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Abstract: Boreal forests are important carbon sinks and have tremendous potential to mitigate climate 
change. Aboveground biomass of  Siberian larch (Larix sibirica Ledeb.) stands in the Altay Mountains, 
Northwest China was studied and allometric equations that are related to the biomass of  aboveground 
components using diameter at breast height (DBH) or both DBH and height (H) as independent variables 
for L. sibirica trees were derived in this paper. A linear simultaneous equation system by using either DBH 
or both DBH and H (DBH&H) indices, was used to ensure additivity of  the biomass of  individual tree 
components, and was fitted for L. sibirica. Model performance was validated using the jackknifing test. 
Results indicate that the goodness-of-fit for the regressions was lowest for the needles (R2 ranging from 
0.696 to 0.756), and highest for the stem wood (R2 ranging from 0.984 to 0.997) and the aggregated 
biomass components (R2 ranging from 0.994 to 0.995). The coefficient of  determination for each 
component was only marginally improved in terms of  model fit and performance in the biomass 
equations that used DBH&H as the independent variables compared to that used DBH as the 
independent variable, and needles yielded an even worse fit. Stem biomass accounted for the largest 
proportion (87%) of  the aboveground biomass. Based on the additive equations that used DBH as the 
single predicitor in this study, the mean aboveground carbon stock density and the carbon storage values of  
L. sibirica forests were 74.07 Mg C/hm2 and 30.69 Tg C, respectively, in the Altay Mountains. Empirical 
comparisons of  published equations for the same species growing in the Altay Mountains of  Mongolia 
were also presented. The mean aboveground carbon stock density estimated for L. sibirica forests was 
higher in the Chinese Altay Mountains than in the Mongolian Altay Mountains (66.00 Mg C/hm2). 
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1  Introduction 

Forests are more important terrestrial carbon sinks than any other ecosystems on the globe, in 
which boreal forest biome represents one of most important terrestrial carbon stores and is very 
sensitive and vulnerable to regional and global warming (BonAltayan, 2008; Dulamsuren et al., 
2016). For example, Jarvis and Linder (2000) found that the productivity of boreal forests has 
been thought to benefit from climate warming. However, Tei et al. (2014) suggested that boreal 
forests (i.e., larch-dominated) respond to climate warming by reduced productivity. Mountain 
forest is largely subjected to global climate change, especially change in the form of warming 
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(Chauchard et al., 2010). In recent years, the quantity, distribution, and dynamics of forest carbon 
storage have been of great significance to research on global climate change and carbon cycles 
(Pan et al., 2011). Generally, forest carbon stocks can be estimated via estimation of tree biomass 
(Hall et al., 2006), and tree biomass is typically derived from the quantity of aboveground 
biomass by assuming that 50% of the biomass is composed of carbon (Basuki et al., 2009; Goetz 
et al., 2009). Therefore, accurately estimating tree and stand biomass is essential for quantifying 
forest carbon sequestration, and tracking carbon cycling between the atmosphere and the 
terrestrial biosphere in relation to global climate change (Cairns et al., 2000; Fang et al., 2001; 
Wang, 2006; Picard et al., 2012; Dong et al., 2015). On the other hand, tree-level biomass 
equations are basic tools for converting inventory plot data into biomass density (Zianis and 
Mencuccini, 2004; Lambert et al., 2005; Pérez-Cruzado and Rodríguez-Soalleiro, 2011).  
  Destructive methods are generally used for the determination of tree biomass via selecting 
standard trees and weighting them directly in the field (Ketterings et al., 2001; Alvarez et al., 2012; 
Anitha et al., 2015). Direct weighing is simple, but it is time-consuming and costly (Son et al., 
2001). Furthermore, particularly for large trees, it is almost impossible to obtain root and crown 
biomass (Liu, 2009). However, allometric equations are efficient in that they require less labor 
and time and can provide accurate and reliable non-destructive estimates of the total and 
components biomass (Dong et al., 2015; Riofrío et al., 2015; Kuyah et al., 2016). The 
development of allometric equations requires trees to be harvested and weighed, and these data 
are then linked to tree structure variables, such as diameter at breast height (DBH), height (H), 
and other dendrometric variables (Anitha et al., 2015). DBH is an essential variable in all biomass 
models (Xu et al., 2016), and 55% of the current equations are based on this metric (Anitha et al., 
2015). Wood-specific density and tree crown dimensions are used as additional measures to 
improve the accuracy of biomass equations (Kuyah et al., 2016; Xu et al., 2016). In practice, most 
allometric equations employ DBH as the only independent variable (Gower et al., 2007). This is 
probably because DBH can be easily and accurately measured in the field. However, since the 
relationship between biomass and DBH is nonlinear, the use of only one index may not be able to 
represent the natural variation in a forest stand with a large area (Tsogt and Lin, 2014). Studies 
have shown that adding tree height into biomass equations can improve the fit and performance of 
a model (Wang, 2006; Li and Zhao, 2013; Xu et al., 2016). H has also been shown to be a 
promising individual predictor both for species-specific and general equations (Blujdea et al., 
2012). In the field, it is labor intensive to harvest and weigh branches and foliage. Liu (2009) 
established a nested regression method based on the volume of branches and the quantity of 
foliage which data are nested, thus reducing the number of measured samples. Jia et al. (2015) and 
Meng et al. (2017) estimated aboveground and belowground biomass of Pinus tabuliformis and 
developed two dominant deciduous tree biomass equations using above nested regression method, 
respectively, indicating that the method is reliable.  

