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Abstract: Shrub layer diversity is an essential component of the forest ecosystem diversity, that
contributes significantly to structuring the community and maintaining diversity, especially in
plantation forests. In previous studies, researchers have reported the strong relationship among
various factors (i.e., soil composition, mean annual temperature, etc.) and shrub diversity. However,
how these factors jointly influence shrub diversity and which factors could be considered the key
factors is still unknown. In this study, we attempted to quantify the effect among environmental
factors, soil factors and forest stand factors on shrub diversity. Twenty-seven variables were selected
from 57 Chinese pine plantation plots in Huanglong Mountain, Yanan City, Shaanxi Province, China.
The path models showed that latent variable of soil properties is the main effective factor of latent
variable of shrub diversity (directly effect, path coefficient = 0.344) and the latent variable of site
conditions is another effective factor of latent variable of shrub diversity (indirectly effect, path
coefficient = 0.177); Besides, the latent variable of site conditions and forest properties directly affect
the latent variable of soil properties (path coefficient = 0.514 and 0.326, respectively). Among the
latent variable of soil properties, soil water content (SWC) has the biggest weight of 0.666, which
indicated the most significant contribution of SWC to latent variables of shrub diversity. Total nitrogen,
weighted 0.375, and total phosphorus, weighted 0.308, are also important factors and make a similar
contribution to latent variable of shrub diversity. Soil organic matter (SOM) has a minimal impact
(lowest weight, 0.059); among the objective variables of site condition, altitude contributes the most
and is followed by litter thickness, weighted at 0.722 and 0.448, respectively. Furthermore, among all
the variables affecting the latent variable of forest properties, forest age is recognized as the maximum
impactor of soil property change, which weighted −0.941; and is followed by forest stock volume
and diameter at breast height (DBH), weighted 0.795 and 0.788, respectively. The crowding index
(C) has the lowest weight (−0.235) and demonstrated that spatial distribution and crowding of trees
have minimal impact on the latent variable of Soil properties. diversity Overall, our study provides
new insights into quantifying the relationships among different driving factors that potentially play a
significant role in determining shrub layer diversity within the plantation forest.
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1. Introduction

Plantation forests make up a large and critical part of the world’s forested ecosystems. According
to the Food and Agricultural Organization [1], plantation forests account for 7.3% of the global forest
cover. Undisputedly, plantation forests contribute a substantial amount of production to merchantable
wood [2]. Moreover, as the drive to decrease logging pressure on natural forests, sequester carbon, and
restore degraded lands continues to develop, the ecological value of plantation forests is starting to
be recognized [2]. Thus, diversity, an important parameter of natural forests, has started to receive
more attention in plantation forests. In most regions of the world, shrub layer diversity plays a
significant role in plantation forest diversity due to monoculture in the plantation forests’ arbor layer [3].
Furthermore, shrub communities also represent the most important indicator of forest diversity [4,5].
The development of shrub community diversity may cause physical and biological landscape alteration,
which can significantly affect forest diversity by influencing microclimate [6].

Shrub diversity varies considerably due to potential impact factors like site quality, plant regeneration,
and soil properties [7,8]. Numerous previous studies have expounded on different impact factors of
shrub distribution, composition, and diversity. On the one hand, shrub layers depict strong spatial
distribution patterns according to environmental factors and topography. For example, temperature,
soil moisture, and altitude are correlated with shrub composition [8,9]. On the other hand, there is a
complicated relationship between the tree layer and shrub layer [10]: the tree layer governs light and
temperature, which are the most crucial plant environmental conditions [11]. Tree layer density and
composition are recognized as the primary factors that determine the composition of other vegetation in a
forest [12]. In addition, differences in tree layer spatial structure lead to varying shrub layer distributions,
because light input, which is controlled by the canopy, is unevenly distributed over the shrub layer [10,13].
In these studies, researchers explain the correlation or causal relationships between impact factors of
shrub diversity and shrub diversity itself. However, the shrub layer is influenced by a mix of these
factors, which is a diverse and complex process. How these factors jointly influenced the shrub diversity
and the interaction among these factors is still unknown. Thus, in our study, we jointly quantify the
effects of multiple factors that impact shrub diversity to address this fundamental problem.

