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A B S T R A C T

Autumn (i.e., leaf-fall) phenology plays an important role in regulating the canopy duration and is often mon-
itored using near-surface and satellite remote sensing techniques, but the measurements have rarely been va-
lidated by the ground observation. The objectives of this study were to: (1) evaluate the performance of
radiometer-based broadband vegetation index (VIB) and Moderate Resolution Imaging Spectroradiometer
(MODIS) vegetation index (VIM) in monitoring the autumn phenology of a Chinese temperate deciduous forest
with decadal (2008 – 2018) leaf-litterfall measurements, and (2) explore the feasibility of using VIB to validate
the VIM products for monitoring the autumn phenology. We found that the seasonal and interannual trends of
both VIB and VIM agreed well with those of the leaf-litterfall (correlation coefficients r > 0.93). The broadband
normalized difference vegetation index (NDVIB) best tracked the interannual variation in the end-of-season
(EOS) among the six metrics of the VIB investigated, while the MODIS enhanced vegetation index (EVIM) did so
among the six metrics of the VIM, with the corresponding determination coefficient (R2) of 0.66 and 0.44 with
the EOS estimated by the leaf-litterfall. The EOS estimated by VIB and VIM was 0 – 11 d earlier than that by the
leaf-litterfall. Comparing the six metrics of VIM with the corresponding ones of VIB, the EOS derived from the
NDVI had the closest correlation with each other (R2 = 0.67). Conclusively, our study validated the remote-
sensed leaf-fall phenology with decadal ground measurements, and suggested that radiometer and MODIS could
effectively track the autumn phenology in temperate deciduous forests and the leaf-litterfall collection could be
used as a complementary approach.

1. Introduction

Vegetation phenology is an important proxy of climate change
(Chen et al., 2019; Cleland et al., 2007; Ge et al., 2015; Körner and
Basler, 2010). Variations in phenology markedly influence the carbon
and nutrient cycling of terrestrial ecosystems (Estiarte and Peñuelas,
2015; Piao et al., 2007, 2008). Accurately monitoring vegetation phe-
nology is thus crucial to understanding land surface processes and im-
proving carbon cycling models in forest ecosystems under global cli-
mate change scenarios (Chen et al., 2016; Richardson et al., 2013a).

Vegetation phenology can be monitored by the ground observation,
near-surface and satellite remote sensing, eddy covariance technique,
etc. (Cleland et al., 2007; Richardson et al., 2013b); and each method has
its advantages and disadvantages (Table 1; Piao et al., 2019). The ground
observation records specific phenology events (e.g., budburst, leaf-out,
coloration, defoliation) at the individual level and is spatiotemporally
dispersed, while the satellite remote sensing approach characterizes

spatially-continuous phenology at the regional and global scales
(Table 1). However, satellite images [e.g., Moderate Resolution Imaging
Spectroradiometer (MODIS), Advanced Very High Resolution Radio-
meter (AVHRR)] often have a coarse spatial resolution, leading to an
incomparable coverage between the ground and satellite measurements
(Rodriguez-Galiano et al., 2015; Zhang et al., 2006). Although the
Landsat TM/ETM+ with a finer spatial resolution can bridge this spatial-
scale gap, it is still restricted by its low frequency of the imagery ac-
quisition (Fisher and Mustard, 2007; Melaas et al., 2013). Validating the
satellite-based phenology is thus critically required. The near-surface
remote sensing, such as phenocam and radiometers with a high sampling
frequency and moderate spatial resolution (Table 1), can detect subtle
changes in the phenology process and facilitate spatially up-scaling from
the individual to landscape level (Gamon, 2015; Richardson et al.,
2013b). Therefore, a cross-validation and fusion of multi-methods will
improve the accuracy of satellite data and the understanding of phe-
nology at different spatiotemporal scales (Piao et al., 2019).

https://doi.org/10.1016/j.agrformet.2019.107758
Received 2 April 2019; Received in revised form 9 September 2019; Accepted 10 September 2019

⁎ Corresponding authors.
E-mail addresses: xcwang_cer@nefu.edu.cn (X. Wang), wangck-cf@nefu.edu.cn (C. Wang).

