) and biocon-
centration factor (BCF) values. According to these traits, it was shown that T. erecta L. and T. patula
L. had strong tolerance and accumulation capability to Cd, therefore they can become potential
hyperaccumulators in phytoremediation of Cd-contaminated soils.
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Introduction

Cadmium (Cd) is one of the highly toxic environmental pol-
lutants (Rui et al. 2016; Fu et al. 2018). The contamination
of Cd are produced from non-ferrous metals smelting, mine
exploitation, industrial products and agricultural activities.
Cd is non-essential element for plants, however, it can be
absorbed easily by plants and eventually enter the human
body via the food chain (Yasin et al. 2018). Therefore, Cd-
contaminated soil is current concern globally because of the
serious threat to human health.

Nowadays several technologies have been developed to
cleanup Cd-contaminated soil. Phytoremediation is consid-
ered as a promising soil remediation technique where the
plants with hyperaccumulation ability are used to remove,
assimilate or adsorb hazardous pollutants in soil (He et al.
2013; Midhat et al. 2017; Madej�on et al. 2018; Zeng et al.
2018). It has recently become a popular research topic in
screening potential hyperaccumulators for phytoremediation.
Cd concentration in shoots (dry weight) of some species is
generally 0.05–0.2 lg g�1 (Solis-Dominguez et al. 2007),
however, hyperaccumulators can accumulate Cd above
0.01% dry weight (100lg g�1) (Liu et al. 2009). Nearly 500
species of hyperaccumulators have been documented all
over the world, however, only few plant species such as
Thlaspi caerulescens, Arabidopsis halleri, Sedum alfredii,
Brassica napus L., Lonicera japonica Thunb. and Coronopus

didymus have been reported (Escarr�e et al. 2000; Huguet
et al. 2012; Jaffr�e et al. 2013; Wang et al. 2013; Xiao et al.
2013; Liu et al. 2015; Angelova et al. 2017; Sidhu et al.
2017). Application of hyperaccumulators in practice is lim-
ited because of low biomass and slow growth rate of hyper-
accumulators or accumulators (Liu et al. 2018). Thus, it is
important and necessary to identify new universal hyperac-
cumulators or accumulators of Cd. The plant species with
fast growth, high biomass and ecological value, such as
ornamental plants, may provide a good cleanup method for
Cd-contaminated soil. Some ornamental plants have also
been used for the bioaccumulation and remediation of heavy
metal and VOCs in contaminated environment (Liu et al.
2011, 2013; Han et al. 2015; Jelusic and Lestan 2015; Rafiq
et al. 2016; Teiri et al. 2018; Yan et al. 2018). However, little
information is available on the accumulation potential of Cd
in compositae species.

Compositae (Asteraceae) family is one of the largest flow-
ering plant families throughout the world. Compositae is
important primarily for its many beautiful ornamentals, such
as Taraxacum, Tagetes, Zinnia, Centaurea and Gerbera. The
compositae species are widely used as landscape greening and
horticultural ornamentation. In the present study, six popular
compositae species, namely, Taraxacum mongolicum Hand.-
Mazz., Tagetes erecta L., Tagetes patula L., Zinnia elegans
Jacq., Centaurea cyanus L. and Gerbera jamesonii Bolus were
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selected. The aims of the study were: (1) to evaluate the
effects of different concentrations Cd (0, 10 and 100mg
kg�1) on the growth of six ornamental plants and (2) to iden-
tify the accumulation and translocation characteristics of six
ornamental plants to Cd stress. Furthermore, it can provide a
reference for screening new hyperaccumulators for phytore-
mediation of Cd-contaminated soil.