We characterized four different latent variables by using 27 different observed variables that were
collected from 57 Chinese pine plantation forest plots. In this work, we use the Random Forest (RF)
algorithm to screen out the critical index of shrub diversity and Structural Equation Modeling (SEM)
to quantify the effect of different factors on the latent variable of Shrub diversity. The RF algorithm
and SEM have both been extensively applied in ecological research [14,15]. The RF algorithm is a
machine learning classification and regression method that has a demonstrated ability to interpret the
interactions within complex systems accurately [16]. SEM is a type of causal modeling that combines
constructs and data networks [17]. In this study, we employed the Partial Least Squares Structural
Equation Modeling (PLS-SEM). Using the modeling methods described above, the primary objectives
of this work was to: (a) select fitted diversity indexes to quantify the shrub diversity in plantation
forest; (b) explore the interaction among environment factors, soil factors and tree layer factors, which
influenced shrub diversity; and (c) evaluate the effect of environment factors, soil factors and tree layer
factors on shrub diversity.

2. Materials and Methods

2.1. Study Area

The study area is located in Huanglong Mountain, Yanan City, Shaanxi Province, which is
covered by Chinese pine (Pinus tabulaeformis) plantations. Huanglong Mountain is located in the
Loess Plateau mesa region and belongs to the eight major protective forests in the Shaanxi Province.
It is situated within the temperate zone and is characterized by a continental monsoon climate.
Mean annual temperature ranges from 8 to 12◦C, annual precipitation is between 350 and 600 mm,
mean annual sunshine is 2370 h, and there are 175 frost-free days per year on average. Huanglong
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Mountain has abundant plant resources, and almost 90% of the area is covered by forest. The forest
communities mainly consist of Chinese pine (Pinus tabulaeformis), Oriental Arborvitae (Platycladus
orientalis), Liaodong Oak (Quercus liaotungensis), David Poplar (Populus davidiana), and White Birch
(Betula platyphylla); while the shrub vegetation mainly consists of Ostryopsis davidiana, Spiraea pubescens,
Sophora viciifolia, Ostryop sisdavidiana, Cotoneaster multiflorus, Rosa hugonis, and Syringa pekinensis.
The herbaceous vegetation is primarily dominated by Carex lanceolata.

Chinese pine (Pinus tabulaeformis) dominates the study area vegetation and always represents >

90% of the forest composition. Our research plots were established 1114 to 1519 m above sea level,
with an inclination ranging from 3◦ to 40◦.

2.2. Forest Survey, Sample Collection, and Soil Sample Analysis

Fifty-seven 20 m × 30 m plots were delineated in a typical Chinese pine forest. In each plot, all
trees with a diameter bigger than 3 cm at breast height were signed and recorded. Diameter at breast
height (DBH) was measured using diameter tape, with 0.1 cm precision. The average slope and altitude
were recorded using a portable GPS-G138BD (made by Unitstrong, Beijing, China). Litter thickness
was measured on 1/4-point, 1/2-point, and 3/4-point across the diagonals, and canopy length was
measured from north to south and east to west using a tape measure, with 0.1 m precision. Tree height
was measured using a Blume-Leiss height indicator, with 0.5 m precision. Because our selected plots
were in even-aged plantation forest, we used an increment borer to measure five different samples in
each plot in order to determine the average age of the tree. The relative coordinates of trees in each plot
were measured using a tape measure. To begin, each plot was first cut into a 5 m × 5 m grid; then each
tree’s position within each grid was carefully determined. Canopy density was calculated based on the
projection area of all canopy in a plot and total area of the plot, and this calculation was performed in
ArcGIS 10.2 (Esri, Redlands, CA, USA). In addition, five shrub quadrats were designated within the
1/4-point, 1/2-point, and 3/4-point diagonals in the plots (Figure 1a). For each species in each shrub
quadrat, we recorded shrub species, quantity, average height, and average coverage.
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collected using a 5 cm diameter soil driller after the litter was removed. Soil samples collected at the 
same site were mixed into one sample. After removal of fine roots and the green vegetation parts, the 
soil samples were passed through a 2 mm sieve and stored at −4 °C for subsequent chemical and 
physical analyses. Soil bulk density samples were collected with a 100 mm2 cylindrical metal sampler. 

The soil bulk density was gravimetrically determined via the soil-core method [18]. The SWC 
was measured by oven drying the soil at 105 °C until a constant weight was reached. Soil pH was 
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Figure 1. Shrub quadrats position (a) and the strategies of soil sampling (b).

Soil samples from the 57 plots were collected from 10–12 August 2017 and 14–16 August 2018.
Thirteen points were selected in each plot to form an S-shape (Figure 1b). Horizons of 0–30 cm were
collected using a 5 cm diameter soil driller after the litter was removed. Soil samples collected at the
same site were mixed into one sample. After removal of fine roots and the green vegetation parts,
the soil samples were passed through a 2 mm sieve and stored at −4 ◦C for subsequent chemical and
physical analyses. Soil bulk density samples were collected with a 100 mm2 cylindrical metal sampler.