Agricultural and Forest Meteorology 279 (2019) 107758

Available online 18 September 2019
0168-1923/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2019.107758
https://doi.org/10.1016/j.agrformet.2019.107758
mailto:xcwang_cer@nefu.edu.cn
mailto:wangck-cf@nefu.edu.cn
https://doi.org/10.1016/j.agrformet.2019.107758
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2019.107758&domain=pdf


There are many studies focusing on spring phenology and the va-
lidation of satellite products with ground observations or near-surface
sensors (e.g. Liang et al., 2011; Maignan et al., 2008; Peng et al., 2017a;
Studer et al., 2007), which confirm that the spring phenology derived
from the ground observation, phenocam, and MODIS products is well-
matched (Klosterman et al., 2014; Peng et al., 2017b). However, the
autumn phenology has largely been neglected in the global warming

studies (Peng et al., 2019; Zohner et al., 2019), probably because of the
difficulty of its definition and complex drivers (Diao, 2019; Gallinat
et al., 2015; Gill et al., 2015; Keenan and Richardson, 2015; Liu et al.,
2016b; Panchen et al., 2015). To date, only a few validations of the
satellite products of autumn phenology have been performed with the
ground observation or near-surface remote sensing, but no conclusive
results have been reached yet. For example, Rodriguez-
Galiano et al. (2015) reported that the autumn phenology derived by
Medium Resolution Imaging Spectrometer agreed well with that by the
visual observation in central European forests, whereas
Testa et al. (2018) reported that the leaf-coloration by MODIS matched
poorly with that by the visual observation in French deciduous forests.
And some studies reported that the date of full leaf coloration by the
visual observation closely corresponded to that by MODIS (Liu et al.,
2015a; Zhang et al., 2006). Given these discrepancies and the valida-
tions were normally based on two- or three-year observations, it is
imperative to evaluate the consistency of different methods with long-
term data at the site scale (Helman, 2018).

The leaf-litterfall collection, widely applied for estimating net pri-
mary productivity (NPP) and leaf area index (LAI) in forest ecosystems
(Gower et al., 1999), is less used for monitoring the autumn phenology
largely due to its labor intensity and time consumption; however, it
directly reflects changes in canopy leaf mass and avoids the subjectivity
of the observers in visual observations (Gallinat et al., 2015). Moreover,
as a stand-scale observation, it also reduces potential spatial- and spe-
cies-mismatches between satellite and ground observations (Fisher
et al., 2006; Rodriguez-Galiano et al., 2015; Testa et al., 2018). In this
study, we applied the leaf-litterfall collection method to obtain a dec-
adal (2008 – 2018) record of the autumn phenology of a temperate
mixed deciduous forest in northeastern China. Our objectives were to:
(1) evaluate the performance of radiometer-based broadband vegeta-
tion index (VIB) and Moderate Resolution Imaging Spectroradiometer
(MODIS) vegetation index (VIM) in monitoring the autumn phenology
of the forest with decadal leaf-litterfall measurements, and (2) explore
the feasibility of using VIB to validate the VIM products for monitoring
the autumn phenology.

2. Materials and methods

2.1. Site description

The study was conducted at the Maoershan Forest Ecosystem
Research Station of Northeast Forestry University, Heilongjiang
Province, Northeast China (45°24′N, 127°40′E, 400 m a.s.l.). The cli-
mate is a continental monsoon climate. The mean (2006 – 2017) annual
air temperature was 2.2 °C. The mean annual rainfall was 591 mm
(Wang et al., 2019). A 48-m high eddy-flux tower was established on
the northwest-facing (∼296 °) slope, with an average slope of ∼9 °
(Fig. 1; Wang et al., 2016). The stand is a temperate deciduous forest
with a 18 – 20 m high canopy, which is dominated by Ulmus japonica,
Fraxinus mandshurica, Betula platyphylla, Populus davidiana, etc. The
mean (2008 – 2018) maximum LAI estimated by the litterfall collection
was 6.2 m2 m−2 (Liu et al., unpublished data).

