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Abstract: Near-surface remote sensing is an effective tool for in situ monitoring of canopy
phenology, but the uncertainties involved in sensor-types and their deployments are rarely explored.
We comprehensively compared three types of sensor (i.e., digital camera, spectroradiometer,
and routine radiometer) at different inclination- and azimuth-angles in monitoring canopy phenology
of a temperate deciduous forest in Northeast China for three years. The results showed that the greater
contribution of understory advanced the middle of spring (MOS) for large inclination-angle of camera
and spectroradiometer. The length of growing season estimated by camera from the east direction
extended 11 d than that from the north direction in 2015 due to the spatial heterogeneity, but there was
no significant difference in 2016 and 2018.The difference infield of view of sensors caused the MOS
and the middle of fall, estimated by camera, to lag a week behind those by spectroradiometer and
routine radiometer. Overall, the effect of azimuth-angle was greater than that of inclination-angle or
sensor-type. Our assessments of the sensor types and their deployments are critical for the long-term
accurate monitoring of phenology at the site scale and the regional/global-integration of canopy
phenology data.
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1. Introduction

Global climate warming advances the spring phenology [1–3], delays the autumn phenology [4,5],
and consequently extends the length of growing season (LOS) of temperate and boreal forests.
The extended LOS remarkably affects the CO2 flux in forest ecosystems [6,7], with one-day extension
in LOS leading to an increase in gross primary productivity of 5.8 gC m−2 yr−1 (0.6%) [8]. Therefore,
accurately monitoring vegetation phenology is critical for modeling the carbon cycling of terrestrial
ecosystems [9–11].

Currently, vegetation phenology is monitored with three major methods: ground observation,
satellite, and near-surface remote sensing. The traditional ground observation usually records
specific phenology events (e.g., budburst, leaf-out, coloration, defoliation) for a few individuals within
a community [12], while the satellite remote sensing (e.g., MODIS) is normally performed at a large scale
with difficulty of identifying the spatial heterogeneity within pixels [13]. Nevertheless, the near-surface
remote sensing, with moderate spatial representation and high temporal resolution, bridges the ground
observation and satellite remote sensing and thus provides an effective approach for long-term and
continuous in situ monitoring canopy phenology [14,15]. The phenology networks of near-surface
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remote sensing (e.g., the phenocam network, specnet, and FLUXNET) provide a data-sharing platform
for observing the phenology of terrestrial ecosystems [16–18]. However, long-term and continuous
monitoring of canopy phenology at a specific site and regional/global-scale syntheses of the data across
sites are seriously hindered due to various sensor-types and deployments used [16,17,19,20]. Assessing
the potential discrepancies among multi-sourced data of phenology and the uncertainty will improve
the accuracy of phenology estimates at both local and regional scales [16,21,22].

When using the near-surface remote sensing technique, canopy phenology is often characterized
by the vegetation index (VI, the color index with digital camera is also considered as VI for
convenience) calculated from the reflectance or digital number (DN) measured with three types
of sensor: the narrowband VI with spectroradiometer (VIN), the broadband VI with radiometers
(VIB) and the color index with digital camera (VIC). The viewing-angle effect of each type of sensor
should be first tackled in syntheses of the phenology data [23]. Ideally, camera is inclined downward
20–40◦ to broaden the field of view (FOV) and include some sky to avoid dark images [24]. But such
a near-horizontal view may affect the VIC and the phenophases via the bidirectional reflectance [25,26],
and the oblique angle produces a greater effective leaf area and might lead to an earlier peak of VIC [27].
Conversely, a vertical view can capture more understory phenology [20,28], but it reduces the FOV [29]
and is susceptible to the tower-structure [30–32]. However, the effect of camera inclination-angle on
phenophases and its uncertainty are seldom assessed [30]. Similarly, few studies investigated the
effects of inclination-angles of spectroradiometer and routine radiometers on VIN and VIB [33,34].

The azimuth-angle of a sensor may also introduce uncertainties in monitoring canopy phenology
due to the spatial heterogeneity [35,36]. Most cameras are installed northward in order to reduce lens
flare and canopy shadows [15], but some cameras are facing other directions for monitoring specific
species or minimizing limitations of the local terrains [37]. Clearly, the effects of sensor azimuth-angle
on tower-based VI and phenophases need more investigations.

Sensor-type is critical to integrate phenology data across sites, but few studies have investigated
the effect of sensor-type on the VI seasonality and phenophases. Richardson et al. [38] reported
that the green chromatic coordinate measured with a digital camera (GCCC) proceeded more slowly
than broadband normalized difference vegetation index measured with radiometers (NDVIB); Saitoh
et al. [39] found that the VIN was linearly correlated with the VIC, but did not report the effect of
sensor-type on the phenophases. Thus, a systematic comparison among sensor-types is urgent for
integrating phenology data from multi-sites with different sensors.

In this study, we assessed the effects of sensor types and their deployments on canopy phenology
of a temperate broadleaved deciduous forest at the Maoershan eddy flux site in Northeast China.
Specially, we compared the VI and phenophases derived from different inclination- and azimuth-angles
of three types of sensor (i.e., digital camera, spectroradiometer, and radiometer), which would provide
some guidelines for in situ monitoring canopy phenology of terrestrial ecosystems at both local and
global network platforms.

