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Abstract: Key Findings: Combining physical fractionation and pyrolysis–gas chromatography/mass
spectrometry (py-GC/MS) technique can help better understand the dynamics of soil organic matter (SOM).
Background and Objectives: SOM plays a critical role in the global carbon (C) cycle. However, its complexity
remains a challenge in characterizing chemical molecular composition within SOM and under nitrogen
(N) deposition. Materials and Methods: Three particulate organic matter (POM) fractions within SOM
and under N treatments were studied from perspectives of distributions, C contents and chemical
signatures in a subtropical forest. N addition experiment was conducted with two inorganic N forms
(NH4Cl and NaNO3) applied at three rates of 0, 40, 120 kg N ha−1 yr−1. Three particle-size fractions
(>250 µm, 53–250 µm and <53 µm) were separated by a wet-sieving method. Py-GC/MS technique
was used to differentiate between chemical composition. Results: A progressive proportion transfer of
mineral-associated organic matter (MAOM) to fine POM under N treatment was found. Only C content in
fine POM was sensitive to N addition. Principal component analyses (PCA) showed that the coarse POM
had the largest plant-derived markers (lignins, phenols, long-chain n-alkanes, and n-alkenes). Short-chain
n-alkanes and n-alkenes, benzofurans, aromatics and polycyclic aromatic hydrocarbons mainly from black
carbon prevailed in the fine POM. N compounds and polysaccharides from microbial products dominated
in the MAOM. Factor analysis revealed that the degradation extent of three fractions was largely distinct.
The difference in chemical structure among three particulate fractions within SOM was larger than
treatments between control and N addition. In terms of N treatment impact, the MAOM fraction had
fewer benzofurans compounds and was enriched in polysaccharides, indicating comparatively weaker
mineralization and stronger stabilization of these substances. Conclusions: Our findings highlight the
importance of chemical structure in SOM pools and help to understand the influence of N deposition on
SOM transformation.

Keywords: soil organic matter; particulate fractionation; pyrolysis-GC/MS; molecular characterization;
nitrogen deposition; subtropical forest

1. Introduction

As the largest carbon (C) pool in terrestrial ecosystems [1], soil organic matter (SOM) stores over three
times the amount of C in either the atmosphere or biosphere [2], and functions as a net sink or source for
atmosphere CO2 in various ecosystems [3]. However, SOM comprises a vast range of different functional
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pools with varying stabilization mechanisms and turnover rates in soils [4]. Since the accessibility of
SOM to organisms is the first requisite for decomposition, physical fractionation method is based on the
association of soil particle sizes and their spatial distribution [5]. Different soil particle sizes exhibit distinct
chemical and biological properties [6,7], differing in enzyme kinetics [8], organic matter concentration and
chemistry [9], which may serve different functions in SOM dynamics. Generally, the turnover rates normally
decelerate as the particle size decreases [10,11], as a result of a combination of SOM stabilization mechanisms,
including the change in chemical composition, increase in spatial inaccessibility and adsorption with
mineral surfaces [12,13]. However, Lützow et al. [4] concluded that smaller particles with a higher allocation
of soil organic carbon (SOC) may not conform to longer turnover time. Nevertheless, it remains to be
elucidated which manner (i.e., ‘truly’ stabilized, or potentially still ‘labile’ but just not accessible) could
account for mineral-associated C with a longer mean turnover time [14]. Therefore, there is increasing
emphasis on understanding the nature and contributions of various soil pools to the biogeochemical carbon
cycling in the context of future global climate change [15].

SOM is mainly composed of all organic materials derived from vegetal, microbial and animal biomass
with high complexity and heterogeneity [16]. Regardless of the environmental importance of SOM,
its chemical structure and dynamics, which play a fundamental role in SOM stability, remain largely
unknown [17,18]. Thus numerous studies with a suite of specific markers and compound-specific isotope
analysis were performed to differentiate and evaluate functional SOM fractions [4,15,19]. In consequence,
various organic matter pools have been identified by sensitive pyrolysis products, indicative of plant and
microbial contributions, with different resistance to degradation and different behaviors for decay [20].
For instance, coarse and fine fractions (>53 µm) of SOM typically contain more plant-derived materials
and have higher C:N ratio than the mineral-associated fraction, which is dominated by an admixture
of microbial-processed products [4,16]. However, only a partial picture of SOM molecular composition
has been yielded and there still exist knowledge gaps on the identification and quantification of some
other products such as N-containing compounds, tannins and benzofurans [19,21]. Compared with other
analytical techniques, pyrolysis–gas chromatography/mass spectrometry (py-GC/MS) is more efficient and
can provide a larger view of SOM chemical structural information [19,22]. In addition, py-GC/MS also
facilitates a better understanding of the extent of the decomposition/preservation in SOM pools and a
detailed comparison of the SOM produced under different managements [23–25]. Furthermore, advantages
of this pyrolysis analysis over others include good repeatability and a relatively small amount of soil
samples required [26–28]. Therefore, more information is needed on the precise characterization of SOM to
determine its fate in mechanistic processes involving the rates of decomposition, transformation, and genesis
of individual compounds in various fractions.