The soil bulk density was gravimetrically determined via the soil-core method [18]. The SWC
was measured by oven drying the soil at 105 ◦C until a constant weight was reached. Soil pH was
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measured in a 1:1 soil/KCl suspension using a Sartorius p-10 pH meter (Sartorius, Gottingen, Germany).
The soil organic matter was assayed via the dichromate oxidation method [19]. The total nitrogen
content was measured with a FOSS Kjeltec 8400 Analyzer Unit (FOSS, Hillerød, Denmark) using the
Kjeldahl method [20]. The total phosphorus was digested by H2SO4-HClO4, then measured using
a spectrophotometer [21]. Total carbon was measured from 1 mm sieved soil with a Liaui TOC II
Analyzer (ELMENTAR, Langenselbold, Germany).

2.3. Variables

In this study, we used latent variables (i.e., variables that cannot be directly observed but are
instead inferred from other observed variables) and observed variables to explain the relationship
between various impact factors that pertain to shrub diversity (Table 1). Three independent latent
variables (forest stand properties, site conditions and soil properties) and one dependent latent variable
(shrub diversity) were selected to construct the PLS-SEM. The latent variable of forest stand properties
was expounded upon using ten independent observed variables, including four spatial structure
indexes—mingling (M) [22], dominance (U) [23], uniform angle index(W) [22,24], and crowding
(C) [25] and six basic tree layer properties—forest stock volume (VOL), canopy density (CD), DBH,
tree height (h), stand density (DEN), and average age of the tree (AGE). Due to the similarities of
environmental condition in our plots, only three observed variables were chosen for explaining the
latent variable of Site conditions—slope (SLO), litter thickness (LT), and altitude (ATT), which are
considered microclimate driving factors. Moreover, to expound the latent soil property variable, soil
organic matter (SOM), total carbon content (TC), total phosphorus content (TP), total nitrogen content
(TN), soil bulk density (BD), soil water content (SWC), and pH were selected as the observed variables.
To ensure the information dimensional integrity of latent variable of shrub diversity, five different
diversity indexes which expressed in different information dimension and two shrub species properties
were selected as observed variables to expound upon the dependent latent variable, including: total
shrub species (S), total number of shrub (N), shrub layer Margalef index (MAR), shrub layer Pielon
index (PIE), shrub layer Shannon-wiener index (SHA), shrub layer Simpson index (SIM), and shrub
layer Gleason index (GLE).

2.4. Selection of Variables

In this study, we applied an RF algorithm to reduce the dependent latent variable redundancy
and to eliminate the dependent observed variables that exhibit extremely low importance values [26].
RF is an ensemble method in which classification is performed by voting of multiple unbiased weak
classifiers—decision trees [27]. The algorithm was performed by the “Boruta” package (R software
ver-3.5.3), which provide the importance value to indicate whether a feature is vital by measure the
loss of accuracy of classification caused by the random permutation of attribute values between objects
though create a corresponding “shadow” attribute, whose values are obtained by shuffling values of
the original attribute across objects [28].

Shrub layer diversity can be reflected by multiple diversity indexes which correlation show
discrepancy with independent observed variables. Thus, we performed the RF algorithm to select
diversity indexes more relevant to independent observed variable. Twenty independent observed
variables were used to calculate the importance values of seven diversity indexes, respectively. Each
independent observed variable was classified by seven diversity indexes, in order to obtain an
importance values in one classification. Then, summarized the results of each importance value, the
diversity indexes were voted in if it showed statistical significance in one classification. This voting was
implemented to select diversity indexes that have greater relevant and criticality. RF and voting results
were used as the input parameters, which support the dependent latent variables in the PLS-SEM
model. In this work, the confidence level and maximum parameter RF algorithm runs were defined as
0.01 and 100, respectively.
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Table 1. Details of variables used in the research.