2.2. Data collection

2.2.1. Leaf-litterfall collection and leaf mass estimation
Five 1-m2 litter traps were randomly installed in each of eight

20 m × 30 m intensive plots distributed within the range of 100 –
500 m around the eddy-flux tower (Fig. 1). We periodically collected
the litterfall, i.e., monthly before July, semimonthly in August, and

Table 1
Summary of the positive and negative characteristics of the six methods used
for monitoring autumn phenology in the literature.

Characteristics VO LF RR DC EC RS

Directness of method + + + + − + − −
Small extraction uncertainty − − + + + + + − −
Charactering species phenology + + + − − + + − − − −
Charactering canopy phenology − − + + + + + + + +
Spatial up-scaling − − + + + + + +
Temporal resolution − − + + + + + −
Long temporal-scale − − + + + + + + +
Labor and time costs − − − + + + + + + + +
Set-up costs + + + + + + − − − −

Very positive (+ +), positive (+), negative (−) or very negative (− −)
characteristics of the visual observation (VO), leaf-litterfall collection (LF),
routine radiometer (RR), digital camera (DC), eddy covariance (EC), and sa-
tellite remote sensing (RS) methods.

Fig. 1. Contour map and plot distribution around the eddy flux tower at the
Maoershan site, northeastern China. The four squares and one circle represent
the four pixels of MODIS and the reflective footprint of the radiometers in-
stalled on the eddy-flux tower (90% of signal), respectively.
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every 10 days in the autumn (September and October) from 2008 to
2018. To explore the effect of collection frequency on the estimation of
the end-of-season (EOS), we emptied the litter traps every 5 days in the
autumn of 2015. The litterfall was sorted into leaves, twigs and other
tissues, oven-dried at 70 °C for 48 h, and weighed for the dry mass
(0.01 g). Then the leaf mass in the canopy was back-accumulated by
leaf-fall mass for each collection (Liu et al., 2015b).

We assumed that the leaf mass loss during the leaf senescence and
decomposition before litter collection (Wang et al., 2019) would not
significantly affect the EOS extraction because it only used the relative
change rate of the leaf mass. To verify whether the eight intensive plots
well represented the species composition for comparing with the
MODIS pixels (Helman, 2018; Rodriguez-Galiano et al., 2015), we

surveyed additional 106 extensive plots and found roughly consistent
species composition (U. japonica 21%, F. mandshurica 16%, and B.
platyphylla 15% of basal area for the intensive plots versus 21%, 12%,
14%, respectively, for the extensive plots). Additionally, the intensive
plots also had a reasonable spatial representativeness (i.e., terrain,
slope, and location) for the MODIS pixels (Fig. 1).

2.2.2. Radiation measurements and calculation of broadband vegetation
index

The incoming solar (SOLR, 300 – 2800 nm, W m−2) and long-wave
radiations (4.5 – 42 μm) were measured by a net radiometer (CNR1 or
CNR4, Kipp & Zonen, the Netherlands) installed at the 48-m height of
the eddy-flux tower. We also measured the incident and reflected

Table 2
Equations for calculating various vegetation indices.

Vegetation index Equation Reference

Normalized difference vegetation index (NDVI) = +NDVI rNIR rPAR
rNIR rPAR

(Huemmrich et al., 1999; Rouse et al., 1974)

Enhanced vegetation index (EVI) = ×
+ × +EVI 2.5 (rNIR rPAR)

rNIR 2.4 rPAR 1
(Jiang et al., 2008; Rocha and Shaver, 2009)

Simple ratio of the albedo of near-infrared to photosynthetically active radiation (SR) =SR rNIR
rPAR

(Rouse et al., 1974; Wang et al., 2008)

Wide dynamic range vegetation index (WDRVI) = ×
× +WDRVI 0.1 rNIR rPAR

0.1 rNIR rPAR
(Gitelson, 2004)

Global environmental monitoring index (GEMI) = ×GEMI (1 0.25 ) rPAR 0.125
1 rPAR

=
× + × + ×

+ +
2 (rNIR

2 rPAR
2 ) 1.5 rNIR 0.5 rPAR
rNIR rPAR 0.5

(Pinty and Verstraete, 1992)

Soil-adjusted vegetation index (SAVI) = ×
+ +SAVI 1.5 (rNIR rPAR)

rNIR rPAR 1
(Huete, 1988)

The rPAR and rNIR are the albedos of photosynthetically active radiation (PAR) and near-infrared radiation (NIR), respectively.