Further understanding of the chemical structure and dynamics of SOM should be in relation to
key environmental controls like nitrogen (N) deposition mitigation through C sequestration [26,29].
Anthropogenic activities have doubled the rates of reactive N inputs on the global scale in the past century
and substantially affected C and N cycles in most terrestrial ecosystems [30,31]. However, there remains
large uncertainty in the response of soil organic C dynamic balance of gains and losses to elevated N
deposition [32,33]. Previous studies demonstrated N inputs altered the quantity and composition of SOM
and interfered in the dynamics of SOM decomposition, both of these consequences having influenced soil
C storage [34,35]. Meanwhile, considerable progress has been made in clarifying the response of bulk
soil organic C to atmospheric N deposition [36–39]. However, the responses of various SOC fractions
and their chemical composition to exogenous N input varied among different ecosystem types, and N
application levels, forms, and duration [40,41]. The biogeochemical mechanism underlying these responses
are not well understood [42]. Furthermore, the effect of elevated N deposition on SOM composition using
py–GC/MS at the molecular level in subtropical forests is yet understudied.

Here, we conducted a N addition experiment in a subtropical plantation forest to investigate both
quality and quantity changes of soil particulate fractions. The aims of this study are (1) to compare
the variability of C contents within SOM and under N treatments, (2) to characterize the chemical
composition of SOM particulate fractions using py-GC/MS to provide insights into their origins and
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decomposition extents, (3) to investigate which compounds of particulate fractions were affected by N
addition, and (4) to assess the relationships between SOC variation and molecular information.

2. Materials and Methods

2.1. Study Site

This study was carried out at the Qianyanzhou Ecological Experimental Station of Chinese
Academy of Sciences, located in Jiangxi Province, South China (26◦44′48” N, 115◦04′13” E, 100 m a.s.l.).
This region is classified as a typical subtropical, humid monsoon climate with mean annual temperature
of 17.9 ◦C and mean annual precipitation of 1475 mm, most of which occurs between March and
June [43]. The accumulated temperature above 0 ◦C is 6523 ◦C with 323 frost-free days annually.
The vegetation cover at this study site is a subtropical evergreen broad-leaved forest. The dominated
species in the canopy layer are masson pine (Pinus massoniana Lamb.), slash pine (Pinus elliottii Engelm.)
and Chinese fir (Cunninghamia lanceolate (Lamb.) Hook.). The understory layer is dominated by
Dicranopteris dichotoma (Thunb) Bernh, Woodwardia japonica (L.f.) Sm, and Loropetalum chinese (R.Br.)
Oliv [43]. The soil type is red soil and categorized as Cambisols (IUSS classification) with the following
characteristics: soil organic matter 20.44 g kg−1, total N 1.10 g kg−1, total phosphorus 1.12 g kg−1, pH
4.26, and soil bulk density 1.54 g cm−3 [43].

2.2. Experimental Design and Soil Sampling

The N fertilization experiment was established during May 2012 in the subtropical slash pine
plantation forest. Fifteen 20-m × 20-m plots were set up in a complete randomized block design and
separated at least 10 m buffer zones around each plot. Taking into account the local atmospheric N
deposition background (32.62 kg N ha−1 yr−1) [44], two inorganic N forms (NH4Cl and NaNO3) were
added at three rates of N addition (0, 40, 120 kg N ha−1 yr−1). Control, low-NH4Cl, high-NH4Cl,
low-NaNO3 and high-NaNO3 were hereafter referred to as CK, A40, A120, N40, and N120, respectively.
The fertilization rates were designed to simulate the predicted N inputs in the future. Each treatment
had three replicates. 509.6 g and 1528.8 g of NH4Cl and 809.5 g and 2428.5 g of NaNO3 fertilizers were
weighed and dissolved in 40 L water and then were uniformly sprayed into each low and high N plot
below the canopy using a backpack sprayer, respectively. Control plots received the same amount of
water. The solution was sprayed once a month in 12 equal applications over the entire year. The N
addition experiment was conducted over 4 years and continued throughout the study period.

Soils were randomly sampled in August 2016 using an auger of 2.5 cm in diameter. Five soil cores
at 0–20 cm depth were randomly collected and combined to one sample for each plot. Each composite
sample was placed in a plastic bag and placed into an incubator. After being taken back to the
laboratory, soil samples were sieved through a 2 mm mesh and divided into two parts: one part of
fresh soil used for general soil properties, and the other part of air-dried soil for physical fractionation
and chemical structure analysis.

2.3. Physical Fractionation and C Content Determination

Soils were physically fractionated using the method described by Cambardella and Elliott [45].
Three particulate organic matter (POM) were fractionated, including coarse POM, >250 µm, fine
POM, 53–250 µm and mineral-associated organic matter (MAOM), <53 µm. The pretreatment we
chose in our study was chemical dispersing with the dispersion agent of sodium hexametaphosphate
solution (SHMP) in order to potentially determine the types and amounts of SOM that bind particles
into aggregates. It may be valuable in understanding the function of SOM [46]. In brief, a 50 g
air-dried soil sample of bulk soil was dispersed using 100 mL 5 g L−1 SHMP and shaken for 15 h on a
reciprocating oscillator. Then, the suspension was filtered through a separated container with a stream
of water. Coarse POM and fine POM fractions were collected from the sieves after thoroughly rinsing.
The MAOM fraction was recovered by evaporation. All materials were dried overnight at 60 ◦C and
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weighed for percentages calculation. The collected fractions were ground and stored for organic C
concentration determination and py-GC/MS analysis. The C concentrations of three fractions were
determined with a CN auto-analyzer (vario EL III, Elementa, Germany).