2. Materials and Methods

2.1. Study Area

The study was conducted at the Maoershan Forest Ecosystem Research Station of Northeast Forestry
University, Heilongjiang Province, Northeast China (45◦24′N, 127◦40′E, 400 m a.s.l.). The climate is
a continental monsoon climate. The annual average temperature is 3.1 ◦C, and the average annual
precipitation is 629 mm (1989–2009). The eddy flux tower was established on the northwest-facing
(~296◦) slope in a temperate broadleaved deciduous forest, with an average slope of ~9◦. The wind
direction above the canopy is preferentially up-valley (northeast) in the daytime and down-valley
(southwest) in the nighttime [40]. The tower is 48 m high, and the dominant canopy is ~20 m high.
The overstory of the forest is dominated by Ulmus japonica, Fraxinus mandshurica, and Betula platyphylla,
followed by Betula costata, Juglans mandshurica, Acer mono, and Populus ussuriensis; the shrubs are



Remote Sens. 2019, 11, 1063 3 of 16

dominated by Syinga reticulata var. mandshurica [41]. The tree biomass was 154 Mg ha−1; and the
maximum leaf area index estimated with the litterfall collection method was 6.5 m2 m−2 for the period
of 2008–2017 (Liu et al., unpublished data), of which the understory contributed to 27% [40].

2.2. Field Measurements

2.2.1. Digital Camera Measurements

The canopy images from four azimuth-angles (east, south, west, and north) with
an inclination-angle of 30◦and four inclination-angles (15, 30, 45, and 60◦) in the north direction
were manually collected using a digital camera (Coolpix L120, Nikon Corporation, Japan) on the top of
the eddy flux tower (48 m above the ground). Seven tripod heads (each in the east, south, and west
directions, and four in the north direction) were installed to ensure the position of camera stable for
each measurement. The images were collected once every 2–5 d during the leaf unfolding (May–June)
and defoliation (September–October) periods, and weekly from July to August for three years (2015,
2016, 2018). All images were collected around noon (11:30–12:00 local time) on sunny or cloudy days.
The white balance of camera was set to the sunny mode [30,42,43]. The optical sensor in the camera
was a CCD image sensor set with the auto mode of exposure; and all images were stored in JPEG
format with a resolution of 4320 × 3240.

2.2.2. Spectroradiometer Measurements

The canopy reflectance was manually collected on the tripod heads with four azimuth-angles
(east, south, west, and north) and four inclination-angles (15, 30, 45, and 60◦) in the north direction
using the fiber of FieldSpec 4 with a 25◦field angle (Analytical Spectral Devices Inc., Boulder, Colorado,
USA). The frequency of data-collecting was synchronized with the camera. The spectral range of
spectroradiometer was 350–2500 nm at 1-nm increments. Before every measurement, we optimized
the light source of the instrument, and then collected the dark current and measured down-welling
radiance by a white Spectralon (Opti-Sciences, Hudson, New Hampshire, USA). The relative reflectance
is computed by dividing the energy reflected from the canopy by the energy reflected off the white
reference panel (Spectralon). The white reference is a material with approximately 100% reflectance
across the entire spectrum. Three spectral curves for each measurement were stored and their average
was used as the measurement.

2.2.3. Radiometer Measurements

A net radiometer (CNR4, Kipp & Zonen, the Netherlands) was installed at the top of the flux tower
(48 m above ground) to measure incoming and outgoing radiations (W m−2), including solar (shortwave,
300–2800 nm) and long-wave radiations (4.5–42 µm). A pair of photosynthetically active radiometers
(400–700 nm, PAR) (PQS1 or PARLITE, Kipp & Zonen, the Netherlands) was also installed to measure
the incident and reflected photosynthetic photon flux densities (µmol m−2 s−1). All radiometers were
installed horizontally facing downward (i.e., with a 90◦ of the inclination-angle). Another group of
radiometers was added in 2016 that was slope-paralleled (i.e., with an 81◦ of the inclination-angle) and
operated for the whole year. All the radiation data were sampled every 5 s and stored 30 min mean in
dataloggers (CR1000, Campbell, Scientific, Inc., Logan, UT, USA).

2.3. Data Analysis

2.3.1. Vegetation Index from Digital Camera

The “Phenopix” package with R 3.3.2 was used to select the region of interest (ROI) from the
image [44]. We defined two ROIs (one is a large FOV covering most of the entire image, the other
matched the FOV of spectroradiometer) to extract the average digital numbers (DN) of the red, green and
blue channels of all pixels in the two ROIs respectively, then calculated the GCCC (Equation (1)) based
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on the three channel DN values for each image. All data were used to estimate the phenophases,
because the GCCC suppressed the effect of the illumination conditions [19].

GCCC =
G

R + G + B
(1)

where R, G, and B represent the DN values of red, green, and blue channels, respectively.

2.3.2. Vegetation Index from Spectroradiometer

The reflectance data were extracted from the spectral curve with ViewspecPro version 5.6. We used
the mean reflectance of the three spectral curves to calculate the narrowband normalized difference
vegetation index (NDVIN, Equation (2)) (red: 620–670 nm, near-infrared: 841–876 nm). To explore the
effects of FOV and spectral resolution of sensors on phenophases (see Section 3.3), we also calculated
the GCCN (Equation (3)) and NDVIB (Equation (4)) using the similar bands as camera (red: 575–710 nm,
green: 510–570 nm, blue: 430–515 nm) and radiometers (PAR: 400–700 nm, near-infrared: 700–2500 nm).
Although the maximum wavelength of spectroradiomter (2500 nm) was not exactly consistent with
that of CNR4 radiometer (2800 nm), the radiation in 2500–2800 nm may be neglected due to its minimal
contribution to the whole near-infrared waveband. The outliers measured on partly cloudy days were
excluded to smooth the time series of VIN.

NDVIN =
rnir−rred

rnir+rred
(2)

GCCN =
rgreen

rred+rgreen+rblue
(3)

where rnir, rred, rgreen, and rblue represent the reflectance of near-infrared, red, green, and blue
bands, respectively.