In tree biomass estimations, it is important to consider the property of additivity, i.e., the sum 
of the biomass predictions of components may not equal to the total biomass prediction (Parresol, 
1999) due to the inherent correlations among different components (Dong et al., 2015). To 
address the additivity of incompatibility, we used seemingly unrelated regression (SUR) and 
nonlinear seemingly unrelated regression (NSUR) to analyze and estimate the model coefficients, 
and these methods typically result in a lower variance for the total tree biomass model (Parresol, 
1999; Parresol, 2001) because of their generality and flexibility (Li and Zhao, 2013; Dong et al., 
2014, 2015; Meng et al., 2017). At the same time, a likelihood analysis has been shown to be a 
necessary analysis for error structure (Parresol, 2001; Dong et al., 2015). In practice, logarithmic 
transformation of the power function by using log-transformed data has been frequently and 
directly used in many studies (Wang, 2006; Zianis et al., 2011). In additive system, each 
component model can use its own weight function for heteroscedasticity, and additivity is ensured 
by setting constraints on the regression coefficients (Parresol, 2001; Lambert et al., 2005).  

Chinese boreal forests are discontinuously distributed in the high mountains ranges in the 
middle and western China, including the Altay Mountains (Ni, 2004). The Altay Mountains, 
located in Central Asia along the border regions of Russia, Mongolia, Kazakhstan, and China, is 
one of the largest mountain ranges and these mountains play an important role in shaping the 
climate and ecosystems in Central and North Asia. The Altay Mountain forest in Northwest China 
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is not only the extension of southern taiga of west Siberian in the south, but also the characteristic 
of dark-coniferous boreal forest that extends to the grassland district. Larix species are distributed 
in boreal forests of the northern hemisphere (Koizumi et al., 2003). Siberian larch (Larix sibirica 
Ledeb.), which is distributed from Mongolia to the east (Kazakhstan and Siberia) and extends to 
the dry arid landscapes of China, is a dominant and highly climate-sensitive species (Chytrý et al., 
2008; Shuman et al., 2011; Chen et al., 2012). L. sibirica wood comprises 95.68% of the total 
stock of the Altay Mountain forests (Huang et al., 2015). In recent years, the Altay Mountains 
have shown to be the most sensitive and distinct warming districts in terms of global climate 
change in a half century because of the central Eurasian continental and arid environment (Chen 
et al., 2012; Zhang et al., 2016). The relationship between L. sibirica tree rings and climate 
change has been extensively studied (Frank et al., 2007; Dulamsuren et al., 2010; Chen et al., 2012; 
Dulamsuren et al., 2013; Jiao et al., 2015). However, little research has been conducted in relation 
to the carbon pool (Dulamsuren et al., 2016). To our knowledge, few equations have been 
empirically developed to estimate L. sibirica tree biomass in the Chinese Altay Mountains, and 
the carbon pool of L. sibirica forest in the southern boreal region of the Altay Mountains is still 
poorly understood. Compared to the number of studies carried out in the Mongolian Altay 
Mountains (Battulga et al., 2013; Dulamsuren et al., 2016), few studies have been conducted in 
the Chinese Altay Mountains. Therefore, the objectives of this study were to (1) propose 
equations for estimating stem wood, stem bark, branch, and needle biomass at the individual tree 
level for L. sibirica, (2) develop simultaneous equations of linear models of biomass based on 
SUR, and use these models to guarantee the property of additivity, and (3) estimate carbon stock 
density and carbon storage in the Chinese Altay Mountains.  

2  Materials and methods 

2.1  Study area  

The study area is the forest regions of the Altay Mountains in Northwest China (44°59′–49°10′N, 
85°31′–91°01′E), which belongs to the National Forest Bureau of the Altay Mountains in Xinjiang 
Uygur Autonomous Region. The elevation in the Altay Mountains typically ranges from 1000 to 
3000 m a.s.l. The study area is characterized by a typical cold continental climate. The annual 
mean temperature is 1.1°C, while the mean annual precipitation is 362.8 mm. The main arbor tree 
species in the forest community include L. sibirica, Pinus sibirica, and Abies sibirica. These 
species are commonly considered as the climax components. 