Latent Variable Observed Variable Abbreviation Detail

Forest stand
properties

mingling M The mean fraction of trees among the k nearest neighbors of a given reference tree with
heterospecific neighbors

dominance U The proportion of the n nearest neighbors of a given reference tree which are smaller than the
reference tree

uniform angle index W Characterize the spatial distribution of a forest community or of individual tree species within that
community by gradually comparing the included 4 angles with the standard angle

crowding C
Crowding degree of a neighborhood unit according to the overlapping of the crown in spatial
micro-environment which clearly define the crowding degree for a reference tree and its four nearest
neighbors

forest stock volume VOL The total volume of living trees in a stand that bigger than 3 m diameter at breast height
canopy density CD The aggregate of all vertically projected tree crowns onto the ground surface
diameter at breast height DBH The tree diameter measured at 1.3 m above the ground
tree height h Mean height of all the tree in a stand
stand density DEN the number of stems on a per hectare basis in relative terms
average age of the tree AGE Average age of all trees in a stand

Site conditions
slope SLO Mean angle of the site to the horizontal
litter thickness LT Mean thickness of litter in a stand
altitude ATT Mean altitude of each plot

Soil property

soil organic matter SOM The content of organic matter component of soil
total carbon content TC The content of total carbon of soil
total phosphorus content TP The content of total phosphorus of soil
total nitrogen content TN The content of total nitrogen of soil
soil bulk density BD The weight of soil in a unit volume
soil water content SWC The content of water in soil
Pondus Hydrogenii pH the negative of the base 10 logarithm of the molar concentration of hydrogen ions in a solution

Shrub diversity

total shrub species S Total number of shrub species
total number of shrubs N Total number of shrub individuals
Margalef species richness
index MAR MAR = S−1

lnN

Shannon diversity index SHA SHA = −
∑

pilnpi and pi =
Ni
N

Pielou’s evenness index PIE PIE =
N(N−1)∑
Ni(N i −1)

Simpson diversity index SIM SIM = 1−
∑

pi
2 and pi =

Ni
N

Gleason richness index GLE GLE = S
lnA A is the area of each plot
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2.5. Establishment of Preliminary Model and Determination of Paths

SEM is a stochastic method that is employed to analyze and estimate the causal relationship
between variable [29], contained factor analysis, and path analysis. It is mainly applied in the
PLS-SEM and Covariance-Based Structural Equation Modeling (CB-SEM), etc. The PLS-SEM methid
has better predictive accuracy when compared to CB-SEM, which focuses on parameter assessment [30].
In exploratory research, if little about the relationship among the variables is known, PLS-SEM,
not CB-SEM, should be considered [31]. Furthermore, certain researchers also emphasize that
PLS-SEM has a wider tolerance than CB-SEM, when sample size is limited and data are not normally
distributed [32,33]. Therefore, a PLS-SEM was selected for this study.

The preliminary model was established based on the following causal assumptions: (1) the latent
variables of site condition, forest stand properties, and soil properties directly impacted the latent
variable of shrub diversity; (2) the latent variable of site condition indirectly impacted the latent variable
of shrub diversity via the latent variables of forest stand properties and soil properties; and (3) the
latent variable of forest stand properties indirectly impacted the latent variable of shrub diversity via
the latent variable of soil properties (Figure 2).
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Figure 2. Preliminary partial least squares structural equation model which shows the relationship
between latent variables. The arrow indicates the effect between latent variables or weight of observed
variables to latent variables. The rectangles indicate the latent variables; the ovals indicate the observed
variables. ATT, altitude; LT, litter thickness; SLO, slope; SOM, soil organic matter; TP, total phosphorus
content; TC, total carbon content; SWC, soil water content; pH, power of hydrogen; TN, total nitrogen
content; BD, bulk density; DBH, diameter at breast height; C, Crowding index; U, Dominance index; M,
Mingling index; W, Uniform angle index; CD, canopy density; h, tree height; DEN, stand density; AGE,
average age of the tree; VOL, forest stock volume; S, total shrub species, N, total number of individual
shrub; MAR, Margalef index, PIE, Pielon index, SHA, Shannon-wiener index; SIM, Simpson index;
GLE, Gleason index.

To reduce the uncertainty in PLS-SEM running, the correlation relationship among the different
groups of observed variables are examined. We performed a direct ordination analysis in each pair of
groups of variables using the Canonical Correspondence Analysis (CCA). CCA is a direct gradient
analysis method that explores the relationships between two groups of variables. The 20 independent
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observed variables and five dependent observed variables (diversity indexes, selected using the RF
algorithm), were divided into four groups along four different latent variables. Then, six pairs of CCA
were performed between the two groups for each variable. By verifying the significance of the six
pairs using CCA, some paths in the preliminary model (Figure 2), which showed little significance,
were excluded and potential paths in a secondary PLS-SEM model were confirmed. The CCA was
performed using the “Vegan” package (R software ver-3.5.3).