2.3.3. Vegetation Index from Radiometer

To calculate the incident and reflected near-infrared radiation, the PAR was subtracted from
the solar (shortwave) radiation for both incident and reflected radiation. Because the unit of PAR
(µmol m−2 s−1) was different from that of the solar (shortwave) radiation (W m−2), we converted the
photosynthetic photon flux density to the energy flux density with the conversion coefficients (the
incident coefficient 0.2195 J µmol photon−1, and the reflected coefficient 0.2072 J µmol photon−1) [45].
Then the hemispheric reflectance (albedo) of near-infrared band was obtained as the reflected divided
by the incident radiation. The NDVIB for routine radiometer [46] was calculated by Equation (4).
The noise of NDVIB was smoothed by a moving window approach that assigns the 50th percentile of
the values around noon (10:00–14:00 local time) within a 3-d window to the center day [47,48].

NDVIB =
rnir−rpar

rnir+rpar
(4)

rpar =
PARout

PARin
(5)

rnir =
SOLRout−PARout

SOLRin−PARin
(6)

where rpar and rnir are the albedos of PAR and near-infrared radiation, respectively; PARout, PARin,
SOLRout, and SOLRin are the reflected and incident PAR and solar radiation, respectively.
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2.3.4. Phenophase Extraction

The VI from April to June was used to model the seasonal variation in spring by Equation (7)
(12≤N≤21). The start, middle, and peak of spring (SOS, MOS, and POS, respectively) were defined as
the dates corresponding to the extreme of the curvature change rate (K’, Equation (9)) [49]; and these
points were close to 10%, 50%, and 90% of the amplitude, respectively (Figure 1a).

f(t)= a+
b

1 + ec+dt
(7)

K =
f′′ (t)(

1 + f′(t)2
)3/2

(8)

K′ = d3az


3z(1− z)(1 + z)3

[
2(1 + z)3 + d2a2z

]
[
(1 + z)4 + (daz)2

] 5
2

−

(1 + z)2
(
1 + 2z− 5z2

)
[
(1 + z)4 + (daz)2

] 3
2

 (9)

where f(t) is the fitted function; t is the day of year (DOY); a is the minimum of VI in spring, b is the
amplitude of VI; c and d control the inflection point and the rate of increase of VI, respectively; K is the
curvature off(t), K’ is the curvature change rate of f(t); f’(t) and f”(t) are the first and second derivative
of f(t), respectively; z = ec+dt.

The VI from August to October was used to model the seasonal pattern in fall by Equation (7)
(12 ≤ N ≤ 17), where a is the maximum VI in summer, b is the amplitude of VI, c and d control the
inflection point and the rate of decrease of VI. The start, middle, and end of fall (SOF, MOF, and EOF)
were defined correspondingly (Figure 1b). The length of growing season (LOS) was expressed in two
ways: the duration from MOS to MOF (LOS1) and the duration from SOS to EOF (LOS2).
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Figure 1. Illustration of the methods used to extract spring (a) and autumn (b) phenophases 
in the green chromatic coordinate from camera (GCCC) in 2015. f(t) is the fitted function, K’ is the 
curvature change rate of f(t). SOS: start of spring, MOS: middle of spring, POS: peak of spring, 
SOF: start of fall, MOF: middle of fall, EOF: end of fall. 
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intervals (CI). The significant difference in the phenophases between any two sensors or deployments 
was given based on the overlapped CI. The high R2 of all fitted functions (> 0.96) and the relative 
small confidence interval of phenophases (generally ranged from 1 to 7 d, which was similar to the 
CI of camera at other sites (0 to 10 d) [50,51]) provided evidence of a high confidence of our results. 
The spearman’s rank correlation [52] was used for evaluating the synchronism of the VI time series 
measured at different inclination- and azimuth-angles. All statistical analyses were performed by R 
3.3.2 or SPSS 19.0, and figures were plotted by Sigmaplot 12.5. 
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Figure 1. Illustration of the methods used to extract spring (a) and autumn (b) phenophases in the
green chromatic coordinate from camera (GCCC) in 2015. f(t) is the fitted function, K’ is the curvature
change rate of f(t). SOS: start of spring, MOS: middle of spring, POS: peak of spring, SOF: start of fall,
MOF: middle of fall, EOF: end of fall.

2.3.5. Statistical Analysis

The uncertainty of phenophases was calculated as the average width of inner 95% confidence
intervals (CI). The significant difference in the phenophases between any two sensors or deployments
was given based on the overlapped CI. The high R2 of all fitted functions (> 0.96) and the relative
small confidence interval of phenophases (generally ranged from 1 to 7 d, which was similar to the
CI of camera at other sites (0 to 10 d) [50,51]) provided evidence of a high confidence of our results.
The spearman’s rank correlation [52] was used for evaluating the synchronism of the VI time series
measured at different inclination- and azimuth-angles. All statistical analyses were performed by R
3.3.2 or SPSS 19.0, and figures were plotted by Sigmaplot 12.5.
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3. Results and Discussion

3.1. Inclination-Angle Effect on the Vegetation Indices and Phenophases

In spring (May–June), both GCCC and NDVIN increased with increasing sensor inclination-angle
(Figure 2); and the correlation coefficients with the inclination-angle of 15◦ decreased with increasing
inclination-angle (Table 1). In autumn (September–October), however, both VIs almost consistently
declined across the four inclination-angles (Figure 2); and the correlation coefficients were close to each
other (Table 2). However, the radiometer-orientation had little influence on the NDVIB (Tables 1 and 2).Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 16 
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Figure 2. Seasonal variations in the green chromatic coordinate from camera (GCCC) and the
narrowband normalized difference vegetation index from spectroradiometer (NDVIN) at different
inclination-angles for the north direction in 2015 (a,d), 2016 (b,e), and 2018 (c,f). DOY: day of year.