Materials and methods

Plant culture and Cd exposure

The pot-culture experiment was carried out in July 2017 at
the Shenyang Botanical Garden of Chinese Academy of
Sciences (41�460 N and 123�260 E), which is in the temperate
zone with a semi-humid monsoon climate. The average
annual temperature is 7.8 �C, the average annual precipita-
tion is 734.5mm, and the relative air humidity is 65–75%.
During the experiment, minimal and maximal temperatures
ranged from 15 �C to 20 �C and 25 �C to 31 �C, respectively.
The soil used in the pots was collected from the top soil
(0–20 cm) of a garden. Table 1 lists physical and chemical
properties of the test soil. The air-dried soil samples were
sieved through a 3-mm mesh sieve and placed into plastic
pots with (20 cm diameter �15 cm height), mixed uniformly
with the specified concentration of CdCl2�2.5H2O solution.
Three Cd concentrations were applied: 0 (CK), 10 and
100mg kg�1. Seeds of six compositae species (T. mongoli-
cum Hand.-Mazz., T. erecta L., T. patula L., Z. elegans Jacq.,
C. cyanus L. and G. jamesonii Bolus) were obtained from
Liaoning Academy of Agricultural Sciences. Table 2 lists the
natural properties of sampled plants. The seeds of each spe-
cies were superficially sterilized by contact with ethanol sol-
utions (70%, v/v) for 1min, followed by distilled water
under agitation for 10min. Twenty seeds of each species
were transplanted into each pot. Each Cd concentration was
repeated three times in separate pots. The plants were har-
vested 8weeks later for analysis.

Measurements of plant biomass and Cd content in
plant tissues

The harvested plants were rinsed with tap water, and the
roots were immersed in 20mM Na2-EDTA for 15min to
remove Cd adhered to the root surface (Yang et al. 2004).
Then, the plants were separated into leaves, stems and roots.
They were then separately rinsed with running tap water
and distilled water, wiped with tissues and weighed. They
were then dried at 105 �C for 30min, then at 70 �C until
weight was constant for Cd content measurement.

Dried plant materials were weighed and ground. The
powders were digested with a concentrated acid mixture of
HNO3/HClO4 (3:1, v/v). The Cd concentration in plant tis-
sues was determined with an Optima3000 ICP-AES instru-
ment (Perkin-Elmer, USA).

Data analysis

The translocation factor (TF) indicated the ability of plants
to translocate heavy metals from the roots to the shoots
(Mattina et al. 2003). It was calculated as

TF ¼ The metal concentration in shoots
The metal concentration in roots

:

The bioconcentration factor (BCF) was described as
(Saraswat and Rai 2018):

BGF ¼ Themetal concetration in roots
Themetal concentration inmedium

:

Heavy-metal uptake was calculated using the following
formula as (Sharma and Agrawal 2006)

Uptakeðlg plant�1d�1Þ ¼ M2W2�M1W1

T2 � T1
;

where M1 and M2 are metal concentrations in the plant
tissue and W1 and W2 are the plant biomass at time T1 (ini-
tial sampling) and T2 (final sampling).

Statistical analyses

All measurements were replicated three times. Means and
standard deviations (SD) were calculated by the Microsoft
Office Excel 2010 for all the data. One-way analysis of vari-
ance was carried out with SPSS 17.0. The significant differ-
ence was set between treatments at p< .05 or p< .01.
Multiple comparison was also made by the least significant
difference (LSD) test.

Results and discussion

Differences in Cd tolerance among the six
compositae species

Heavy metal Cd is a non-essential element but has some
influence on plant growth. As shown as Figure 1, after
8weeks exposure to 10mg kg�1 Cd, the total biomass dry
weight of the four plants (T. mongolicum Hand.-Mazz., Z.
elegans Jacq., C. cyanus L. and G. jamesonii Bolus) had no
significant differences compared with the control, by con-
trast, the total biomass dry weight of T. erecta L. and T.
patula L. increased significantly (p< .01), indicating that a
low Cd concentrations might have a stimulating effect on
plant growth. The same phenomenon has been found by
Kinraide (1993), Calabrese and Baldwin (2003), Scebba et al.
(2006) and Jia et al. (2015), which is also proposed as horm-
esis by de la Rosa et al. (2004). With the concentration of
Cd increasing, chlorosis on the leaves of C. cyanus L. and

Table 1. Physical and chemical properties of the test soil.

Soil type Meadow burozem

pH 7.25 ± 0.03
Organic matter (OM) (%) 4.09 ± 0.02
Cation exchange capacity (CEC) (cmol kg�1) 19.53 ± 0.08
Total N (g kg�1) 3.65 ± 0.03
Total P (g kg�1) 2.11 ± 0.01
Total K (g kg�1) 16.98 ± 0.06
Cd (mg kg�1) 0.15 ± 0.02
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G. jamesonii Bolus was observed, and the total biomass dry
weight of the two plants had a significant decrease com-
pared with the control (p< .01). However, the total biomass
dry weight of the four plants (T. mongolicum Hand.-Mazz.,
Z. elegans Jacq., T. erecta L. and T. patula L.) had no signifi-
cant differences compared with the control.