2.6. Evaluation of PLS-SEM

Based on the results of RF and CCA, we performed and estimated factor analysis and path analysis
in PLS-SEM. In the final PLS-SEM model’s construct reliability and inner model validity were evaluated
using the Composite Reliability value (CR) and the Average Variance Extracted value (AVE). A CR
value > 0.7 indicates good internal consistency and reliability [34]; while an AVE value > 0.5 indicates
good-fitting, convergent validity [35]. The discriminant validity should be evaluated by a matrix that
follows the Fornell-Larcker Criterion. The square root of the AVE of a reflected latent variable should be
larger than the correlation coefficient values with other latent variables [35]. Variance Inflation Factor
values (VIFs) were examined to avoid multicollinearity of observed variables, as only one variable from
each pair of significantly correlated variables was used. The VIF of each variable should be <5.0 [36].
To avoid model misspecification, Henseler introduced the Standardized Root Mean Square Residual
value (SRMR) as a goodness fit measure for the PLS-SEM [37]. The SRMR value should be <0.10 [38].
In the PLS-SEM, a bootstrapping procedure was applied in order to obtain T-statistics for the structural
path’s significance testing. The p-value of the T-statistics should be <0.05 (or the T-statistics should be
>1.96), which indicates that the path coefficient is significant [31]. In this work, the maximum PLS
algorithm iterations were set at 5000 times. The stop criterion is a threshold value that should be
smaller than the difference of outer weight and is therefore set to 10−7 in the PLS algorithm. In addition,
we set the bootstrapping subsamples as 10,000 and the bootstrapping significance level at 0.05 to ensure
the reliability. All of the PLS-SEM statistical analyses were performed using SmartPLS 3 (ver-3.2.8,
SmartPLS GmbH, Boenningstedt, Germany).

3. Results

One hundred and five shrub species and 14,321 individual shrub plants were observed in our
57 plots. Lonicera maackii, which was observed in 53 plots, was the most common shrub in the study
area, followed by Celastrus orbiculatus, Vitaceae ampelopsis, and Euonymus alatus, which were observed
in 48, 42, and 40 of the plots, respectively. The seven dependent observed variables, which were used
to explain the latent variables of shrub diversity ranged from: S: 9–26, N: 29–500, MAR: 1.54–4.60, PLE:
0.41–0.90, SHA: 1.18–2.68, SIM: 0.54–0.90, and GLE: 1.04–5.38 based on our 57 plots, respectively.

3.1. Observed Variables of Latent Variables of Shrub Diversity

In the RF algorithm, the seven dependent observed variables were classified by each of the
20 independent observed variables that belonged to the latent variables of forest stand properties, site
conditions, and soil properties. The contribution of dependent observed variables to independent
ones was recognized as the importance value. Based on these regressions, we obtained 20 groups of
importance values (Figure 3). The importance values in the VOL, CD, and TP groups showed the best
acceptance level, with only one importance value rejected from each group. The PIE was rejected from
groups VOL and CD, which depicted importance values of 1.87 and −0.37, respectively; while N was
rejected from group TP, due to its importance value being −3.07. SLO, h, PH, BD and TN all depicted
the minimum acceptance level, and therefore all variables in these groups were rejected. 8, 24, and
17 importance values were received from different observed variables belonging to latent variables of
site conditions, forest stand properties, and soil properties, respectively.
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Figure 3. Factor significance by Random Forest algorithm, * indicate the significance of independent
observed variables which selected by dependent observed variables. TN, total nitrogen content; TP,
total phosphorus content; BD, bulk density; SWC, soil water content; PH, power of hydrogen; TC,
total carbon content; SOM, soil organic matter; C, crowding index; U, dominance index; M, mingling
index; W, uniform angle index; AGE, average age of the tree; DEN, stand density; h, tree height; DBH,
diameter at breast height; CD, canopy density; VOL, forest stock volume; ATT, altitude; LT, litter
thickness; SLO, slope; S, total shrub species, N, total number of individual shrub; MAR, Margalef index,
PIE, Pielon index, SHA, Shannon-Wiener index; SIM, Simpson index; GLE, Gleason index.

We ranked the seven dependent observed variables using a total of 49 received importance
values (Figure 3). Results, in decreasing order, are as follows: N and MAR (ten votes each) >SIM,
SHA, and GLE (seven votes each) >S (five votes) >PIE (three votes). The votes for N and SHA are
basically from two latent variables. N received all the votes from the latent variable of forest stand
properties, excepting U and h, as well as two votes from the latent variable of site condition; while
the latent variable of forest stand properties and soil properties contributed three and four votes
to SHA, respectively. Only the observed variables of TP, SWC, and TC from the latent variable of
soil properties contributed three votes to PIE, which received the least votes in the seven dependent
observed variables. MAR, SIM, GLE and S received votes from each of the three latent variables. Based
on the total number and distribution of votes for each dependent observed variable, five variables—N,
MAR, SIM, SHA and GLE—were selected as the observed variables for the shrub diversity latent
variable in the PLS-SEM.