2.2  Field sampling and measurements  

A total of 51 temporary plots were established in a typical L. sibirica stand in late June 2015. The 
circle-shaped plots each had a radius of 9 m, and these plots were selected to record basic 
individual tree variables. A total of 851 trees were measured, and the diameter distribution tended 
to be normal (Fig. 1). Table 1 displays the characteristics and descriptive statistics for the basic 
variables. 

 

Fig. 1  Diameter distribution of Larix sibirica in the sample plots 
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Table 1  Characteristics of Larix sibirica forest 

Forest type 
Mean 

DBH (cm) 
Mean 

height (m) 

Basal 
area 

(m2/hm2)

Stand 
density 

  (tree/hm2)

Stand 
volume

   (m3/hm2)

Slope 
(°) 

Altitude 
 (m) 

L. sibirica 13.35–77.06 11.67–30.22  2.15–61.81 38–983 20.08–612.46 5–19 1200–2300 

Note: DBH, diameter at breast height. 

Fallen woods were used to develop aboveground and component biomass equations because 
destructive sampling is restricted for non-commercial uses in the study area. Thirty fresh and 
integrated windfall woods were selected for the specific components biomass research. Table 2 
lists the descriptive statistics for diameter (cm), height (m), wood/branch density (kg/m3), and 
aboveground biomass (kg). 

Table 2  Summary of individual tree statistics for Larix sibirica 

       Index  Minimum   Maximum  Mean SD 

Diameter at breast height (cm)   7.20  59.50  29.40 16.65 

Height (m)   7.62  29.74  18.36  6.78 

Stem wood density (kg/m3) 408.60 558.70 518.00 0.042 

Stem bark density (kg/m3) 475.45 410.80 433.00 0.023 

Branch density (kg/m3) 497.00 503.10 499.10 0.003 

Aboveground biomass (kg)  14.09 1822.71 536.68  582.84 

Note: SD, standard deviation. 

Different parts of tree biomass can be estimated using the mean density multiplied by the 
volume of different trees for the same species (Zhang et al., 1998). In this study, we estimated the 
biomass of the stem and branch using a volume conversion based on density (Table 2). DBH, the 
diameter of 2-m sections and two terminals and the length of the top section which could not be 2 
m, were measured using the fallen woods. Then, the volume of the stem was calculated using 
Equation 1 (Meng, 2006). Stem bark volume (V) was obtained by subtracting the volume of the 
inside bark from the volume of the over-bark.  

2 2 2 2
0 n

=1

1 1
( ) π π ,

2 3

–1

= + + +
 
 
 


n

i n
i

V r r r l r l'                       (1) 

where r0, ri and rn are the radii (cm) of the stem base, large and small of a section, respectively; 
and, l and l' are the section length (m) and the length of top section (m), respectively.  

We determined the volume of branches and the quantity of needles based on the nested method 
(Liu, 2009; Jia et al., 2015; Fig. 2). The diameters of all first-order branches of fallen woods were 
measured using a digital caliper (±0.01 mm). A sample unit was selected from the largest 
first-order branch, and all diameters of the second-order branch were measured; the largest 
second-order branch was selected to measure all diameters of the third-order branch, and the 
method was repeated until the last order of branches was reached. The main branch was applied at 
50 cm intervals using a sectional method, and the measured diameter was used to calculate the 
section volume (Eq. 1). A total of 31 main branches were measured, with diameters ranging from 
3.1 to 28.3 cm. Stem wood, stem bark and branches taken from fallen woods were collected to 
determine tissue density. Water displacement was adopted for volume measurements before the 
sample was oven-dried at 75°C for 48 h to estimate the dry weight. The basic density and the ratio 
of dry mass to fresh volume were used to convert the biomass from the volume. The parameters 
of branch volume with the main branch, the first-order branch, and the individual tree are 
displayed in Figure 2. 

Simultaneously, several first-order branches were integrated, and dense needles were selected 
to measure the diameter of the main branches and to record the number of leaf fascicles. A total of 
41 main branches were measured, with diameters ranging from 0.2 to 1.0 cm. The equation was 
established to relate the number of leaf fascicles with the diameter of the main branch. Thirty leaf 
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Fig. 2  A diagram showing the dissection of branches into the single main branches 

fascicles were randomly selected, the number of needles in every leaf fascicle was counted, and 
an average value was obtained. Additionally, 220 fresh needles were randomly selected to scan in 
grayscale at 1200 dpi resolution to calculate the individual leaf area. Needles were dried to a 
constant mass at 70°C. The mean dry biomass of needles was calculated. Equation 2 was used to 
calculate needle biomass. The parameters of the leaf fascicles are shown in Table 3. 

 
needle ,(0.0017 36) 1000× ×= /bW N                             (2) 

where Wneedle, Nb, 0.0017, and 36 are the needle biomass (kg), number of leaf fascicles, mean 
needle number of a single leaf fascicle, and dry weight of an individual needle (g), respectively. 