Table 1. Spearman’s rank correlations of vegetation indices at different inclination-angles in the
north direction.

VI Inclination Angle
2015 2016 2018

Spring Autumn Spring Autumn Spring Autumn

GCCC 30◦ 0.987 0.993 0.991 1.000 1.000 1.000
45◦ 0.982 0.984 1.000 1.000 0.991 1.000
60◦ 0.982 0.989 1.000 1.000 0.891 1.000

NDVIN 30◦ 0.984 0.951 1.000 1.000 1.000 1.000
45◦ 0.982 0.945 0.817 1.000 1.000 1.000
60◦ 0.973 0.951 0.830 0.964 1.000 0.983

NDVIB 81◦ 0.980 0.992

VI: vegetation index; GCCC: green chromatic coordinate from camera; NDVIN: narrowband normalized difference
vegetation index from spectroradiometer; NDVIB: broadband normalized difference vegetation index from routine
radiometer. The 15◦ is the reference for GCCC and NDVIN, and the 90◦ is the reference for NDVIB.

The spring phenophases (i.e., SOS, MOS, and POS) of the GCCC and NDVIN tended to advance
with increasing inclination-angle. The SOS and MOS estimated by GCCC with 60◦inclination were
significantly earlier by 12 and 6 d than that with the 15◦ inclination in 2015, respectively. However,
the autumn phenophases (i.e., SOF, MOF, and EOF) did not differ significantly among the four
inclination-angles (Table 2). The LOS2 had much larger uncertainties than did the LOS1, although they
changed in the same direction with increasing-angle. Notably, the inclination-angle effects of camera
and spectroradiometer varied interannually (Table 2).



Remote Sens. 2019, 11, 1063 7 of 16

Table 2. Comparisons of the phenophases (number of days, mean ± 95% confidence interval) estimated
from 30◦, 45◦, and 60◦ of inclination-angles with reference to 15◦ for the north direction in the three
measuring years. The comparisons for the radiometer were conducted between 81◦ and 90◦.

VI Year Inclination
Angle SOS MOS POS SOF MOF EOF LOS1 LOS2

GCCC 2015 30◦ 0 ± 5 −1 ± 2 −1 ± 5 4 ± 7 2 ± 3 1 ± 7 3 ± 3 1 ± 9
45◦ −5 ± 7 −2 ± 2 0 ± 7 0 ± 8 1 ± 3 2 ± 8 3 ± 4 7 ± 10
60◦ −12 ± 8 * −6 ± 4 * −1 ± 8 −11 ± 12 −2 ± 5 6 ± 12 4 ± 6 18 ± 15

2016 30◦ −2 ± 8 −2 ± 3 −3 ± 8 −1 ± 4 1 ± 2 3 ± 4 3 ± 4 5 ± 9
45◦ −3 ± 8 −3 ± 3 −4 ± 8 0 ± 4 1 ± 2 1 ± 4 4 ± 4 4 ± 9
60◦ −3 ± 8 −5 ± 3 −6 ± 8 −3 ± 5 1 ± 2 5 ± 5 6 ± 4 8 ± 10

2018 30◦ 0 ± 5 −1 ± 2 −3 ± 5 0 ± 8 0 ± 3 0 ± 8 2 ± 4 1 ± 10
45◦ 0 ± 4 −2 ± 2 −4 ± 4 0 ± 8 0 ± 3 0 ± 8 2 ± 4 0 ± 9
60◦ 1 ± 4 −3 ± 2 * −7 ± 4 * −2 ± 9 0 ± 4 2 ± 9 3 ± 4 1 ± 10

NDVIN 2015 30◦ 3 ± 12 −1 ± 4 −6 ± 12 −8 ± 9 −1 ± 4 7 ± 9 0 ± 6 3 ± 15
45◦ 4 ± 11 −2 ± 4 −8 ± 11 −8 ± 10 −1 ± 4 7 ± 10 1 ± 6 3 ± 15

60◦ 6 ± 10 −4 ± 4 −14 ± 10
* 2 ± 7 1 ± 3 0 ± 7 5 ± 5 −6 ± 12

2016 30◦ 7 ± 12 0 ± 5 −7 ± 12 −4 ± 11 −1 ± 5 3 ± 11 −1 ± 7 −5 ± 16
45◦ 10 ± 12 −1 ± 5 −12 ± 12 −6 ± 11 −1 ± 5 4 ± 11 −1 ± 7 −6 ± 16
60◦ 12 ± 12 −1 ± 5 −14 ± 12 −3 ± 11 −2 ± 5 0 ± 11 −1 ± 7 −12 ± 16

2018 30◦ −3 ± 7 −1 ± 3 2 ± 7 −2 ± 6 −1 ± 3 −1 ± 6 −1 ± 4 2 ± 10
45◦ −2 ± 6 −1 ± 3 1 ± 6 −4 ± 8 −2 ± 3 −1 ± 8 −1 ± 5 2 ± 10
60◦ −3 ± 6 −3 ± 3 −3 ± 6 0 ± 8 −1 ± 3 −2 ± 8 1 ± 4 1 ± 10

NDVIB 2016 81◦ 0 ± 4 0 ± 2 1 ± 4 1 ± 11 −2 ± 5 −5 ± 11 −2 ± 6 −5 ± 12

VI: vegetation index, GCCC: green chromatic coordinate from camera, NDVIN: narrowband normalized difference
vegetation index from spectroradiometer. NDVIB: broadband normalized difference vegetation index from routine
radiometer. SOS: start of spring, MOS: middle of spring, POS: peak of spring, SOF: start of fall, MOF: middle of
fall, EOF: end of fall, LOS1: the duration from MOS to MOF, and LOS2: the duration from SOS to EOF. * indicates
significant differences from that from 15◦ inclination. The positive and negative numbers represent a delay and
advance, respectively.