2.4. Pyrolysis-GC/MS

Before the pytolysis-GC/MC analysis, the MAOM fractions were subject to mineral removal.
The MAOM fraction was shaken for 24 h under N2 with 750 mL of 0.1 M NaOH. The suspension
was centrifuged for 1 h at 4000× g and dried. Approximately 4 mg of soil sample was loaded in a multi-shot
pyrolyzer PY-3030D (610 ◦C) directly attached to a GC (7890B)/MS (7000B) Agilent system. The pyrolysis
products were separated by an Ultra Alloy capillary column (length × thickness × diameter = 30 m ×
0.25 mm × 0.25 µm) with helium at a constant flow of 1.2 mL min−1 as the carrier gas. The temperature
program of the GC oven was set with an initial temperature of 40 ◦C for 1 min, heated to 100 ◦C at 2 ◦C
min−1, and then ramped to a final temperature of 290 ◦C at 4 ◦C min−1. The final temperature of 290 ◦C was
maintained for 10 min. The compounds were identified based on the mass spectrometer (mass range m/z
10–650, ionization energy 70 eV), GC retention times and comparison with the NIST MS search 2.0 library.

For each sample, 92 pyrolysis products were identified and quantified using the intensity of two
characteristic fragment ions (Table 1). The peak integrations of selected 92 products on total ion current
were set as 100% and relative abundances were calculated with respect to this sum. According to
the probable origin and chemical similarity, the pyrolysis products were classified into the following
groups: n-alkanes, n-alkenes, aromatics, lignins, polyaromatics, N-containing compounds, benzofurans,
phenols and polysaccharides (Table 1).

Table 1. Quantified pyrolysis products in the three fractions.

Compound Code m/z 1 RT 2 Compound Code m/z RT

n-alkanes Aromatics
n-C6:0 A1 57 + 71 2.47 Benzene Ar1 78 3.06
n-C7:0 A2 57 + 71 3.56 Indane Ar2 117 + 118 17.47
n-C8:0 A3 57 + 71 5.86 Indene Ar3 115 + 116 18.01
n-C9:0 A4 57 + 71 9.92 Toluene Ar4 91 + 92 4.92
n-C10:0 A5 57 + 71 15.63 Methylindene Ar5 115 + 130 24.98

n-C11:0 A6 57 + 71 22.24 Lignins
n-C12:0 A7 57 + 71 29.09 4-Acetylphenol Lg1 121 + 136 25.96
n-C13:0 A8 57 + 71 35.81 Guaiacol Lg2 109 + 124 21.25
n-C14:0 A9 57 + 71 42.27 4-Methylguaiacol Lg3 123 + 138 28.32
n-C15:0 A10 57 + 71 48.41 4-Ethylguaiacol Lg4 137 + 152 34.10
n-C16:0 A11 57 + 71 54.24 4-Vinylguaiacol Lg5 135 + 150 36.38
n-C17:0 A12 57 + 71 59.82 4-Formylguaiacol Lg6 151 + 152 41.787
n-C18:0 A13 57 + 71 65.10 4-(Prop-2-enyl)guaiacol, trans Lg7 164 45.00
n-C19:0 A14 57 + 71 70.15 4-Acetylguaiacol Lg8 151 + 166 47.19
n-C20:0 A15 57 + 71 74.96 Syringol Lg9 139 + 154 38.884
n-C21:0 A16 57 + 71 79.56 4-Ethylsyringol Lg10 167 + 182 49.13

n-C22:0 A17 57 + 71 84.01 Polyaromatics
n-C23:0 A18 57 + 71 87.63 Naphthalene PA1 128 27.18
n-C24:0 A19 57 + 71 90.58 Methylnaphthalene PA2 141 + 142 34.61
n-C25:0 A20 57 + 71 93.13 Biphenyl PA3 154 40.22
n-C26:0 A21 57 + 71 95.40 C2 naphthalene PA4 141 + 156 41.05
n-C27:0 A22 57 + 71 97.49 Methylbiphenyl PA5 168 + 167 41.64
n-C28:0 A23 57 + 71 99.44 Fluorene PA6 165 + 166 52.19

n-alkenes Phenanthrene PA7 178 62.77
n-C4:1 E1 57 + 71 1.78 Anthracene PA8 178 63.28
n-C5:1 E2 57 + 71 1.92 Methylphenanthrene PA9 192 + 191 68.68
n-C6:1 E3 57 + 71 2.41 2-Phenylnaphthalene PA10 204 + 202 72.53
n-C7:1 E4 57 + 71 3.43 Fluoranthene PA11 202 76.36
n-C8:1 E5 57 + 71 5.59 Pyrene PA12 202 78.63
n-C9:1 E6 57 + 71 9.53 Retene PA13 219 + 234 83.65
n-C10:1 E7 57 + 71 15.08 Perylene PA14 252 + 250 84.91
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Table 1. Cont.