Table 3   Parameters of regression equations of needle and branch 

Item Component Regression equation n  R2 
adj 

Diameter range  
(cm) 

P value 

Number of 
leaf fascicles 

Main branch Nb=29.51lnX+73.16 41 0.73 0.19–1.00 ˂0.001 

First-order branch Nb=274.19X1.7911 285 0.71 0.05–48.10 ˂0.001 

Individual tree Nb=212.24DBH1.6774 30 0.72 7.20–59.50 ˂0.001 

Branch 
volume 

Main branch V=0.00005X2.3605 31 0.95 3.10–28.30 ˂0.001 

First-order branch V=0.00005X2.4538 285 0.94 0.05–48.10 ˂0.001 

Individual tree V=0.00001DBH2.3433 30 0.93 7.20–59.20 ˂0.001 

Note: Nb, number of leaf fascicles; V, stem bark volume; X, diameter of different main branches; DBH, diameter at breast height. 

2.3  Allometric equations analysis 

We estimated carbon storage of the Alay Mountains using the carbon concentration rate (0.5) and 
the carbon density (Mg C/hm2), which was based on the optimal biomass model, plot data, and 
forest inventory data in the Altay Mountains. In this study, there were four tree components 
including stem wood, stem bark, branches, and needles. To satisfy the inherent correlations 
among the components of tree biomass that were measured on the same sampled trees, we 
developed the additivity property of biomass equations. Then, we applied a general biomass 
equation model based on DBH or on both DBH and H, as unique predictors in Equations 3 and 4.  

ba DBH ,×=W                               (3)          
b ca DBH ,× ×=W H                             (4)   

where W is the biomass (kg); and a, b, and c are the coefficients. 
Because of the heteroscedasticity of the raw data (Parresol, 1999), we defined and used a 

logarithmic transformation for each biomass model. Fitting was conducted using the Systemfit 
package for R3.3.1 by the R Core Team, and the coefficients of the tree component biomass 
models were simultaneously estimated. The figures were constructed using Origin Pro 8.5.0 SR1. 

We specified the additive system of the log-transformed equations based on Equation 3 as 
follows: 
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wood 11 11 wood ,ln a b lnDBH×= + +W ε                        (5) 

bark 12 12 bark ,ln a b lnDBH×= + +W ε                         (6) 

branch 13 13 branch ,ln a b lnDBH×= + +W ε                        (7) 

needle 14 14 needle ,ln a b lnDBH×= + +W ε                       (8) 

( )
( )13 14

crown branch needle

b* *
13 14 crown

,

,

ln ln

ln a DBH a DBH× ×

= +

= + +b

W W W

ε
                 (9) 

( )
( )1311 12 14

aboveground wood bark branch needle aboveground

bb b b* * * *
11 12 13 14 aboveground

,

,

ln ln

ln a DBH a DBH a DBH a DBH× × × ×

= + + + +

= + + + +

W W W W W ε

ε
   (10) 

We presented the additive system of the log-transformed models based on Equation 4 as 
follows: 

wood 21 21 21 wood ,ln a b lnDBH c lnH× ×+ + +=W ε                      (11) 

bark 22 22 22 bark ,ln a b lnDBH c lnH× ×= + + +W ε                     (12) 

branch 23 23 23 branch ,ln a b lnDBH c lnH× ×= + + +W ε                   (13) 

needle 24 24 24 needle ,ln a b lnDBH c lnH× ×= + + +W ε                  (14) 

( )
( )23 23 24 24

crown branch needle

b c b c* *
23 24 crown

,

,

ln ln

ln a DBH H a DBH H× × × ×

= +

= + +

W W W

ε
         (15) 

( )
( )23 2321 21 22 22 24 24

aboveground wood bark branch needle aboveground

b cb c b c b c* * *
21 22 23 24 aboveground

,

,

ln ln

ln a DBH H a DBH H a DBH H a DBH H× × × × ×

= + + + +

= + + + +× × ×*

W W W W W ε

ε
 (16) 

where Wwood, Wbark, Wbranch, Wneedle, Wcrown, and Waboveground represent the stem wood, stem bark, 
branch, foliage, crown, and aboveground biomass (kg), respectively; amn, bmn and cmn are the 
regression coefficients, in which m represents the mth system, and n represents the nth biomass 
component; εm is the model error term; and a* 

mn is equal to exp(amn). 