Fig. 2. Temporal dynamics in the leaf-litterfall mass (back-
accumulated), broadband and MODIS vegetation indices (VIs)
during the period between 2008 and 2018. NDVI: normalized
difference vegetation index, EVI: enhanced vegetation index,
SR: simple ratio of the albedo of near-infrared to photo-
synthetically active (or red band) radiation, WDRVI: wide
dynamic range vegetation index, GEMI: global environmental
monitoring index, SAVI: soil-adjusted vegetation index. The
subscripts B and M represent the broadband and MODIS VIs,
respectively.
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photosynthetically active radiation (PAR, 400 – 700 nm, μmol m−2 s−1)
by a pair of PQS1 or PARLITE sensors (Kipp & Zonen, the Netherlands).
All the radiation data were sampled every 5 s, averaged every 30 min,
and stored in a CR1000 datalogger (Campbell, Scientific, Inc., Logan,
UT, USA).

Six VIB were calculated with different combinations of the albedo of
PAR (rPAR) and the near-infrared radiation (rNIR) (Table 2), including
the normalized difference vegetation index (NDVI) (Huemmrich et al.,
1999; Rouse et al., 1974), the enhanced vegetation index (EVI) (Jiang
et al., 2008; Rocha and Shaver, 2009), the simple ratio of rNIR to rPAR

(SR) (Rouse et al., 1974; Wang et al., 2008), the wide dynamic range
vegetation index (WDRVI) (Gitelson, 2004), the global environment
monitoring index (GEMI) (Pinty and Verstraete, 1992), and the soil-
adjusted vegetation index (SAVI) (Huete, 1988).

The PAR was converted to the energy flux density with the

conversion coefficients [the incident coefficient
0.2195 J μmol photon−1, the reflected coefficient
0.2072 J μmol photon−1(Ross and Sulev, 2000)], and then the near-
infrared radiation (NIR) was calculated by the difference between of
SOLR and PAR. The rPAR and rNIR were calculated as (Liu et al., 2019):

=r PAR
PARPAR

out

in (1)

=r SOLR PAR
SOLR PARNIR

out out

in in (2)

where PARout, PARin, SOLRout, and SOLRin are the reflected and in-
cident PAR and solar radiation, respectively.

The noises of VIB time series were smoothed by a moving window
approach that assigned the 50th percentile of the values around noon
(10:00 – 14:00 local time) within a 3-d window to the center day

Fig. 3. Spearman's rank correlation between vegetation indices and back-accumulated leaf-litterfall mass.
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(Hufkens et al., 2012; Liu et al., 2018).

2.2.3. MODIS products
A product of 500-m surface reflectance data from Terra instrument

(MOD09A1) was obtained from ORNL DAAC (DAAC, 2018a; Vermote,
2015), which was an 8-d composite by selecting observations with fa-
vorable viewing geometry and minimal cloud cover. The daily nadir
bidirectional reflectance distribution function-adjusted reflectance
product (MCD43A4) (DAAC, 2018b; Schaaf and Wang, 2015) was also
used. Six VIM (i.e., NDVIM, EVIM, SRM, WDRVIM, GEMIM, and SAVIM)
were calculated by the equations in Table 2 using band 1 (red, 620 –
670 nm) and 2 (NIR, 841 – 876 nm). The reflectance of band 3 (blue,
459 – 479 nm) was added to calculate the EVIM as:

=
+ +

EVI 2.5(r r )
r 6r 7.5r 1M

NIR red

NIR red blue (3)

where rNIR, rred, and rblue are the reflectance of near-infrared, red, and
blue bands, respectively. Because our eddy-flux tower was located at
the edge of one MODIS pixel (Fig. 1), we used the mean value of the
four pixels around the tower for inter-comparisons with other methods.