Compound Code m/z 1 RT 2 Compound Code m/z RT

n-C11:1 E8 57 + 71 21.66 N-containing compounds
n-C12:1 E9 57 + 71 28.50 Pyridine N1 52 + 79 4.41
n-C13:1 E10 57 + 71 35.24 Pyrrole N2 67 4.71
n-C14:1 E11 57 + 71 41.74 Methyl-1 H-pyrrole N3 80 + 81 7.32
n-C15:1 E12 57 + 71 47.92 Benzonitrile N4 76 + 103 14.35
n-C16:1 E13 57 + 71 53.81 Indole N5 90 + 117 34.94
n-C17:1 E14 57 + 71 59.40 Isoquinolin N6 129 30.82

n-C18:1 E15 57 + 71 64.72 Benzofurans
n-C19:1 E16 57 + 71 69.79 Benzofuran Bf1 89 + 118 15.06
n-C20:1 E17 57 + 71 74.65 Methylbenzofuran Bf2 131 + 132 22.00
n-C21:1 E18 57 + 71 79.26 Dibenzofuran Bf3 139 + 168 48.34

n-C22:1 E19 57 + 71 83.74 Phenols
n-C23:1 E20 57 + 71 87.43 Phenol Ph1 66 + 94 14.88
n-C24:1 E21 57 + 71 90.43 Methylphenol Ph2 107 19.35
n-C25:1 E22 57 + 71 92.99 C2 phenol Ph3 107 + 122 25.54

n-C26:1 E23 57 + 71 95.30 Polysaccharides
n-C27:1 E24 57 + 71 97.39 Acetic acid Ps1 60 3.63
n-C28:1 E25 57 + 71 99.35 2-Furaldehyde Ps2 95 + 96 6.25

5-Methyl-2-furaldehyde Ps3 109 + 110 13.23
1 Mass fragments used for quantification; 2 Retention time (min).

2.5. Statistical Analysis

One-way analysis of variance (ANOVA) was used to investigate the effect of nitrogen treatment
on percentages, C contents, and chemical groups of POM fractions. If ANOVAs were significant
(p < 0.05), the means were compared with the Duncan test. Principal components analysis (PCA)
was performed to provide a general indication with nine chemical groups across three fractions
using CANOCO software for Windows 5.0 (Biometrics-Plant Research International Wageningen,
The Netherlands). To investigate detailed differentiation among compounds, factor analysis was
applied to all 92 quantified pyrolysis products using SPSS software 16.0 (SPSS Inc., Chicago, IL, USA).
The relationships between C contents and chemical compositions of POM fractions were evaluated by
linear regression analysis. Figures were created using the SigmaPlot 12.5 for Windows.

3. Results and Discussions

3.1. Percentages and C Contents of Particulate Fractions

In the control plots, the percentages of different particulate fractions were: coarse POM, 8.7%,
fine POM, 16.7% and MAOM, 74.6% (Figure 1). The allocation of three fractions was consistent with
Stemmer et al. [47], who also found a similar distribution using chemical dispersion in the soil type
of Cambisol, the same as the soil type in our study site. In comparison, Grandy et al. [48] reported
a totally different pattern that the proportion decreased with the decreasing size using shaking and
centrifugation methods in Kalkaska sand. Therefore, the distribution of particle sizes distinctly depends
on soil physical or chemical pretreatment, and soil type [47].

Nitrogen addition resulted in a significant increase in the percentage of fine POM and a decline in
MAOM proportion compared with control plots (Figure 1). As we discuss below, the added N was
firstly transformed to dissolved organic N and subsequently adsorbed to silt and clay particles [49].
However, stable MAOM pools may be disproportionately comprised of microbial-derived N compounds
revealed by chemical characterization of SOM [50]. Moreover, increased fresh OM inputs induced by
N addition with a higher C:N ratio and hydrophobicity would supplant outer compounds bonding
weakly to mineral site [51]. This partly explained the proportion movement from MAOM into fine POM
under N addition, which was consistent with several other N application experiments studies [52,53].
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Figure 1. Percentages of three fractions under different treatments. CK, A40, A120, N40, and N120 are
control, low (40 kg N ha−1 yr−1), and high (120 kg N ha−1 yr−1) rates of NH4Cl and NaNO3 application,
respectively. Different lowercases and uppercases represent significant differences between control
and N treatments in fine particulate organic matter (POM) and mineral-associated organic matter
(MAOM), respectively.

Figure 2a showed the carbon distribution of three particulate fractions. The highest C content
was found in the MAOM compared with fine POM and coarse POM. This result was consistent with
other studies [14,54], which reported that over 80% of organic carbon existed in silt and clay fraction.
This could be explained by the fact that the stabilization of organic matter was controlled mainly by
the formation of organo-mineral associations through ligand exchange [54], polyvalent cation bridges
and hydrophobic interactions [13]. Lower C contents in coarse and fine fractions could be attributed to
the poor protection against microbial attacking [4]. The result also showed that the C:N ratio declined
with the decrease of pore sizes (Figure 2b). Coarse POM has a higher C:N ratio, which is closer to that
of the original plant material from which it is derived [49]. In contrast, C:N ratio in smaller fractions
was a result of microbial material and less-available SOM. These results can also reflect different
mineralization and humification statuses of the SOM [47].