3.2. Possible Path and Model

The CCA results of site condition vs. shrub diversity and forest stand properties vs. shrub
diversity was not statistically significant. These may due to the site environment and tree layers
having little relevant direct effect on the latent variable of shrub diversity. The results of site condition
vs. forest stand properties, site conditions vs. soil properties, and forest stand properties vs. soil
properties were statistically highly significant. These results conform to the interaction among tree
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layers, soil layers, and environmental factors. In addition, the CCA result for soil property vs. shrub
diversity showed a significant correlation relationship, indicating that the soil layer may have a strong
connection with shrub layer diversity (Table 2).

Table 2. The significance of paths between latent variables.

Latent Variables Group Canonical Correlations 1 p-Value Wilk’s Chi-SQ DF

Site conditions vs. forest stand properties 0.697 0.000 FFF 0.273 63.664 30
Site conditions vs. soil properties 0.699 0.000 FFF 0.291 62.42 21
Site conditions vs. shrub diversity 0.511 0.072 0.632 23.619 12

Forest stand properties vs. soil properties 0.845 0.000 FFF 0.058 134.01 70
Forest stand properties vs. shrub diversity 0.768 0.080 0.260 64.645 50

Soil properties vs. shrub diversity 0.642 0.020 F 0.333 54.36 35

F indicates p < 0.05;FF indicates p < 0.01;FFF indicates p < 0.001.

If the CCA result was not significant between two groups of variables, we concluded that there
were no potential paths between this pair of latent variables in PLS-SEM (an observed variables group
was recognized as a latent variable in SEM). Thus, based on CCA results for different pairs of variables
groups, the preliminary PLS-SEM model was adjusted by excluding two paths— from the latent
variable of forest stand properties to the latent variable of shrub diversity and from the latent variable
of site conditions to the latent variable of shrub diversity. Figure 4 depicts the proposed potential
secondary model.
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3.3. Model Fit

The best fit model is illustrated in Figure 5. In the best fit model, the CR valued 0.839, indicating
the model demonstrates good internal consistency and reliability; while an AVE of 0.667 shows
good-fitting convergent validity of our final model. The discriminant validity was evaluated using a
Fornell-Larcker criterion matrix. In this matrix, the AVE square root of the latent variable of shrub
diversity was 0.816; which is larger than its correlation coefficient value with other latent variables.
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To avoid multicollinearity of observed variables, a VIF statistical analysis was performed on the
objective variables. All variable VIFs were <3.0 except GLE (VIF = 4.7) and MAR (VIF = 5.0), which
were reluctantly accepted in the final hypothesis. As a goodness fit measure for the PLS-SEM, the
SRMR value of 0.099 is acceptable.
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Figure 5. Final best-fit model describing the relationship of latent variables and their observed variables.
The thickness of the arrow indicates the effect between latent variables or weight of observed variables
to latent variables. ATT, altitude; LT, litter thickness; SOM, soil organic matter; SWC, soil water content;
TN, total nitrogen content; TP, total phosphorus content; C, crowding; DBH, diameter at breast height;
W, Uniform angle index; AGE, average age of the tree; VOL, forest stock volume; GLE, Gleason index;
MAR, Margalef index, SIM, Simpson index.

3.4. Evaluation of Shrub Diversity’s Effect Factor

The final model’s factor analysis in SEM showed the weight of each observed variable relative to
the latent variables (Figure 5). The weight of MAR and GLE is 0.497 and 0.519, respectively; which
means they are responsible for 96.2% of the contribution to the latent variable of shrub diversity.
For latent variables of site conditions, the weight of ATT and LT is 0.772 and 0.448, respectively. The
SWC observed variable made the most considerable contribution to the latent variable of soil properties
with a weight value of 0.666, while SOM contributed the least with a weight of 0.059. C and AGE had
a negative effect on the latent variable of forest stand properties, with weights of −0.235 and −0.941,
respectively. In turn, DBH, W and VOL had a positive effect, depicting weight values of 0.778, 0.533
and 0.795, respectively.