2.4  Model assessment and validation 

In this study, two additive systems of the biomass models were fitted to the entire biomass data, 
and model testing was conducted using the jackknifing test. We employed two goodness-of-fit 
statistical tests (Eqs. 17 and 18, i.e., root mean squared error (RMSE) and coefficient of 
determination (R2)) to evaluate the performance of each model, while we assessed the biomass 
model prediction performance using three model validation statistics (Eqs. 19–21, i.e., mean 
absolute error (MAE), relative mean absolute error (MAER), and prediction coefficient of 
determination (R2 

p)) of jackknifing test as follows: 
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where yj is the jth log-transformed observed biomass value; y
^

j is the jth log-value predicted by the 
model; y  is the mean of the log-transformed observed value; n is the total number of 

observations used for model fitting; k represents the number of parameters; and y
^

j,–j is the jth 
log-value predicted by the model fitting with the n–1 remaining observations, excluding the jth 
observation. 

2.5  Correction factor for antilogarithm transformation 

A systematic bias can occur when converting predicted values that have been calculated by 
applying linear models to the log-transformed data back to arithmetic units. To minimize this bias, 
we usually applied a simple correction factor (CF) based on the standard error of the estimate, 
which is larger than 1, to the final biomass estimation for each regression model as follows: 

2CF exp(RMSE 2)= / .                             (22) 

  To assess the effect of the CF, we calculated percent bias (B) as follows: 
CF 1

( ) 100%
C

–

F
×=B .                             (23) 

3  Results  

3.1  Model development 

The estimated coefficients, their standard errors of the DBH-based additive system equations and 
the DBH- and H-based additive system equations are presented in Table 4. The results were 
always significant at the 0.001 level. For needles, the goodness-of-fit (R2) was lower than that of 
all other components. For both equations, the DBH coefficients were always positive for all 
biomass models. This clearly indicated an increase in all biomass components with an increase in 
DBH. However, the coefficients of the DBH- and H-based system equations were not always 
positive, especially for the coefficient c. Except for the needle models, the biomass components 
performed well, with R2 values ranging from 0.926 to 0.995 and RMSE<0.357 kg for the two 
model forms; in contrast, the needles resulted poor in fitness (R2 ranging from 0.696 to 0.756 and 
RMSE ranging from 0.560 to 0.636 kg). The stem wood, stem bark, and branch equations that 
used both DBH and H produced a better model fit (R2>0.931 and RMSE<0.332 kg) than the 
models that used only DBH as the predictor, while the needles model showed adverse effects. 
However, there was no significant difference between crown and aboveground models. DBH was 
essential for predicting the crown biomass components, while H was much less useful for the 
prediction of the crown biomass components. 
  In this study, CF and its effect were calculated (Table 4). The results revealed that a small 
variation could arise from the log-transformation of both model forms, regardless of the biomass 
components. And this result was especially obvious for the stem wood and aboveground biomass 
equations (CF<1.018). However, for the separate components (e.g., branches, needles and crown), 
the CF showed relatively higher values (CF<1.224) than those for other individuals or aggregated 
biomass components. Meanwhile, the percent bias (B) displayed a slightly wider range, i.e., from 
0.864% to 18.295%, and those of the branch, needle and crown were slightly larger (i.e., from 
5.375% to 18.295%), with the needle biomass being the largest (i.e., from 14.502% to 18.295%).  
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Table 4  Statistics and estimates of a, b and c for the additive system of the log-transformed models reported in 
Equations 5 and 6 

Component Model     a   b c   RMSE R2 CF B (%) 

Stem wood 
DBH –2.774±0.142 2.389±0.044 - 0.192 0.984 1.018  1.830 

DBH&H –3.178±0.172 2.058±0.103 0.515±0.150 0.177 0.997 1.016  1.566 

Stem bark 
DBH –3.352±0.167 2.466±0.051 - 0.213 0.983 1.023  2.249 

DBH&H –3.942±0.241 2.202±0.135 0.440±0.203 0.205 0.985 1.021  2.086 

Branches 
DBH –2.295±0.205 1.752±0.060 - 0.338 0.926 1.059  5.568 

DBH&H –1.341±0.266 2.418±0.114  –1.083±0.197 0.332 0.931 1.057  5.375 

Needles 
DBH –4.189±0.431 1.596±0.131 - 0.560 0.756 1.169 14.502 

DBH&H –1.936±0.633 3.237±0.246  –2.687±0.388 0.636 0.696 1.224 18.295 

Crown 
DBH - - - 0.348 0.926 1.062  5.872 

DBH&H - - - 0.357 0.928 1.066  6.171 

Aboveground 
DBH - - - 0.132 0.994 1.009  0.864 

DBH&H - - - 0.134 0.995 1.009  0.898 

Note: DBH, diameter at breast height; H, height; a, b, and c represent the coefficients; RMSE, root mean squared error; R2, coefficient of 
determination; CF, correction factor; B, bias. Mean±SE. -, no value. 