2.3. Phenophase extraction

A simple logistic model was used to fit the time series of the back-
accumulated leaf-litterfall and all the vegetation indices (VIs). The EOS
was defined as the date corresponding to the maximum of the first
derivative of the fitted curve [f(t) in Eq. (4)], representing the most-
rapidly decreasing date (i.e., the leaf-fall peak) (Fisher et al., 2006).

=
+

a bf(t)
1 e c t d( )/ (4)

where t is the day of year (DOY), a is the maximum VI in autumn, b is
the VI amplitude; c and d represent the inflection point and the decrease
rate of the VI, respectively. The uncertainty of the EOS estimate was
evaluated by the average width of inner 95% confidence intervals
(Klosterman et al., 2014).

2.4. Statistic analysis

The spearman's rank correlation was used to evaluate the syn-
chronism of the time series between methods (Delpierre et al., 2017).
The least-square linear regression and the determination of coefficient
(R2) were used to assess the consistency of interannual trends of the
EOS estimated by different methods. The mean bias and mean absolute
deviation (MAD) were calculated for the EOS estimated by various
methods as:

= =mean bias
(EOS EOS )

N
i i i1
N

ref

(5)

= =MAD
EOS EOS

N
i i i1
N

ref

(6)

where N is the number of years (11 in this study); EOSi and EOSrefi

represent the EOS estimated by a specific method and the reference in
the ith year, respectively. The EOS derived by the leaf-litterfall was used
as the reference when comparing the VIB and VIM with the leaf-litterfall,
whereas that by VIB was used as the reference when comparing VIM
with VIB. The positive (negative) bias indicated that the EOS was later
(earlier) than the reference. All statistical analyses were performed by
SPSS 19.0 software.

3. Results

3.1. Temporal dynamics in leaf-litterfall mass and vegetation indices

The temporal dynamics in the leaf-litterfall, VIB and VIM were
highly consistent (Fig. 2), with all the correlation coefficients (r) be-
tween the VIB or VIM and the leaf-litterfall mass being greater than 0.93
(Fig. 3). The r between the VIM and VIB varied from 0.90 to 0.93, with
the VIB amplitude being slightly less than the VIM amplitude (Fig. 4).

3.2. Comparisons of EOS estimated by near-surface, MODIS remote sensing
and leaf-litterfall methods

The interannual ranges of the EOS estimated by the leaf-litterfall,

Fig. 4. Spearman's rank correlation between 8-d MODIS and the corresponding broadband vegetation indices (VIs).
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VIB, and VIM were 9 d, 9 (NDVIB) – 25 (GEMIB) d, and 11 (WDRVIM) –
22 (GEMIM) d, respectively (Fig. 5). Although there were no significant
delaying trends for any method, most of the EOS derived from the leaf-
litterfall and VIs in 2010, 2012 and 2016 were later than those in the
other years during 2008 – 2018 (Fig. 5). The R2 of VIB and VIM with
leaf-litterfall ranged from 0.15 – 0.66 and 0.34 – 0.44, respectively. The

mean bias and MAD of the EOS derived from the six VIB were −10 – 0 d
and 1 – 10 d, respectively; and those from the VIM were −11 – 2 d and 3
– 11 d, respectively. For the near-surface method, the NDVIB had the
highest R2 (0.66, Fig. 7a) and least mean bias (0 d, Fig. 7b) and MAD (1
d, Fig. 7c). For the MODIS method, the EOS estimated by the six VIM
were all significantly correlated with that by leaf-litterfall, of which the
EVIM had the highest R2 (0.44) and relatively lower bias and MAD (−1
and 4 d, respectively, Fig. 7). The most-used NDVIM performed mod-
erately well (R2 = 0.34) with an intermediate bias of 2 d and the lowest
MAD of 3 d.