As shown as Figure 2, after 8 weeks exposure to 10mg
kg�1 Cd, the height of the three plants (T. mongolicum
Hand.-Mazz., Z. elegans Jacq., C. cyanus L.) had no signifi-
cant differences compared with the control, and the height
of T. erecta L. and T. patula L. increased significantly
(p< .01), which is also consistent with the increased total
biomass dry weight of the two plants. The phenomenon is
also termed as hormesis by other researchers (Kovalchuk
et al. 2003; de la Rosa et al. 2004; Aina et al. 2007; Seth
et al. 2008; Sidhu et al. 2017), which could result from an
overcompensation response of cells and organisms to toxic
chemicals or the defense mechanisms induced by oxygen
free radicals. The underlying mechanism study needs to be
further investigated. By contrast, the height of G. jamesonii

Table 2. The natural properties of sampled plants.

Plant species Families and genera Life form Plant images

Taraxacum mongolicum Hand.-Mazz. Compositae, Taraxacum Perennial

Tagetes erecta L. Compositae, Tagetes Annual

Tagetes patula L. Compositae, Tagetes Annual

Zinnia elegans Jacq. Compositae, Zinnia Annual

Centaurea cyanus L. Compositae, Centaurea Annual or biennial

Gerbera jamesonii Bolus Compositae, Gerbera Perennial

Figure 1. Effects of Cd soil concentrations on total biomass dry weight of six
compositae species. Top legend – concentration of Cd. Values repre-
sent mean ± SD.
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Bolus had a significant decrease under 10mg kg�1 Cd
exposure compared with the control. When the concentra-
tion of Cd was up to 100mg kg�1 in soil, the height of the
four plants (T. mongolicum Hand.-Mazz., Z. elegans Jacq., C.
cyanus L. and G. jamesonii Bolus), decreased significantly
compared with the control (p< .01). However, the height of
T. erecta L. and T. patula L. showed no significant differen-
ces compared with the control.

Based on these growth traits, it demonstrated that T.
erecta L. and T. patula L. had high tolerance to as much as
100mg kg�1 Cd, which is in agreement with no obvious
changes on the leaves of the two plants. The growth of the
two plants was improved at the low Cd concentration
(10mg kg�1) in term of the total biomass and height
increased along with the increased Cd concentration in soil.
Moreover, among the six compositae species, T. erecta L.
and T. patula L. have higher biomass than four other plants.

This indicates that T. erecta L. and T. patula L. have good
potential in phytoremediation of Cd-contaminated soils,
since the tolerance to the toxicity of heavy metal may give
an important index to recognize a hyperaccumulator or
accumulator (Ernst and Nelissen 2000; Yang et al. 2004; Liu
et al. 2009).

Differences in Cd accumulation among the six
compositae species

After 8weeks of Cd-exposure, the effects of Cd soil concen-
trations on Cd concentration in shoots and roots of six com-
positae species are shown in Figure 3. The concentrations of
accumulated Cd in shoots and roots of the six compositae
species all increased significantly with increasing Cd concen-
trations in soil (p< .01). When the concentration of Cd was
up to 100mg kg�1 in soil, the concentrations of accumulated
Cd in shoots of T. erecta L., T. patula L. and Z. elegans Jacq.
reached 166.07 ± 5.13, 231.72 ± 6.87 and 109.89 ± 5.82 lg
g�1 dry weight (DW), respectively, which is above the thresh-
old value defined for Cd-hyperaccumulator (100 lg g�1 DW)
(Baker and Brooks 1989; Sun et al. 2008). However, the con-
centrations of accumulated Cd in shoots of T. mongolicum
Hand.-Mazz., C. cyanus L. and G. jamesonii Bolus were all
less than 100lg g�1 DW. At the same level of Cd concentra-
tion (100mg kg�1), the concentrations of accumulated Cd in
roots of T. mongolicum Hand.-Mazz., T. erecta L., T. patula
L. and Z. elegans Jacq. reached 109.13 ± 3.29, 177.11 ± 6.65,
202.34 ± 3.67 and 129.18 ± 4.82 lg g�1 DW, respectively. By
contrast, the concentrations of accumulated Cd in roots of C.
cyanus L. and G. jamesonii Bolus were 85.22 ± 3.91 and
87.79 ± 6.11 lg g�1 DW.