3.2  Biomass equations performance assessment 

We used the jackknifing test to assess the validity of the log-transformed additive models based 
on two types of variables. The model validation statistics were computed and are presented in 
Table 5. The stem wood and aboveground biomass models of the two systems produced relatively 
small prediction errors (MAE<0.166 and MAER<5%) and had high accuracies (R 2 

p >0.98). 
However, the needle biomass equations performed the worst (MAE ranging from 0.476 to 0.598 
and MAER ranging from 17.961% to 50.515%). Based on the DBH&H model, the aboveground, 
stem wood and stem bark biomass equations produced much smaller prediction errors than the 
other biomass equations (e.g., branch, needle, and crown). Moreover, this increased the relative 
errors and lowered the accuracy compared to the equations where DBH was the only predictor 
variable.   

Table 5  Validation statistics of log-transformed biomass equations using the jackknifing test 

Component 
DBH DBH&H 

MAE    MAER (%) R2 

p  MAE    MAER (%) R2 

p  

Stem wood 0.166  4.243 0.981 0.161  4.165 0.984 

Stem bark 0.174  5.297 0.981 0.157  4.664 0.982 

Branches 0.276 11.203 0.914 0.277 11.268 0.910 

Needles 0.476 17.961 0.731 0.598 50.515 0.602 

Crown 0.271 10.553 0.914 0.285 11.000 0.903 

Aboveground 0.109  2.160 0.992 0.102  2.042 0.994 

Note: DBH, diameter at breast height; H, height; MAE, mean absolute error; MAER, relative mean absolute error; R2 
p, prediction 

coefficient of determination. 

3.3  Aboveground biomass partitioning 

The allocation of aboveground biomass including stem wood, bark, branch, and leaf biomass 
across the 4-cm DBH class is shown in Figure 3. The biomass distribution patterns of 
aboveground components of L. sibirica were compatible with the general patterns found for many 
other tree species. Specifically, the average partitioning was 59.56% for stem wood, 27.82% for 
stem bark, 11.37% for branch, and 1.25% for needle. The average proportions of stem woods 
increased from 50.09% for small-diameter trees to 69.22% for large-diameter trees and from 
17.00% to 32.00% for bark. The average proportions of branches decreased from 29.54% for 
small-diameter trees to 5.41% for large-diameter trees and from 3.18% to 0.65% for needle. 
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Fig. 3  Proportions of aboveground biomass allocating to stem wood, stem bark, branch, and needle 

3.4  L. sibirica carbon storage 

Based on the SUR method, our biomass models could provide proper estimations, which 
guarantee additivity among the individual components of L. sibirica. Considering the issues 
described above, the additive system of biomass equations that used DBH as a single predictor 
can be used to estimate the biomass of either the individual trees or the specific components in 
this study. The total aboveground biomass was expressed as the sum of the biomasses of the 
respective tree components (e.g., stem wood, stem bark, branch, and needle). Consequently, based 
on the additive biomass equations, the mean aboveground biomass estimated for L. sibirica was 
148.14 Mg/hm2. The average carbon density was 74.07 Mg C/hm2 in the Altay Mountains, and 
the carbon storage was estimated to 30.69 Tg C. 

4  Discussion 

4.1  Model availability 

A graphical comparison of the aboveground and separate component equations illustrated the 
differences between our models and the biomass equations of Battulga et al. (2013) for L. sibirica 
(Fig. 4). Apparently, there was a subtle divergence from our established values for aboveground 
biomass, especially for large trees (Fig. 4a). Many studies have indicated that site condition, e.g., 
forest types, stand ages, soil conditions and forest densities, contributes significantly to the 
variation in the aboveground biomass (Zhou et al., 2002; Li et al., 2006; Alvarez et al., 2012; 
Dong et al., 2015). Thus, using these equations at a specific site can result in biased estimates of 
biomass and carbon (Cairns et al., 2003), and the applicability of generalized models to new sites 
must be tested prior to application (Hall et al., 2002; Youkhana and Idol, 2011; Li and Zhao, 
2013). The forest in the Chinese Altay Mountains represents the southernmost limit of the taiga 
forests. The regional climate of the mountains is mainly controlled by the westerlies that are 
affected by the distant oceans (Zhang et al., 2016), and trees that were affected by drought on 
south-facing slopes were excluded because precipitation decreased from north to south. Mature 
and over-mature stands occupied large proportions of the Altay Mountains (Huang et al., 2015). 
In this study, our stem equation produced higher predictions (Fig. 4b), while under-predicted 
values were obtained for branches and needles (Figs. 4a, c and d). This result was probably 
attributed to the higher wood density and lower precipitation under the ultra-continental climate 
of Mongolia compared to that in the Chinese Altay Mountains. 
  At the same time, it should be noted that the application of the models must be within a certain 
diameter range (Anitha et al., 2015), which is often neglected in practice. Many studies did not 
point out the diameter range that was sampled, or the studies used a limited range in diameter 
(Anitha et al., 2015). Picard et al. (2012) have suggested that it is difficult to choose 
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Fig. 4  Model predictions of aboveground (a) and separate component (stem, branch and needle biomass; b–d) 
equations (solid line) for the Chinese Altay Mountains (this study) compared to the published equations (dashed 
line) for the Mongolian Altay Mountains (Battulga et al., 2013) 