3.3. Consistency of EOS estimated by near-surface and MODIS remote
sensing methods

The EOS derived from two of the six VIM (NDVIM and WDRVIM) was
significantly correlated with that from the counterparts of VIB (Fig. 8),
with the R2 being 0.67 and 0.38, respectively (Fig. 9a). The EOS derived
from VIM was −2 (SRM) – 4 d (GEMIM) later than that from VIB
(Fig. 9b); and the MAD between them varied from 3 d (NDVIM) to 7 d
(GEMIM). Among the VIs investigated, the NDVIB and NDVIM had the
highest R2 (0.67) when deriving the EOS, of which the regression had a
moderate bias and MAD (2 and 3 d, respectively) in the EOS (Fig. 9).

4. Discussion

4.1. Comparing near-surface and MODIS remote sensing methods for
monitoring autumn phenology

The close correlation of the seasonal and interannual trends be-
tween VIM and VIB (Figs. 2 and 4) displays the reliability of MODIS
products for monitoring the autumn phenology at our temperate forest
site. Similarly, the seasonal courses of VIB agreed with the satellite data
at other forest sites (Huemmrich et al., 1999; Wilson and Meyers,
2007). We also found that the EOS derived by NDVIB had the closest
correlation with that by NDVIM among the six VIB investigated (Figs. 8
and 9), consistent with previous studies on spring phenology
(Balzarolo et al., 2016). Accordingly, we recommend using NDVIB for
validating MODIS phenology products.

The EOS estimated by VIM was 2 – 4 d later than that by VIB (Fig. 4).
These variations in EOS estimated by different methods mainly resulted
from the features of remote sensors (e.g., spectral bandwidth, view
zenith angle, frequency of data acquisition). For example, the spectral
band of routine radiometers is composed of broadband NIR and PAR,
while the MODIS sensors have much finer spectral resolutions. VIB re-
flects canopy greenness, while VIM is associated with leaf photosynth-
esis (Balzarolo et al., 2016). These differences may lead to the diver-
gence in the EOS derived from VIB and VIM. Moreover, the view zenith
angle of MODIS sensors changes with seasons, which likely alters the
viewing area even for the same pixel, and thus affects the EOS estimates
(Helman, 2018). Although the temporal resolution of MODIS may have
little effect on the phenological estimates (Fig. A1; Liang et al., 2014;
White et al., 2014; Zhang et al., 2009), high frequency of satellite data
might reveal more details of the phenological processes (Liang et al.,
2014).

Additionally, the spatial-resolution mismatch between the two
methods also affects the comparability between VIB and VIM. For ex-
ample, our radiometers were mounted at 48 m above the ground sur-
face (i.e., ∼ 28 m above the canopy), of which the footprint
(9.8 × 104 m2) was only one-tenth of the area of the four MODIS pixels
(4 × 500 m × 500 m = 1.0 × 106 m2). Such spatial mismatch could be
worse if the radiometers are installed in a lower position.

Fig. 5. Interannual fluctuations in the end-of-season (EOS) derived from leaf-
litterfall, broadband and 8-d MODIS vegetation indices during the period be-
tween 2008 and 2018. The error bars indicate 95% confidence intervals of the
EOS estimates.
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Fisher et al. (2006) reported that the difference in the spring phenology
within one pixel (<500 m distance) could reach 10 – 14 d in southern
New England, USA. However, our results showed that most of the
standard deviations of the EOS estimated from the four MODIS pixels
were 1 – 2 d (Table A1), which implies that the spatial variation in EOS
at a finer resolution can be reduced by averaging it in a larger area
(Peng et al., 2017c).

Currently, several near-surface sensors are applicable for mon-
itoring vegetation phenology and validating MODIS products, such as
routine radiometers (Balzarolo et al., 2016), phenocam (Brown et al.,
2017; D'Odorico et al., 2015; Liu et al., 2017), etc. As an ancillary
equipment of eddy-flux towers, the radiometer has the advantage for
validating MODIS phenology at a longer temporal scale
(Balzarolo et al., 2016), because the FLUXNET has operated ∼10 years
earlier than the PhenoCam network (Baldocchi et al., 2001). Ad-
ditionally, gross primary production and net ecosystem exchange
measured by the eddy covariance method are often used as a proxy of
the “functional phenology” (Liu et al., 2018), which might be essen-
tially different from the “optical phenology” of VIs. Collectively, the VIB
can complement the satellite data for monitoring autumn phenology
(Balzarolo et al., 2016).