Based on the bootstrapping results, the T-statistics and p-value of all three paths are acceptable,
which means the final model’s three total effects are significant (Figure 5). The total effects of the latent
variable of site conditions to the latent variable of soil properties (T-statistics = 3.919, p-value < 0.001),
the latent variable of soil properties to the latent variable of shrub diversity (T-statistics = 2.544,
p-value < 0.05), and the latent variable of forest stand properties to the latent variable of soil properties
(T-statistics = 2.147, p-value < 0.05) is 0.514, 0.344 and 0.326, respectively. Moreover, the indirect effect
of the latent variable of site conditions to the latent variable of shrub diversity is 0.177 (T-statistics =
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1.978, p-value < 0.05), which is accepted based on the bootstrapping result. However, the indirect
effect of the latent variable of forest stand properties to the latent variable of shrub diversity was not
significant (indirect effect = 0.112, T-statistics = 1.481, p-value > 0.05).

4. Discussion

4.1. Direct Effect of Shrub Diversity

In this study, we quantified and evaluated the direct impact of shrub diversity. Our results
highlight that the latent variable of shrub diversity was mainly influenced by a direct effect from the
latent variable of soil properties. Similar results were reported in John et al. [7] which stated that
belowground nutrient availability plays an essential role in plant distribution.

For the objective variables, our result demonstrated that SWC is a major contributor and was
recognized as one of the factors that affect plant diversity [39]. This highest contribution from SWC
was mainly due to our study area being located in the Loess Plateau, where SWC was restricted by
limited precipitation and soil erosion [40]. Li et al. [41] also reported that shrub species richness and
abundance were mainly determined by SWC. Total nitrogen was recognized as another major variable
that determines the composition and diversity of vegetation, in that nitrogen concentration has a
negative effect on plant diversity [42]. Furthermore, our results show that total soil phosphorus is also
vital for the latent variable of shrub diversity. These results are in agreement with Condit et al. [43]
who reported that phosphorus is the strongest predictor of more than half of the plant distribution
in the tropical forest. Furthermore, Zemunik et al. [44] reported that phosphorus’s key role is one of
the vital factors that support the plant community. In this study, SOM contributes little to the latent
variable of shrub diversity, which conflicts with the results from Fu et al. [45] who reported that SOM
has the largest effect on shrub richness and α-diversity. Yet, our results are in good agreement with Lu
Nini [46] who reported that there is no statistically significant influence of SOM on the latent variable
of shrub diversity. This phenomenon might be explained by the fact that the main tree species in our
study and Lu’s study is conifer, while Fu’s research was primarily conducted on hardwood species.
SOM in conifer forests has more lignin, which in turn generates lower activity than broad-leaves
forests [47].

4.2. Site Condition Influence On Shrub Diversity as Demonstrated by the Effects on the Soil Properties

Our results show that the latent variable of site condition is directly influencing the latent
variable of Soil properties and indirectly impacting the latent variable of shrub diversity (via its
direct effect on soil), which indicated that no direct causal relationship between shrub diversity and
environmental factors.

According to our results, the composition and distribution of the shrub layer are significantly
influenced by observed variable of altitude. This result agrees with Chawla et al. [48] who reported that
the relationship between altitude and plant diversity was depicted by a hump-shaped curve. A direct
effect is identifiable in the latent variable of site conditions to the latent variable of soil properties.
Altitude gradient has a significant influence on soil nutrition. Temperature and moisture, which are
affected by altitude, may influence the availability of crucial plant nutrients [49]. Moreover, the lower
temperature in high altitude areas limits the soil’s organic matter decomposition rate and microbial
activity [50]. Litter thickness (LT) is another site condition key variable that directly influenced the
latent variable of soil properties. Litter is recognized as an inherent part of nutrient cycling [51].
Significant differences in litter thickness may indicate different soil nitrite circulation. Long-term litter
removal experiments demonstrated that TN concentration significantly decreased to about 40% and
TP concentration decreased to 37% [52]. In addition, we also identified an indirect effect of LT on the
latent variable of shrub diversity. Litter is defined as a protective layer on the soil surface that regulates
microclimates. Small-scale microclimatic heterogeneity promotes species richness and diversity [53].
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For example, results from a long-term study by Shaolin et al. [52] demonstrated increased diversity of
herb and shrub layers in stands where the litter was not harvested.

In our study, the weight of ATT > LT. That may be because our plots drop from 1519 m to 1114 m,
which facilitates a more significant environment index change (for example: soil temperature) than
litter thickness variation. Meanwhile, litter decomposition is a very long process, which is also affected
by altitude change. Thus, ATT contributed a stronger effect than LT.