In our experiment, nitrogen addition did not affect the C contents of coarse POM and MAOM.
The C content of fine POM under the high level of NaNO3 treatment was 1.33 times greater than
the control plot (p < 0.05) (Figure 2). This is in accordance with previous research on the effect of
N deposition on C contents of SOM fractions [41,55]. Though coarse POM and fine POM were not
occluded within micro-aggregates, mainly derived from new plant input (litter and root detritus) [56],
exogenous N input would be preferably adsorbed in fine POM compared to coarse POM fraction.
Because fine POM has a higher ratio of surface area to volume and further provides more chances
for microbial cells to attach [57]. Smaller pore sizes also protect microorganisms against attacking by
protozoa, in consequence, keeping a longer residence time [58]. Moreover, increasing N deposition
could directly accumulate NH4

+ concentration and further improve soil electrical conductivity (EC),
which would lead to a greater ionic strength [57]. This result would possibly decrease osmotic
potential in finer textured soils, and therefore decelerate decomposition of fine POM by microbial
communities [59].
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Figure 2. Soil C contents (a) and C:N ratios (b) of three fractions under different treatments. CK, A40,
A120, N40, and N120 are control, low (40 kg N ha−1 yr−1), and high (120 kg N ha−1 yr−1) rates of
NH4Cl and NaNO3 application, respectively. Error bars represent the standard errors of the means
(n = 3). Different lowercases above the columns represent significant differences between control and
N treatments.

3.2. General Distribution and Origin of Pyrolysis Products in the Soil Fractions

A total of 92 identified pyrolytic compounds are presented in Table 1. They were classified into nine
groups according to their source and chemical characterization [18], representing a mixture of compounds
from plant biopolymers (n-alkane, n-alkene, phenol and lignin) [20,60], microbial material (N compounds
and polysaccharides) [19], and black carbon (aromatics, benzofurans and PAH) [61]. The PCA analysis
revealed a pronounced difference in molecular composition for each fraction by the first two principal
components, which explained 89.8% of the total variation (Figure 3). Along the PC1, the coarse POM
fraction was clearly dominated by lignins, polyaromatics, and phenols. The chemical composition in fine
POM was mainly associated with n-alkanes, n-alkenes, aromatics, and benzofurans. N compounds and
polysaccharides were closely clustered in MAOM fraction. More details are shown as follows:

n-alkanes and alkenes: 48 linear aliphatic compounds containing n-alkanes (A1-A23) and n-alkenes
(E1-E25) were identified (Table 1). Different chain lengths of n-alkanes and n-alkenes have various
origins [24,62]. For example, short-chain aliphatics (n < 20) may originate from microbial aliphatic
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cell walls resistant to biodegradation or from chain-length shortening by microbial degradation [63].
The existence of long-chain n-alkanes and n-alkenes is usually ascribed to plant input, such as
biopolymers (cutin, suberin) [20]. A larger contribution of aliphatic components was detected in the
fine POM compared with coarse POM and MAOM (Table 2). This is indicative of differential decay
and preservation under natural circumstances without the effect of N treatment [16]. However, it is
still necessary to differentiate between short-chain and long-chain n-alkanes and n-alkenes in three
fractions, which will be discussed in the following factor analysis.
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Figure 3. Principal component analysis (PCA) of nine chemical groups in three fractions. Different numbers
represent three fractions, 1 for coarse POM, 2 for fine POM and 3 for MAOM, respectively.

Aromatics: Five pyrolysis products in this group were quantified, including benzene (Ar1), Indane
(Ar2), Indene (Ar3), Toluene (Ar4) and Methylindene (Ar5). Benzene and toluene made up the greatest
proportion (45%) of the pyrolysates as reported by our previous study [64]. Aromatic compounds
were largely attributed to proteins [65] or incomplete combustion [66]. There were significantly more
aromatics in the fine POM and MAOM than coarse POM, indicating intense decomposition in these
two fractions (<250 µm) of SOM [15,20].

Polyaromatics: Polyaromatics comprised about 14 quantified pyrolysis products. The presence of
four and five-ring polyaromatics (PA11, PA12, PA13, PA14; Table 1) was unequivocal evidence
for burnt material [61]. Retene (PA13) is a breakdown product of terpenes from coniferous
trees [67]. Polyaromatics constituted up to 17% in particulate fractions, and the relative abundances of
polyaromatics were higher in the coarse POM and fine POM than MAOM (Table 2). Similarly, SOM can
be separated into free light fraction (FLF), occluded light fraction (OLF) and extracts (EX) by density
fractionation. The distribution of polyaromatics in three particulate fractions was consistent with
the finding that a larger number of polyaromatics existed in OLF and FLF than EX [16]. The higher
contribution of polyaromatics in particulate fractions (>53 µm) could be attributed to the selective
decomposition of charred material [18]. Moreover, regression analysis showed a significant negative
correlation between C content and polyaromatics in POM fractions (Figure 4a, R2 = 0.46, p < 0.001).
Recent studies also reported that a higher contribution of polyaromatics was associated with a
relatively lower SOC content, because black carbon was subject to active biodegradation in tropical
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climates [15,18,62]. This is consistent with long-term wildfire events, resulting in declines of soil C
stock [68].
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Figure 4. Relationships between C contents and chemical groups: (a) polyaromatics, (b) N-containing
compounds, (c) benzofurans, and (d) polysaccharides in three particulate fractions.