4.2. Validating the autumn phenology derived from near-surface and
MODIS remote sensing with leaf-litterfall collection

To our best knowledge, our study validated the leaf-fall phenology
derived from remote sensing with decadal stand-level ground mea-
surements for the first time. We found that the seasonal patterns and
EOSs derived from VIB and VIM were generally consistent with those
from the leaf-litterfall (Fig. 2) in spite of the ∼9 d interannual range of
the EOS derived from the litterfall (Fig. 5). This finding demonstrates

that VIB and VIM can effectively monitor the interannual change of the
leaf-fall phenology in temperate deciduous forests. However, several
issues need to be addressed in order to improve the consistency of
different methods for monitoring the autumn phenology.

First, which VI metric should be used to present the interannual
variation in autumn phenology? There are no conclusive answer yet,
maybe depending on species or plant functional types (Helman, 2018)
or the physiological meanings reflected by different VIs (Mariën et al.,
2019). For example, EVIB is more suitable for grassland, whereas
WDRVIB is better for cropland (Balzarolo et al., 2016; Rocha and
Shaver, 2009). Testa et al. (2018) argued that WDRVIM and EVIM were
the best indicators of initial and advanced yellowing, respectively, by
ground visual observations in French deciduous forests; however, the
performances of all the VIM tested were poor (R2 < 0.27) across the ∼
60-d ranges of autumn phenology, primarily due to the spatial mis-
match and large uncertainty of the EOS estimation (Rodriguez-Galiano
et al., 2015; Testa et al., 2018). In our temperate deciduous forest,
NDVIB and EVIM best reflected the decadal fluctuation of the EOS
among the VIs investigated (with highest R2 against the leaf-litterfall;
Figs. 5–7). Also, NDVIB is the most-used broadband metric and the
optimal proxy for predicting canopy LAI change in autumn among the
four VIB (Liu et al., 2016a). However, given the low MAD (Fig. 7c),
using NDVIM may not be discouraged in spite of the moderate R2. The
different performances between VIB and VIM may be related to our
small interannual range of EOS (9 d, Fig. 5), their spectral resolution
and spatial scales.

Second, how to deal with the spatial representativeness for each
method? For ground observation, up-scaling from the individual- to
stand-level is indispensable for the cross-validation and fusion of mul-
tiple-scale data of phenology (Piao et al., 2019). Directly using the
average phenology of various species to represent the whole stand

Fig. 6. Relationships between the end-of-season (EOS) estimated by vegetation indices and that by leaf-litterfall. The solid and dash lines represent significant and
non-significant regressions, respectively. The dotted diagonal line is the 1:1 line.
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(Diao, 2019; Rodriguez-Galiano et al., 2015) can introduce a greater
uncertainty than does using the phenology of the dominant species or
calculating the weighted average based on the basal area of species
composition (White et al., 2014). Sometimes it is difficult to determine
the dominant tree species in natural mixed forests, which may result in
uncertainties in validating the remote-sensed phenology (Rodriguez-
Galiano et al., 2015). On the other hand, the weighted average ap-
proach underlyingly hypothesizes that the ratio of leaf area to basal
area is equal for various species, which may also introduce

uncertainties, because the allometry of leaf biomass against tree dia-
meter (Wang, 2006) and/or leaf mass per area (Poorter et al., 2009)
normally vary with tree species. The stand-scale litterfall collection (the
eight intensive plots distributed over different terrains) effectively re-
duced the spatial mismatches between methods (Table 1, Fig. 1). Fur-
ther interpretation of vegetation phenology at different spatial scales
can be made with automated unmanned aerial vehicles (Berra et al.,
2019; Klosterman et al., 2018; Piao et al., 2019).