species-specific biomass equations for focal species because most published biomass equations 
are site-specific estimations that were developed using sample trees at each study site. While 
comparing our own results with those of other authors, one thing should be considered: in some 
cases, we should extrapolate the other models beyond the original range of data (Annighöfer et al., 
2012). In this study, we have extrapolated the published range of equations (6 cm<DBH<22 cm). 
Meanwhile, the low number of samples available also affects the regression coefficient of the 
equation (Blujdea et al., 2012). It is well known that accurately estimating the biomass of large 
trees is critical to the process of estimating the stand biomass because large trees usually account 
for a greater proportion of biomass in a stand (Gower et al., 1999). Thus, if our biomass equations 
were used to estimate biomass outside of the data range (DBH<7 cm or DBH>60 cm), the models 
might produce large prediction errors. 

4.2  Effect of seed equation on biomass model accuracy  

In this study, the branches and needles of individual trees were estimated by the nested regression 
method. The regression model for the main branches is called the seed equation and should have 
good reliability to decrease propagation error (Liu, 2009; Jia et al., 2015). The determination 
coefficient of the leaf seed equation was 0.73 (Table 3). As expected, the equations could not 
adequately predict the biomass of needles, due to the environmental and local conditions that 
affect this component (Blujdea et al., 2012), e.g., forest types, the number of sampled trees and 
the range of tree sizes. Our equation underestimated the needle biomass compared to the values 
reported in the literature (Fig. 4d), which is consistent with the results of a previous report (Wang, 
2006), probably because leaf is very sensitive to water and soil conditions (Bondlamberty et al., 
2002; Wang et al., 2005). Thus, it is better to estimate these biomasses by using site-specific 
equations (Gower et al., 1999). Moreover, the coefficient of determination of the branch seed 
equation was higher (R2=0.95; Table 3) than that of previous result. Our branch equation 
predicted lower biomass than did the comparative literature when diameter was above 15 cm (Fig. 
4c). Simultaneously, the related study has shown that stem biomass increased with large diameter 
classes and tree ages of L. sibirica, while the branch and needle biomasses decreased (Zhang et al., 
2017). Researchers must consider that the variance in crown biomass estimations is higher than 
that obtained from stem biomass estimations (Carvalho and Parresol, 2003). As we know, the 
workload involved with collecting branches and needles is laborious and time-consuming in the 
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field. Although some predictive differences were found between our models and other published 
studies, compared to direct weighing, the nested regression method was appropriate to establish 
branch and needle biomass equations, and this was fast and time-saving method.  

4.3  Correction for log-transformed models  

The CF is a simple and straightforward way to remove systematic bias that is introduced by 
anti-log transformation of the obtained biomass at the original scale when fitting log-transformed 
biomass models (Sprugel, 1983). However, this anti-log transformation process leads to a 
systematic underestimation of the expected biomass (Dong et al., 2015). In this study, the CF 
values of all biomass equations were less than 1.224, especially for the aboveground, and the stem 
biomass equations (<1.018). The percent bias (B) ranged from 0.864% to 18.295% (Table 3), and 
the B value for the needle biomass was the largest (8.295%–14.502%) and was slightly larger 
than those calculated in other studies (Zianis et al., 2011; Dong et al., 2014; Meng et al., 2017), 
where the anti-log correction was ignored. Thus, we should give this topic more consideration in 
the future. 