The effect of inclination-angle and its interannual fluctuation might be attributed to the effect of
the tree species composition and understory in the FOV of sensors with different inclination-angles
or the bidirectional reflectance [30,36]. For camera, the FOV ranged from 1100 (60◦) to >90,000 m2

(15◦). When the comparison among different inclination-angles was constrained in the same area in
the images, the effect of inclination-angle on phenophases (Table 3) was generally consistent with the
original results (Table 2), suggesting similar tree species composition in different FOVs. In spring,
ground vegetation greened-up first, followed by shrubs, and trees last (Liu and Wang, personal
observations) [53]. The understory in the FOV of camera from smaller inclination-angle was sheltered
more by the layer of tree branches [20,29]. The contribution of the understory to the GCCC increased
with increasing inclination-angle, and thus resulted in earlier SOS, MOS, and POS for larger angles [20].
The radiative transfer model also illustrated that the presence of non-photosynthetic elements reduced
the visibility of green vegetation from an oblique viewing angle [29]. Similarly, the spring green-up
date of GCCC with a vertical view was 5 d earlier than that with a horizontal view in the Alice Holt
Forest [30]. For spectroradiometer, the FOV ranged from 190 (60◦) to 1200 m2 (15◦), and the NDVIN with
larger inclination-angle had a later SOS in 2015 and 2016 (Table 2). However, it is difficult to distinguish
the effects of tree species composition, understory and bidirectional reflectance. The autumn phenology
of understory and overstory converged (Liu and Wang, personal observations), thus the VI and three
autumn phenophases among four inclination-angles converged as well (Figure 2, Tables 1 and 2).
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Table 3. Comparisons of the phenophases (number of days, mean ± 95% confidence interval) estimated
from 30◦, 45◦, and 60◦ of inclination-angles with reference to 15◦ in the three measuring years. The fields
of view by green chromatic coordinate from camera were constrained in the same area for all images.

Year Inclination
Angle SOS MOS POS SOF MOF EOF LOS1 LOS2

2015 30◦ −1 ± 7 2 ± 2 2 ± 7 0 ± 11 0 ± 5 0 ± 11 −2 ± 5 −1 ± 13
45◦ −3 ± 11 3 ± 3 8 ± 11 −3 ± 12 −1 ± 4 1 ± 12 −4 ± 6 3 ± 16
60◦ −10 ± 10 −1 ± 3 8 ± 10 −2 ± 17 −1 ± 6 1 ± 17 0 ± 7 10 ± 19

2016 30◦ 2 ± 13 −1 ± 6 −4 ± 13 0 ± 8 0 ± 3 0 ± 8 1 ± 7 −1 ± 15
45◦ −1 ± 11 −2 ± 5 −4 ± 11 0 ± 8 1 ± 3 2 ± 8 3 ± 6 2 ± 13
60◦ −1 ± 11 −3 ± 5 −4 ± 11 0 ± 9 1 ± 4 3 ± 9 4 ± 6 4 ± 14

2018 30◦ 0 ± 8 0 ± 3 0 ± 8 −1 ± 9 0 ± 3 0 ± 9 0 ± 5 1 ± 12
45◦ 1 ± 7 −1 ± 3 −3 ± 7 0 ± 8 0 ± 3 1 ± 8 2 ± 4 0 ± 11
60◦ 0 ± 7 −2 ± 3 −5 ± 7 0 ± 11 1 ± 4 2 ± 11 3 ± 5 2 ± 13

SOS: start of spring, MOS: middle of spring, POS: peak of spring, SOF: start of fall, MOF: middle of fall, EOF: end of
fall, LOS1: the duration from MOS to MOF, and LOS2: the duration from SOS to EOF. The positive and negative
numbers represent a delay and advance, respectively.

In addition, the GCCC reached a peak in late spring, which was much earlier than the peak
of LAI [54]. Keenan et al [27] thought that the small inclination-angle increased the effective leaf
area, thus, the GCCC maturely saturated. However, we found the larger inclination-angle resulted
in an earlier POS (Table 2), indicating that increasing the inclination-angle did not delay the peak of
GCCC. The reason for the summer decline of GCCC after the POS and the physiological mechanism of
POS are poorly understood and need further exploration [55–58].

Currently, most camera-phenology studies adopt near-horizontal inclination-angles (0–25◦), partly
because most flux towers are not high enough(< 15 m) to broaden the FOV [59]. For example, assuming
the camera is mounted at 15 m above the canopy, the FOV with nadir view for 45◦ of the view-angle of
the StarDot NetCam is only 120 m2, much smaller than 2700 m2 for the inclination-angle of 30◦ [30].
Such a small FOV is difficult to match the climatic footprint of eddy fluxes or the pixel area of satellite
images. In addition, we also need to distinguish differences in the phenology between overstory and
understory with multi-cameras [28,60], because of their difference in response to climate change [61].

3.2. Azimuth-Angle Effect on the Vegetation Indices and Phenophases

The GCCC and NDVIN in the east, south and west directions related differently to the equivalents
in the north direction, indicating diverse seasonal amplitudes between the four azimuths (Figure 3,
Table 4).

Table 4. Spearman’s rank correlations of vegetation indices at different azimuth-angles with
an inclination angle of 30◦.