Third, how to define the absolute date of autumn penology for each
method? The definitions of EOS for the ground observation [e.g., 10%,
50%, or 90% leaf coloration; 50% or 100% leaf-fall, etc. (Gill et al.,
2015)] and the methods for EOS extraction with near-surface and sa-
tellite remote sensing techniques [the extreme point or mid-point
(Helman, 2018), the breakpoint analysis (Mariën et al., 2019)] vary
widely in the literature. The absolute dates of the EOS estimated by VIB
and VIM averaged 0 – 11 d earlier than that by the leaf-litterfall at our
site (Fig. 7b). Similarly, the midpoint date of EVIM was 10 d earlier than
the 50% leaf-fall date across Ireland (Donnelly et al., 2018); however,
the minimum of EVIM was ∼13 d later than the full leaf-fall date in the
Hubbard Brook Forest (Zhang et al., 2006). The earlier EOS derived by
VIs may primarily result from the complex mechanisms of leaf senes-
cence and extrinsic features (Maignan et al., 2008; Soudani et al., 2012;
Testa et al., 2018). The VIs are sensitive to leaf chlorophyll and water
regimes (Mariën et al., 2019; Zhang et al., 2006), thus the leaf fall
commonly lags behind coloration (Mariën et al., 2019). And the dura-
tion of colored-leaves retaining on the canopy before falling may be
related to the meteorological factors (e.g. wind speed and temperature),
and thus change from year to year. Such differences in the extrinsic
features increase the divergence of autumn phenology derived from
different methods. Moreover, the uncertainty of visual record in-
troduced by the subjectivity of the observers is difficult to assess
(Peltoniemi et al., 2018; Piao et al., 2019). In contrast, regular leaf-
litterfall collection can quantify the leaf-fall rhythm at the stand level
and distinguish various species phenology at the individual level by
sorting leaf-litterfall by tree species, which substantially reduces the
biases associated with the up-scaling and subjectivity. Considering that
the litterfall collection is also a common method in other ecological
studies (e.g., estimating LAI, components of NPP, and nutrient cycling),
it has a broad prospect for deriving leaf-fall phenology.

Finally, how frequently should the litterfall be collected to quantify
the leaf-fall phenology? Using the litterfall data with a 5-d interval in
the autumn of 2015, we found that the estimated EOS was nearly the
same as that with a 10-d interval in the same year (267 ± 5 d vs.
266 ± 6 d, R2 > 0.99). In fact, a 10-d interval of litterfall collection is
commonly used to reduce the litter mass loss due to leaching or de-
composition in other ecological studies (Wang et al., 2019). Therefore,
we recommend a 10-d frequency of leaf-litterfall collection to balance
labor/ time costs and accuracy in monitoring autumn phenology.

5. Conclusions

We assessed the performance of near-surface and MODIS remote
sensing methods for characterizing the long-term temporal variations in
the autumn phenology of a temperate deciduous forest with the leaf-
litterfall collection method. All the VIs investigated had consistent
temporal patterns with the back-accumulated leaf-litterfall, of which
NDVIB and EVIM best tracked the interannual trend of the EOS. The EOS
estimated by VIs was 0 – 11 d earlier than that by the leaf-litterfall,
which could be largely attributed to the different biophysical meanings
between VIs and leaf-fall. Our findings supported the application of
radiometer and MODIS to monitor seasonal and interannual changes in

Fig. 7. The determination coefficients (R2) of the regression equations, mean
bias and mean absolute deviation (MAD) of the end-of-season (EOS) derived
from broadband or MODIS vegetation indices against that from leaf-litterfall. *
and ** indicate the significant correlation at α = 0.05 and α = 0.01 levels,
respectively. The positive (negative) values of biases indicate that the EOS is
later (earlier) than the reference. The error bars represent the standard devia-
tions of the bias or MAD across the period between 2008 and 2018.
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the autumn phenology in temperate deciduous forests, and the leaf-
litterfall collection method could be used as a complementary approach
to understand the autumn phenology.
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