Lignins: 10 quantified pyrolysis products in this group were classified into p-hydroxyphenyl,
guaiacyl lignins, and syringyl lignins, which were originated from the recently deposited plant C
and can be degraded rapidly [69]. In this study site, the higher contribution of guaiacyl-type lignins
reflected the coniferous forest-dominated vegetation type [24]. As expected, the relative abundance of
lignin-derived compounds was decreased with the decrease of particle size, particularly scarce in the
fine POM and MAOM fractions (Table 2). Similar studies also reported that the products from lignins
were accumulated in coarse fraction while nearly absent in smaller-sized fractions (<53 µm) [14,50].
On the basis of the highest xylanase efficiency in the coarse fractions, this enzyme preferred to be
absorbed to the less mineralized POM in the coarser fractions [47]. Taken together, these results
demonstrated that lignins were not a persistent compound and may make a minor contribution to the
relative recalcitrant pools [3].

Phenols: Phenol compounds are dominated by phenol (Ph1), C1-phenol (Ph2) and C2-phenol
(Table 1). Phenols can usually be derived from proteins, lignins, and celluloses [70]. The coarse POM
fraction has the largest percentages (up to 17%) of phenols. In contrast, there were only 2.3% and 1.9%
of phenols in the fine POM and MAOM fractions under the control plots, respectively (Table 2). It can
be inferred that the methoxy phenols in coarse POM fraction were indicative of fresh lignins [60].
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Table 2. Relative abundance of chemical groups in three fractions under different treatments.

Fractions Treatments 1
Relative Abundance (%) 2

n-alkanes n-alkenes Aromatics Lignins Polyaromatics N-Containing Compounds Benzofurans Phenols Polysaccharides

Coarse POM

CK 4.8 ± 1.9 2.0 ± 0.5 21.9 ± 5.0 11.2 ± 9.1 16.5 ± 3.8 7.2 ± 1.7 3.6 ± 0.5 16.5 ± 2.6 16.4 ± 4.9
A40 3.3 ± 0.3 1.5 ± 0.2 19.0 ± 0.7 14.7 ± 2.1 13.9 ± 1.5 6.4 ± 0.4 3.3 ± 0.4 20.7 ± 2.0 17.1 ± 1.1
N40 3.6 ± 0.9 1.8 ± 0.4 22.9 ± 2.1 8.9 ± 4.3 16.3 ± 1.5 8.0 ± 2.0 3.8 ± 0.3 14.9 ± 1.1 19.8 ± 0.4
A120 3.0 ± 0.8 1.5 ± 0.4 19.1 ± 2.6 15.8 ± 7.9 15.3 ± 5.1 5.9 ± 1.0 3.3 ± 0.5 15.8 ± 2.4 20.3 ± 2.7
N120 3.1 ± 0.7 1.5 ± 0.4 19.2 ± 3.3 16.8 ± 8.4 15.0 ± 4.0 8.8 ± 2.4 3.4 ± 0.8 16.7 ± 0.3 15.6 ± 2.4

Fine POM

CK 6.5 ± 0.5 3.3 ± 0.4 44.2 ± 2.6 0.1 ± 0.0 13.9 ± 1.7 15.4 ± 0.7 5.5 ± 0.5 2.3 ± 0.7 8.8 ± 3.6
A40 4.9 ± 0.3 2.9 ± 0.4 43.5 ± 2.6 0.2 ± 0.1 15.8 ± 2.0 17.5 ± 1.9 6.3 ± 0.6 2.8 ± 0.4 6.2 ± 3.1
N40 4.6 ± 0.6 3.2 ± 0.7 40.8 ± 5.8 0.1 ± 0.0 12.7 ± 0.7 17.5 ± 1.5 5.3 ± 0.1 2.3 ± 0.5 13.6 ± 6.0
A120 6.9 ± 1.4 4.0 ± 1.1 39.3 ± 3.5 0.1 ± 0.0 15.9 ± 1.4 13.4 ± 2.0 5.2 ± 0.9 4.4 ± 2.2 10.7 ± 3.3
N120 5.6 ± 0.2 2.8 ± 0.4 39.5 ± 5.0 0.2 ± 0.0 13.6 ± 1.0 16.5 ± 0.5 5.6 ± 0.8 4.2 ± 2.3 11.9 ± 4.9