4.4  Selection of allometric regression functions 

In practice, the use of DBH as the only explanatory variable leads to good results and might be 
sufficient for calculations, especially for individuals originating from the same site (Annighöfer et 
al., 2012). The DBH&H combined equations could improve the DBH-only equations (Table 5), 
which was consistent with the results from previous studies (Bi et al., 2004; Wang, 2006; Zhou et 
al., 2007; Li and Zhao, 2013). However, there was a <2% increase in R2 (Table 5) after the 
incorporation of H and DBH in this study. As we know, obtaining H is costly in terms of labor and 
time, and H is difficult to be accurately measured (Wirth et al., 2004; Zianis et al., 2005). 
Therefore, the existing allometric equations had large differences and were difficult to be selected 
(Zhang and Wang, 2008). Several studies have concluded that H, as an additional predictor, only 
adds marginal precision to the predictive ability of DBH-based biomass regressions (Wang, 2006; 
Anitha et al., 2015; Dong et al., 2015; Meng et al., 2017). The coefficient estimation of system 
equations (Table 4) that use only DBH has revealed that the coefficient b for DBH is always 
positive, which indicated that the biomass of all components increased with DBH. However, it 
was observed that the coefficient c for H in the models based on DBH and H was positive for 
stem and bark biomasses, and the coefficient c was negative for branch and foliage biomasses, 
which is in agreement with previous reports (Lambert et al., 2005; Meng et al., 2017). This means 
that a taller tree has fewer branches and less foliage even if the DBH value is the same (Hosoda 
and Iehara, 2010). Therefore, for the models that use an additional explanatory variable with DBH, 
their performance is mainly dependent on the value that is being estimated (Annighöfer et al., 
2012; Menéndezmiguélez et al., 2013). Therefore, we suggested that DBH-only equations should 
be used to estimate the stand biomass. 

4.5  Intra- and inter-differences in aboveground biomass and carbon stock density 

There is a considerable spatial variation in carbon stock densities, due to tree species composition, 
climate, soils, and land-use history (Dulamsuren et al., 2016). Dulamsuren et al. (2016) conducted 
aboveground biomass estimates for L. sibirica, and the values ranged from 109 to 146 Mg/hm2; 
additionally, carbon stock density in the aboveground biomass of mature forests had an average of 
68.4 (±6.9) Mg C/hm2 in the Mongolian Altay Mountains. In this study, the mean aboveground 
biomass and carbon stock density were 148.14 Mg/hm2 and 74.07 Mg C/hm2, respectively. The 
mean aboveground carbon stock density estimated for L. sibirica forest in both the Chinese and 
the Mongolian Altay mountains was in the upper range of carbon stock densities known for boreal 
forests (Thurner et al., 2014). This result might be related to long growing season and action of 
drought stress, which result in a lower stand turnover rate and thus a higher standing biomass 
(Jarvis and Linder, 2000; Dulamsuren et al., 2016). At the location of our study at the 
southernmost distribution limit of taiga forests, there would be a higher stand biomass than that 
found in other boreal forests. Ni (2004) indicated that the mountain-based forest net primary 
productivity (NPP) was approximately 0.9 Mg/(hm2

•a) in the Chinese Altay Mountains. 
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Dulamsuren et al. (2013) demonstrated that growth declines in Siberian boreal forest were caused 
by a decrease in the effective moisture due to the increase in summer temperatures caused by 
climate warming in the southernmost L. sibirica forests of eastern Kazakhstan. On the other hand, 
the aboveground carbon stock density was much higher than that in the L. gmelinii stand (total 
biomass ranged from 8.6 to 33.1 Mg/hm2 with stand-level T/R (i.e., aboveground-total/root 
biomass ranging from 1.5 to 2.6) (Kajimoto et al., 2006), and NPP was estimated to be 1.8 
Mg/(hm2

•a) with permafrost soils in central Siberia (Kajimoto et al., 1999). As we know, L. 
gmelinii is also an important species in the forest ecosystems of northeastern China. Wang et al. 
(2005) concluded that natural L. gmelinii forests exhibited a decreased NPP when the biomass 
was higher than 100–110 Mg/hm2, and when the aboveground biomass and NPP for mature L. 
gmelinii forests were 42.93–190.25 Mg/hm2 and 1.1–4.0 Mg/(hm2

•a), respectively, at the stand 
level in the Da Hinggan Ling Mountains, China.  

5  Conclusions 

Allometric models with measured variables are simple to use in forest carbon estimation for their 
time-saving and cost effective characteristics. Two additive systems of biomass equations were 
developed, and the equations obtained in this study provided an operational method for accurately 
estimating the aboveground biomass of individual natural L. sibirica trees, which are widely 
distributed in the Altay Mountains, China. Finally, additive equations that used DBH as the single 
predictor were intended to be used to estimate carbon sequestration. Because cutting or harvesting 
trees is strictly prohibited in natural forest, carbon accounting can be conducted using the 
developed models that rely on non-destructive methods. The availability of different component 
biomass estimates can also provide references for the formulating of conservation strategies. 
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