VI Azimuth Angle 2015 2016 2018
Spring Autumn Spring Autumn Spring Autumn

GCCC E 0.970 0.993 0.991 1.000 0.745 1.000
S 0.994 0.974 1.000 0.986 0.945 0.967
W 0.997 1.000 0.991 1.000 0.955 0.983

NDVIN E 0.951 0.991 0.976 1.000 0.855 1.000
S 0.956 0.965 0.988 0.976 0.855 1.000
W 0.979 0.996 0.952 1.000 0.900 0.983

VI: vegetation index, GCCC: green chromatic coordinate from camera, NDVIN: narrowband normalized difference
vegetation index from spectroradiometer. E, S, and W stand for east, south, and west, respectively. The north is
the reference.
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Figure 3. Seasonal variations in the green chromatic coordinate from camera (GCCC) and narrowband
normalized difference vegetation index from spectroradiometer (NDVIN) at different azimuths with
an inclination-angle of 30◦in 2015 (a,d), 2016 (b,e), and 2018 (c,f). E, S, W, and N stand for east, south,
west, and north direction, respectively.

The effect of azimuth-angle on phenophases varied interannually. Compared with the north
direction, in 2015, the SOS derived by GCCC for the east and south directions advanced 12 and 17 d,
respectively; the MOS advanced 8 and 7 d; the LOS1 extended 11 and 9 d, and the LOS2 elongated 16
and 18 d, respectively (Table 5). The MOS from NDVIN for the north direction was 7 d later than that
for the other three azimuths in 2015 (Table 5). However, there were no significant differences in both
GCCC and NDVIN between azimuths in 2016 and 2018 (Table 5).

Table 5. Comparisons of the phenophases (number of days, mean ± 95% confidence interval) estimated
from east (E), south (S), and west (W) directions with reference to north (N) with an inclination-angle of
30◦ in the three measuring years.

VI Year Azimuth
Angle SOS MOS POS SOF MOF EOF LOS1 LOS2

GCCC 2015 E −12 ± 6 * −8 ± 3 * −4 ± 6 1 ± 12 2 ± 5 4 ± 12 11 ± 5 * 16 ± 13
S −17 ± 7 * −7 ± 3 * 3 ± 7 2 ± 10 1 ± 4 1 ± 10 9 ± 5 18 ± 13
W −6 ± 7 −2 ± 2 3 ± 7 −7 ± 13 −1 ± 5 5 ± 13 1 ± 5 11 ± 14

2016 E 0 ± 6 −4 ± 3 * −9 ± 6 −4 ± 9 2 ± 3 8 ± 9 6 ± 4 7 ± 11
S 0 ± 7 −2 ± 3 −5 ± 7 −7 ± 13 −2 ± 5 2 ± 13 0 ± 6 2 ± 15
W 2 ± 6 −1 ± 2 −4 ± 6 −1 ± 8 1 ± 3 3 ± 8 2 ± 4 1 ± 10

2018 E 2 ± 5 −1 ± 2 −4 ± 5 1 ± 10 1 ± 4 1 ± 10 2 ± 4 −1 ± 11
S 1 ± 5 −2 ± 2 −4 ± 5 2 ± 8 0 ± 3 −2 ± 8 1 ± 4 −3 ± 9
W 1 ± 5 0 ± 2 −1 ± 5 −3 ± 10 −1 ± 4 2 ± 10 −1 ± 4 1 ± 11

NDVIN 2015 E −3 ± 8 −5 ± 3 * −7 ± 8 −3 ± 11 0 ± 5 2 ± 11 4 ± 6 5 ± 14
S −10 ± 10 −9 ± 4 * −7 ± 10 1 ± 13 0 ± 6 −2 ± 13 8 ± 7 8 ± 16
W −10 ± 9 −6 ± 3 * −1 ± 9 0 ± 10 1 ± 4 1 ± 10 6 ± 5 11 ± 14

2016 E −2 ± 7 −2 ± 3 −2 ± 7 −11 ± 10 −4 ± 4 2 ± 10 −2 ± 5 5 ± 12
S −6 ± 7 −3 ± 3 0 ± 7 −4 ± 12 −2 ± 5 −1 ± 12 1 ± 6 6 ± 14
W −6 ± 6 −4 ± 3 −1 ± 6 −1 ± 12 0 ± 5 2 ± 12 4 ± 6 8 ± 13

2018 E 8 ± 6 −1 ± 3 −10 ± 6 5 ± 7 2 ± 3 0 ± 7 3 ± 4 −8 ± 9
S 6 ± 6 −2 ± 3 −10 ± 6 7 ± 6 2 ± 3 −3 ± 6 4 ± 4 −9 ± 8
W 7 ± 6 −2 ± 3 −10 ± 6 4 ± 9 1 ± 4 −2 ± 9 2 ± 5 −9 ± 11