MAOM

CK 4.6 ± 0.4 2.5 ± 0.4 43.6 ± 2.9 0.1 ± 0.0 9.1 ± 1.0 21.9 ± 1.0 4.8 ± 0.2 a 1.9 ± 0.1 11.5 ± 1.5 b
A40 3.9 ± 0.7 2.3 ± 0.3 37.5 ± 3.6 0.1 ± 0.0 8.0 ± 0.5 19.8 ± 1.1 4.2 ± 0.3 ab 2.0 ± 0.3 22.2 ± 5.3 a
N40 4.3 ± 0.9 2.4 ± 0.2 36.4 ± 2.2 0.1 ± 0.0 8.0 ± 0.6 18.6 ± 1.1 3.6 ± 0.3 b 2.8 ± 0.8 23.8 ± 1.1 a
A120 4.3 ± 0.2 2.7 ± 0.1 40.2 ± 0.9 0.1 ± 0.0 8.3 ± 0.8 18.8 ± 1.0 4.1 ± 0.2 ab 2.1 ± 0.4 19.3 ± 1.1 ab
N120 5.4 ± 0.9 2.6 ± 0.2 36.2 ± 1.5 0.1 ± 0.0 8.9 ± 0.9 18.7 ± 0.7 3.8 ± 0.2 b 2.8 ± 0.4 21.5 ± 2.8 a

1 CK, A40, A120, N40, and N120 are control, low (40 kg N ha−1 yr−1), and high (120 kg N ha−1 yr−1) rates of NH4Cl and NaNO3 application, respectively. 2 The values are expressed as
mean ± standard error (n = 3). Different letters indicate significant differences among five treatments at the level of p < 0.05.
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N-containing compounds: The pyrolysis products of pyridines (N1), pyrroles (N2), benzonitrile
(N4), and indole (N6) are the most common N-containing compounds in this study. In general,
N-containing compounds are pyrolysis products of proteins, polypeptide, and amino acids [71].
N-containing compounds accounted for 15.4% and 21.9% of the total quantified products in fine
POM and MAOM, respectively. The contribution of this group in coarse POM was much lower
(7.2%, Table 2). A large contribution from N-containing compounds is often characterized by a
microbial source [16,72]. In addition, several processes for physical protection, such as adsorption and
aggregation, may be involved in the stabilization of amino acids or proteins [3]. Therefore, the surface
adsorption would become stronger if more N-containing compounds accumulated in small pore size
pools. Meanwhile, there was a significant positive correlation between N-containing products and
SOC content in our study (Figure 4b, R2 = 0.12, p = 0.02). Previous studies using molecular isotopic
analysis showed that N-containing precursors such as proteins, amino acid, and chitin had relatively
high residence time and could be preserved during soil decomposition and humification processes [73].

Benzofurans: Three compounds were quantified in the group of benzofurans, including benzofuran
(Bf1), C1 benzofuran (Bf2) and dibenzofurans (Bf3) (Table 1). Notably, three of them could be indicative
of a black carbon source [74]. Meanwhile, benzofurans were associated with low condensation
structures, which was attributable to incompletely charred lignocellulose material [23]. A larger
relative contribution from black carbon in the fine POM can be explained by the limitation of water,
nutrients and oxygen within aggregates [56]. Moreover, a higher contribution of benzofurans was
significantly negatively correlated with SOC content (Figure 4c, R2 = 0.16, p = 0.006). This suggested
the promotion of selective decomposition between easily degradable compounds and more recalcitrant
ones such as black carbon-derived materials [74].

Polysaccharides: The pyrolysis products of polysaccharides comprised acetic acid (Ps1),
2-Furaldehyde (Ps2) and 5-Methyl-2-furaldehyde (Ps3). Polysaccharides can be derived from
either vegetal or microbial organic matter [16]. Compared with the fine POM fraction,
the carbohydrates-derived pyrolysis products in the coarse POM and MAOM fractions had higher
abundances, accounting for 11–16% of the total peak area (Table 2). Previous research also found
that carbohydrates products were abundant in the silt and clay fractions (<63 µm) [14], which was
supported by the fact that microbial origins were easily bound to the mineral surface [50]. Of the
quantified compounds, 2-Furaldehyde (Ps2) and 5-Methyl-2-furaldehyde (Ps3) were mainly originated
from microbial biomass with slower turnover rates [24,73]. These compounds contributed to more
humified soil C pools and can be recycled again by the microbes [3]. Further, this was supported by
our regression analysis in which a positive relationship between C content and polysaccharides was
observed (Figure 4d, R2 = 0.26, p < 0.001).

3.3. Factor Analysis Applied on Molecular Composition of Soil Particulate Fractions

All quantified compounds were plotted in Figure 5 based on their differences. And the extracted
factor was expressed as factor loading (Figure 5a), while samples values for each factor were expressed
as factor scores (Figure 5b) [16]. The decomposition degree, vegetal and microbial contributions in
three fractions can be interpreted in factor loading diagram. Meanwhile, samples projections in factor
scores could be comprehended through interpretation of factor loading in the same space [18,24,62].
In the total dataset, the first two factors were selected and altogether explained 60.7% of all variations.
Three fractions were clearly separated in the score diagram (Figure 5b).
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Figure 5. Factor loadings (a) and scores (b) for the F1-F2 projection of a factor analysis applied to the
quantified pyrolysis products of coarse POM, fine POM and MAOM fractions from all samples. A1−A23
= n-alkanes; E1−E25 = n-alkenes; Ar1−Ar5 = Aromatics; Lg1−Lg10 = Lignins (LgH: p-hydroxyphenyl
lignin; LgG: guaiacol lignin; LgS: syringyl lignin); PA1−PA14 = Polyaromatics; Bf1−Bf3 = Benzofurans;
N1−N6 = N-containing compounds; Ph1−Ph3 = Phenols; Ps1−Ps3 = Polysaccharides. See Table 1
for compounds.