The elevated translocation factor (TF) was used to evalu-
ate the ability of the plant to tolerate and translocate Cd
from root to shoots (Wei et al. 2016). As shown as Table 3,
when the concentration of Cd was 10mg kg�1 in soil, the

Figure 3. Effects of Cd soil concentrations on Cd concentration in shoots and root of six compositae species. Top legend – concentration of Cd. Values repre-
sent mean ± SD.

Figure 2. Effects of Cd soil concentrations on height of six compositae species.
Top legend – concentration of Cd. Values represent mean ± SD.
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TF values of T. mongolicum Hand.-Mazz., Z. elegans Jacq.
and C. cyanus L. were higher than 0.90. When the concen-
tration of Cd was up to 100mg kg�1 in soil, the TF values
of T. erecta L. and T. patula L. increased significantly and
reached 0.93 and 1.15. The bioconcentration factor (BCF)
was also used to measure the metal accumulation potential
of plants with respect to the metal concentration in soil
(Saraswat and Rai 2018). When the concentration of Cd was
10mg kg�1 in soil, the BFC values of T. mongolicum Hand.-
Mazz., T. erecta L., T. patula L. and Z. elegans Jacq. were
higher than 4.00. When the concentration of Cd was up to
100mg kg�1 in soil, the BCF values of T. erecta L. and T.
patula L. still reached 1.77 and 2.02. The results above sug-
gested that the two plants (T. erecta L. and T. patula L.) had
stronger tolerance to high concentration Cd and had better
potential in translocating Cd more efficiently.

Cd uptake in six compositae species varied with increas-
ing Cd concentrations in the soil (Table 3). When the con-
centration of Cd was 10mg kg�1 in soil, Cd uptake of T.
erecta L. and T. patula L. were 6.79 ± 0.08 and 3.92 ± 0.05 lg
plant�1d�1, which is higher than four other plants. When
the concentration of Cd was up to 100mg kg�1 in the soil,
Cd uptake of increased significantly and reached 27.45 ± 0.16
and 17.36 ± 0.13 lg plant�1d�1, and Cd uptake of the four
other plants were all less than 5.00 lg plant�1d�1. There was
a positive correlation between Cd uptake and Cd accumula-
tion in T. erecta L. and T. patula L., indicating the two
plants may accumulate larger amounts of Cd when exposed
to higher Cd concentrations in the soil. Based on higher Cd
uptake, TF and BCF values, the higher concentrations of
accumulated Cd in shoots and roots of T. erecta L. and T.
patula L. indicating that the two plants have the potential
for phytoremediation of Cd-contaminated soils.

Conclusions

In the present study, exposure to 10mg kg�1 Cd, the total
biomass and height of T. erecta L. and T. patula L. all
increased significantly, indicating that low Cd concentrations
might have a stimulating effect on plant growth. When the
concentration of Cd was up to 100mg kg�1, the total bio-
mass and height of the two plants had no significant differ-
ences compared with the control, which is in agreement
with the observation of no obvious changes on the leaves of
the two plants. At the same time, the two plants have higher
biomass than four other plants among the six compositae
species. Moreover, T. erecta L. and T. patula L. can accumu-
late Cd above 100lg g�1 DW, which is the threshold value

of Cd-hyperaccumulator, and have higher Cd uptake ability,
TF and BCF values. According to these traits, it is shown T.
erecta L. and T. patula L. can become potential hyperaccu-
mulators in phytoremediation of Cd-contaminated soils. On
the one hand, as popular ornamental plants, T. erecta L. and
T. patula L. have the double advantages of beautifying the
environment and purifying the soil. On the other hand,
coming from the same families and genera, the two plants
have the similar capability of Cd hyperaccumulation, and
our results might suggest that most of the genera plants pos-
sess the same hyperaccumulation characteristics to Cd or
not? The present study will also provide an important refer-
ence for understanding Cd tolerant strategies in hyperaccu-
mulator cells.
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