VI: vegetation index, GCCC: green chromatic coordinate from camera, NDVIN: narrowband normalized difference
vegetation index from spectroradiometer. SOS: start of spring, MOS: middle of spring, POS: peak of spring, SOF:
start of fall, MOF: middle of fall, EOF: end of fall, LOS: length of growing season. LOS1: the duration from MOS to
MOF, and LOS2: the duration from SOS to EOF. * indicates significant differences with the north sector. The positive
and negative numbers represent a delay and advance, respectively.
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The differences in the VIs seasonality and phenophases between the four azimuths and the
interannual variation were partly attributed to spatial variations in tree species composition, understory
and local topography. First, our forest stand is composed of various tree species with divergent
phenology along the slope due to microhabitat adaptation. The leaf-onset differed among the tree
species, which can consequently result in the azimuth effect. Even for the same species, the spring
phenology at the lower slope may be later than that at the upper slope, because the temperature is
normally lower near the valley-bottom or toe-slope [50,62–64], which is related to the thermal inversion
of the nocturnal boundary layer at our site [40]. Second, the divergence of phenology between
overstory and understory can also introduce an azimuth effect. Facing the down-slope may “see”
more understory than the upper-slope because of less occlusion of tree branches. Third, the different
responses to interannual climate perturbation among various tree species or between overstory and
understory can result in the interannual fluctuation of the azimuth effect [65]. Although the effects
of shadows, lens, and forward scattering can be minimized by facing north [66], it may need to use
multi-sensors towards different directions to ensure the FOV of the phenological sensors to match
satellite pixels or EC climatic-footprint [25]. If only one sensor is used, it should point to the prevailing
wind direction as far as possible besides considering the species composition and local topography [32].
However, the sun’s direction at solar noon (the true south) should be avoided because the images
would be contaminated by direct sunlight [67].

3.3. Sensor-Type Effect on the Vegetation Indices and Phenophases

The seasonal patterns of the VIs during the three measuring years varied between the three types
of sensor (Figure 4). Both NDVIN and NDVIB reached a plateau from June to mid-August, whereas
GCCC showed a significant peak in early June. The SOS of GCCC from camera was 14 d later than that
of NDVIB from routine radiometer in 2015 and 4 d later than that of NDVIN from spectroradiometer in
2018. The MOS estimated by GCCC from camera was 3–7 d later than that from spectroradiometer and
routine radiometer in 2015 and 2016 (Table 6). The SOF and MOF of camera were 18 d and 8 d later
than that of radiometer in 2018, respectively.
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Figure 4. Seasonal variations in the vegetation indices measured with the three types of sensor in 2015 
(a), 2016 (b), and 2018 (c). GCCC: green chromatic coordinate from camera, NDVIN: narrowband 
normalized difference vegetation index from spectroradiometer, NDVIB: broadband normalized 
difference vegetation index from routine radiometer. DOY: the day of year. The GCCC and NDVIN are 
the mean values of four azimuths with an inclination-angle of 30°. The NDVIB is calculated by routine 
radiometer with an inclination-angle of 90 °. 

Table 6. Differences (number of days, mean±95% confidence interval) in phenophases between 
different sensors. 

VI Year SOS MOS POS SOF MOF EOF LOS1 LOS2 
GCCC vs. NDVIN 2015 1 ± 7 4 ± 3* 8 ± 7 −4 ± 14 −1 ± 6 3 ± 14 −5 ± 7 1 ± 16 

 2016 2 ± 6 3 ± 3* 5 ± 6 −5 ± 9 0 ± 4 4 ± 9 −4 ± 5 2 ± 11 
 2018 4 ± 3* 2 ± 1 −1 ± 3 4 ± 8 3 ± 3 3 ± 8 2 ± 3 −2 ± 8 

GCCC vs. NDVIB 2015 14 ± 9* 7 ± 3* −1 ± 9 7 ± 11 3 ± 5 0 ± 11 −4 ± 6 −15 ± 15 
 2016 4 ± 5 4 ± 1* 4 ± 5 −9 ± 11 0 ± 5 9 ± 11 −4 ± 6 5 ± 12 

Figure 4. Seasonal variations in the vegetation indices measured with the three types of sensor in 2015
(a), 2016 (b), and 2018 (c). GCCC: green chromatic coordinate from camera, NDVIN: narrowband
normalized difference vegetation index from spectroradiometer, NDVIB: broadband normalized
difference vegetation index from routine radiometer. DOY: the day of year. The GCCC and NDVIN are
the mean values of four azimuths with an inclination-angle of 30◦. The NDVIB is calculated by routine
radiometer with an inclination-angle of 90 ◦.
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Table 6. Differences (number of days, mean±95% confidence interval) in phenophases between
different sensors.

VI Year SOS MOS POS SOF MOF EOF LOS1 LOS2

GCCC vs. NDVIN 2015 1 ± 7 4 ± 3 * 8 ± 7 −4 ± 14 −1 ± 6 3 ± 14 −5 ± 7 1 ± 16
2016 2 ± 6 3 ± 3 * 5 ± 6 −5 ± 9 0 ± 4 4 ± 9 −4 ± 5 2 ± 11
2018 4 ± 3 * 2 ± 1 −1 ± 3 4 ± 8 3 ± 3 3 ± 8 2 ± 3 −2 ± 8

GCCC vs. NDVIB 2015 14 ± 9 * 7 ± 3 * −1 ± 9 7 ± 11 3 ± 5 0 ± 11 −4 ± 6 −15 ± 15
2016 4 ± 5 4 ± 1 * 4 ± 5 −9 ± 11 0 ± 5 9 ± 11 −4 ± 6 5 ± 12
2018 4 ± 3 0 ± 1 −4 ± 3 18 ± 8 * 8 ± 4 * −3 ± 8 7 ± 4 * −7 ± 9

NDVIN vs. NDVIB 2015 13 ± 10 2 ± 4 −8 ± 10 10 ± 11 4 ± 5 −3 ± 11 1 ± 6 −16 ± 14
2016 2 ± 6 1 ± 3 −1 ± 6 −4 ± 11 0 ± 6 5 ± 11 0 ± 6 3 ± 13
2018 0 ± 2 −2 ± 1 * −3± 2 14 ± 8 * 4 ± 3 −6 ± 8 6 ± 4 −5 ± 8

VI: vegetation index, GCCC: green chromatic coordinate from camera, NDVIN: narrowband normalized difference
vegetation index from spectroradiometer, NDVIB: broadband normalized difference vegetation index from routine
radiometer. SOS: start of spring, MOS: middle of spring, POS: peak of spring, SOF: start of fall, MOF: middle of
fall, EOF: end of fall, LOS1: the duration from MOS to MOF, and LOS2: the duration from SOS to EOF. * indicates
significant differences between sensors. The GCCC and NDVIN are the mean values of four azimuths with
an inclination-angle of 30◦. The NDVIB is calculated by routine radiometer with an inclination-angle of 90 ◦.