Along with the factor 1 of the loading diagram, a series of n-alkenes and n-alkanes displayed a
progressive reduction in chain length from right to left (Figure 5a). All lignins (LgH, LgG, and LgS),
phenols, polysaccharides, and long-chain n-alkanes/n-alkenes showed high positive loadings, while
N compounds, short-chain n-alkanes/n-alkenes and low molecular weight aromatics were plotted to
the left (negative factor 1) (Figure 5a). Therefore, factor 1 can be interpreted to reflect decomposition.
Specifically, positive values represented relative fresh plant litter input [75] while negative values
denoted more advanced degradation state of the plant debris [24,63].
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Positive scores on factor 2 were largely determined by polyaromatics, aromatics, benzofurans,
and n-alkanes and n-alkenes. Negative scores on factor 2 were related to nitrogen compounds,
polysaccharides, and lignins. The lower left quadrant represented a microbial source and relatively
degraded soil organic matter, coupled with a lower C:N ratio due to a higher proportion of N-containing
compounds in this quadrant. In the upper left quadrant, the combination of short-chain aliphatic
from longer-chain breakdown and benzofurans from charred material suggested relatively recalcitrant
compounds without fresh litter input.

In conclusion, the coarse POM was characterized by abundant lignins and long-chain
n-alkenes/n-alkanes (Figure 5a,b), all of which were indicative of higher plant origin [16]. The larger
contribution of root litter input led to a much lower residual accumulation of recalcitrant compounds in
the coarse POM fraction [15]. Meanwhile, chain-length shortening in the fine POM fraction suggested a
stronger decomposition of n-alkanes and n-alkenes than in both coarse POM and MAOM fractions [76].
In addition, we highlight large contributions from N-containing compounds and polysaccharide
compounds in MAOM fraction, representing a microbial source and a strong decomposition especially
under tropical conditions [18,72].

3.4. Effects of N Addition on Chemical Compositions in Three Particulate Fractions

In our study, there were no chemical changes detected in coarse POM and fine POM fractions
under N fertilization. However, there were significant differences in the relative abundances of
benzofurans and polysaccharides in the MAOM fraction between the control and N treatments.
Specifically, under low and high levels of NaNO3 treatment, the relative abundance of benzofurans
was 21–24% less than that of control plots (Table 2). Most benzofurans products were related to
black carbon material, which can be influenced by fire intensity, fire frequency and the rate at which
it is decomposed [77]. Because all treatments were in close vicinity, fire factors were similar [74].
Therefore, a lower abundance of benzofurans could be attributed to a slower decomposition rate of
incompletely charred lignocellulose material under NaNO3 treatment.

The relative abundance of polysaccharides of NaNO3 and NH4Cl treatments was 1.86 to
2.13 times greater than control plots (Table 2). On the one hand, previous studies demonstrated
the selective stabilization of O-alkyl C such as carbohydrates could defend against microbial attack
through interactions with pedogenic oxides under mineral N application [78]. On the other hand,
the glycanolytic activity (e.g., α-1-4-glucosidase and β-1-4-glucosidase) associated with degradation of
polysaccharide was inhibited under N enrichment in our study site [79], thus leading to an accumulation
of carbohydrates. Naafs et al. [80] also pointed out that the polysaccharides was accumulated due
to reduced bacterial activity. Furthermore, the increase of polysaccharides suggested that the SOM
was mostly microbial under N treatment [18], and these polysaccharides could be recycled again by
microbes or physically stabilized or incorporated in soil humic substances [3,81]. Taken together, these
results indicated soil inert organic carbon pool would be more slowly decomposed and more stabilized
under N addition in the subtropical forest.

4. Conclusions

This study aims to determine the quantity and chemical signatures of SOM particulate fractions,
and how they are affected by N inputs. With respect to the general distribution pattern of SOM
particulate fractions in the subtropical forest, we found the proportion increased with the decrease of
particle size. And N application would tend to increase the percentage of fine POM while decreasing
that of MAOM, indicating the acceleration of aggregation process. Compared with other two fractions,
C content in fine POM was more sensitive to N fertilizers.

Our results showed that chemical composition of particulate fractions. In details, coarse POM
contained less decomposed material such as lignins, phenols, long-chain n-alkanes and n-alkenes.
Fine POM contained more black carbon and decomposed materials, including short-chain n-alkanes
and n-alkenes, benzofurans, aromatics, and polyaromatics. MAOM contained more N-containing
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compounds and polysaccharides from microbial material. Therefore, it can be confirmed that particle
size fractions are not homogeneous with reference to their chemical composition and should not
be equivalent in soil C model pools. Moreover, decreased relative abundance of benzofurans and
polysaccharides enrichment in MAOM under N treatment played a major role in stabilization of
SOM, which suggested a slower decomposition in the subtropical forest. These findings highlight the
importance of understanding individual compound in various soil pools of SOM, and help to predict
mechanistic process controls on the SOM turnover under N deposition and to further improve global
C and N models.
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