4.3. Effect of Tree Layers on Soil Properties

Our results also highlight that there is no statistically significant effect between the latent variables
of forest stand properties and shrub diversity—which conflicts with some previous studies [10,11].
Undeniably, there is a strong and visible relationship between some of the observed variables of the
forest stand properties and the shrub diversity. For example, the forest spatial structural index of C,
which indicates the canopy structure and the illumination input, has complex effects on the shrub
layer’s distribution and composition [54]. However, this strong relationship was not depicted between
latent variables of forest stand properties and shrub diversity, which may because observed variable
C is only one part of the latent variable of forest stand properties and the latent variable of forest
stand properties also expresses the information of other four observed variables. In addition, our plots
were established in a plantation forest that exhibited a monotonous tree layer composition and the
natural relationship between shrub layer and tree layer was highly interrupted by human activities.
Therefore, unlike the results presented by Bergstedt and Milberg [11], in this study, tree layers may not
be considered a main driving factor of shrub layer diversity.

However, our results show a statistically significant relationship between latent variables of soil
properties and forest stand properties. Based on the factor analysis in PLS-SEM of the latent variable of
forest stand structure, observed variable AGE was recognized as one of the main factors that impact soil
properties. This result agrees with Guomei et al. [55], who found that total nitrogen content peaked in a
secondary 17-year-old forest located in the north Ziwulin region of the Loess Plateau. Meanwhile, the
weight of AGE is the largest recorded among other observed variables, which, in our study, is a latent
variable of forest stand properties. It is because forest nutrition input and output rates are strongly
affected by forest age-class. On one hand, a higher aged stand may allow a higher input of litter, which
generally increases SOM content [56]. On the other hand, different soil nutrients may be absorbed
at different rates in different forest periods and that may influence the soil elements’ distribution.
Furthermore, our results concerning forest structure and soil properties are similar to Pötzelsberger
and Hasenauer’s result, indicating that forest structure drives soil processes by alternative light, soil
temperature, and moisture [57]. Our results showed that forest structure discrepancy may also induce
a variation of soil elements and nutrition. Observed variables of C and W explained the distribution of
canopy and trees in different stands. From one perspective, tree distribution has a strong correlation
with plant root density, which in turn has a positive correlation with soil nitrogen and a negative
correlation with soil moisture [58]. From another perspective, canopy and tree distribution decide
the forms of canopy gap which recognized as an important factor that causes variant soil nutrient
recycling processes by influencing temperature and moisture [59]. According to the results of Muscolo
et al. [60], the highest temperature and moisture values were observed in a Pinus nigra forest with a
large and small gap, respectively.

In our results, the weight of observed variable W is higher than C, which means the tree distribution
contribution is more important than the canopy contribution. It is because the dominant tree species in
our stands are Chinese pine, which possesses a strong root system. Furthermore, the Chinese pine
is recognized as a table-shaped crown when mature [61]. Thus, the Chinese pine plantation forest’s
canopy structure may have a minimal discrepancy, which in turn indicates lower contribution. The
observed variables of DBH and VOL have similar impact on soil properties. Considerable evidence has
shown that average DBH and forest stock volume have a significant relationship with root growth [62].
Root system changes may lead to alterations in soil element distribution in specific stands. Furthermore,
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root system modifications also have substantial influence on microorganisms, which significantly
contributes to decomposition [50]. As a result, modification of soil element distribution and contents
parallel increasing average DBH in a forest system.

Totally, our result indicated that environment and trees factors could influence shrub diversity via
change soil properties and soil is the determinant of shrub diversity in a region scale area with Chinese
pine plantation. However, tree layer factors, soil and environment may induce another complication in
different scales of the forest ecosystem or in different ecosystems. Ideally, a far-ranging scale and more
variables should be considered in a follow-up study.

5. Conclusions

Quantitative description of relationships among factors which could influence on shrub diversity
is crucial for understanding the diversity in forest ecosystem and could provide new insights in
plantation forest diversity research. In this work, we used a PLS-SEM to quantify the effect among these
impact factors of the latent variable of shrub diversity in a Chinese pine plantation forest. Our result
shows that: (1) Soil factors, which are controlled by tree layer and site conditions were recognized
as the main impact factor on the latent variable of shrub diversity; (2) Tree layer has a limited effect
on the latent variable of shrub diversity, regardless of the fact that some tree layer variables have
a strong connection to it; and (3) The latent variable of site conditions affects the latent variable of
shrub diversity by influencing soil factors. The results of relationships among these factors and shrub
diversity help in researchers’ understanding of forest diversity change, which may be applied in future
precise forest prediction model and allows more effective forest management strategies.
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