We proposed three potential explanations for the differences in the seasonality of VIs and
phenophases estimated by different types of sensor. First, the species composition within the FOV
is sensor-specific and thus affects the phenology estimates. At our site, the FOV was in the order
of camera (12400 m2 for the 30 ◦ inclination) > radiometer (9800 m2) > spectroradiometer (4500 m2

for the 30 ◦ inclination). To further explore the potential effect of FOV, we calculated the NDVIB

of spectroradiometer using the same bands as radiometer to exclude potential spectral mismatch,
and found that the SOS and MOS had significant differences (5–23 d) between spectroradiometer and
radiometer in 2015 and 2016 (Table 7), suggesting that integrating various sensors should consider
the influence of FOV. Second, the difference of biophysical meaning of each VI leads to seasonal
asynchrony and different phenophases [31,68–70], which is confirmed by the nonlinear relationship
between GCC and NDVI [29]. The GCC is more sensitive to leaf color than leaf area, while NDVI has
an advantage in monitoring canopy LAI [31,69]. Similar to our results, the MOS of NDVIB was 4 d later
than that of GCCC in Bartlett Experimental Forest [38,70]. Finally, the difference in spectral resolutions
can cause a discrepancy of phenophases between sensors. We selected the FOV of camera to match
that of the spectroradiometer to exclude potential influence of FOV, and compared the differences of
phenophases estimates between GCCN from spectroradiometer and GCCC from camera. The results
showed that there was a slight but non-significant difference in the phenophases between camera
and spectroradiometer (Table 7), which is likely related to the slight mismatch of the waveband [24].
Collectively, the variability in FOV may be important for integrating the phenophases from different
sensors, especially at heterogeneous sites. Overall, the routine radiometer may be more accurate
than the others. Spectroradiometer is sensitive to the weather condition, and thus leads to a slightly
larger uncertainty of phenophases (Tables 2 and 5). Camera only measures the reflected DN values
and lacks information of incident radiation [31]. Our findings provide some guidelines for in situ
monitoring canopy phenology of terrestrial ecosystems at both local and global network platforms.
However, the effects of sensor type and deployment for other land cover types and potential interannual
variations in these effects at the longer time-scale need further investigations.
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Table 7. The difference (number of days, mean±95% confidence interval) of phenophases between the
same vegetation index measured with different sensors.

VI Year SOS MOS POS SOF MOF EOF LOS1 LOS2

GCCN vs. GCCC 2015 1 ± 7 −2 ± 3 −5 ± 7 5 ± 15 2 ± 6 −1 ± 15 4 ± 6 −2 ± 16
2016 1 ± 5 −3 ± 2 −6 ± 5 −3 ± 11 −1 ± 4 2 ± 11 2 ± 5 1 ± 12
2018 −2 ± 3 0 ± 2 1 ± 3 1 ± 8 0 ± 3 −1 ± 8 0 ± 4 1 ± 9

NDVIBS vs. NDVIB 2015 23 ± 11
* 13 ± 4 * 3 ± 11 1 ± 14 −1 ± 6 4 ± 14 −15 ± 7

* −27 ± 18

2016 12 ± 5 * 5 ± 2 * −2 ± 5 −15 ±
17 −5 ± 7 −4 ± 17 −10 ± 7

* −8 ± 18

2018 5 ± 5 1 ± 2 −3 ± 5 8 ± 10 2 ± 5 5 ± 10 1 ± 5 −10 ± 11

VI: vegetation index, GCCC: green chromatic coordinate from digital camera, GCCN: green chromatic coordinate
from the spectroradiomter, NDVIB: broadband normalized difference vegetation index from routine radiometer,
NDVIBS: broadband normalizes difference vegetation index from spectroradiometer. SOS: start of spring, MOS:
middle of spring, POS: peak of spring, SOF: start of fall, MOF: middle of fall, EOF: end of fall, LOS: length of growing
season. LOS1: the duration from MOS to MOF, and LOS2: the duration from SOS to EOF. * indicate significant
differences between the two sensors. The GCCC, GCCN, and NDVIBS are the mean values of four azimuths with
an inclination-angle of 30◦, the NDVIB is the calculated by the routine radiometers with an inclination-angle of 90◦.
The GCCC and GCCN were constrained in the same field of view, the NDVIB and NDVIBS were constrained in the
same waveband.

4. Conclusions

We assessed the differences in phenology estimates among three types of sensor and their
deployments. The greater contribution of understory advanced the MOS from camera and
spectroradiometer with an inclination-angle of 60◦. The LOS estimated from camera for the east
direction extended 11 d than that for the north direction only in 2015. The effect of azimuth on the
phenophases was implicated with spatial variations in tree species composition. The azimuth effect
varied interannually perhaps because of the divergent responses of various tree species or of the
overstory and understory to the climatic fluctuations. The difference in FOV between sensors was
the primary cause that the SOS, MOS, and MOF from camera significantly lagged behind that from
spectroradiometer or routine radiometers. Overall, the effect of azimuth-angle was slightly larger than
the effect of inclination-angle or sensor-type. These effects should be taken into consideration in both
long-term in situ monitoring of forest phenology at a single site and/or integrating regional or global
phenology data.
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