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A B S T R A C T

The pika (Ochotona curzoniae) hole is an important landscape feature in the Tibetan Plateau (TP) grasslands, and
it indicates grassland degradation levels due to the destruction caused by pika burrowing activities on grass-
lands. However, no studies have ever explored landscape patterns of pika holes and their effects on adjacent
vegetation coverage. Taking meadow grasslands in Northern Tibet as an example, this study gathered unmanned
aerial vehicle (UAV) images and explored landscape patterns of pika holes and their effects on grass coverage in
the surroundings. The performances of two classification methods, including the decision tree classification
based on Fully Constrained Least Squares (FDC) and the object-oriented classification (OBC) were compared in
recognizing sizes and shapes of pika holes. The results showed that: (1) The object-oriented classification ex-
hibits higher classification accuracy in identifying pika holes. (2) The average size of pika holes in the study area
is 0.01m2 and they exhibit clustered distribution patterns. The average distance between any two nearest pika
hole patches is 0.79m. (3) It presents a significant quadratic relationship between the number of pika holes and
grass coverage. (4) The average effective distance of pika holes on the surrounding grass coverage is 20 cm. The
findings of this study can provide guidelines for pika control and improve grassland management on the TP.

1. Introduction

The Tibetan Plateau (TP), known as the “roof of the world”, hosts a
rich variety of unique ecosystem and is an important area for global
biodiversity conservation (Huang et al., 2016; Liu et al., 2006; Sun
et al., 2012). Among them, alpine meadow is the primary vegetation
type and covers approximately 1.63× 106 km2 (Qin et al., 2015). It
provides natural pasture for local stocking, and also plays a significant
role for the ecological security of China in such aspects as water con-
servation and anti-desertification (Dong and Sherman, 2015; Yong
et al., 2016).

Recently, global climate change and human activities have been
causing a series of ecological consequences on the QTP (Gao et al.,
2010; Huang et al., 2016; Miehe et al., 2008; Yu et al., 2012), among

which grassland degradation is the most prevalent one. In parallel with
grassland degradation, numerous environmental aftermaths come
along, for instance, strengthened pika (Ochotona curzoniae) activities.
Although it is generally believed that grown pika population is not the
cause, but as accompanying phenomenon of meadow degradation,
pikas did accelerate the grassland degradation process (Chen et al.,
2017a; Smith and Foggin, 1999). One manifestation of damage caused
by pika is the development of pika holes. Pika holes destroy soil
structure, change soil environment, and interrupt the original pathways
of material circulation and energy flow (Chen et al., 2017a; Liu et al.,
2012; Yu et al., 2017). In addition, pika activities alter plant species
composition, reduce plant biodiversity and biomass stock, and ad-
versely affect the global carbon cycle (Guo et al., 2012; Zhao et al.,
2013; Zhou et al., 2005). A pika can typically destroy 0.51–0.73m2 of
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grassland (Chen et al., 2017a). Pikas accumulate the excavated soil
outside the holes, generating environments unfavorable for grass
growth. Under the strong winds and precipitation, pika holes and top-
soil are eroded, aggravating the grassland degradation and fragmenting
the landscape (Fig. S1). On the other hand, pika holes increase soil
moisture by facilitating rainfall infiltration, and provide favorable
conditions for establishment and expansion of hibernating plants (Chen
et al., 2017a; Liu et al., 2012; Prejevalsky and Yule, 1991). Thus, pika
holes exert varied effects on plant growth of alpine grasslands.

Traditionally, pika holes are counted using ground-based field sur-
veys. However, this method is limited in its being laborious, lacking
spatial information, and existing data gaps for harsh environments.
Consequently, our understanding on relationships between pika holes
and related ecological processes is highly constrained. To fully evaluate
their effects, an efficient method is better developed. With the devel-
opment of geospatial technologies, remote sensing has been increas-
ingly used to study pika holes. However, prior related studies were
mainly based on medium-resolution (10–80m) data such as Landsat
and CBERS images (Chen et al., 2017a; He et al., 2013; Ma et al., 2011).
Their low spatial resolutions underlie their low efficiencies in identi-
fying pika holes, thereby restricting our interpretation of their ecolo-
gical consequences. Furthermore, these studies have mainly focused on
the edges of the QTP, such as parts of Qinghai and Sichuan Provinces
(Liu et al., 2006, 2012; Zhao et al., 2013). The Northern Tibet is one of
the main distribution areas of pikas, but no studies have ever explored
the landscape distribution pattern of pika holes in this region.

Remote sensing has been developed toward a stage of generating
and applying high temporal and spatial resolution data (Bhardwaj et al.,
2016; Van Cleemput et al., 2018; Zheng et al., 2012). As an example,
unmanned aerial vehicle (UAV) remote sensing has been widely used
for ecological researches (Jin et al., 2017; Puliti et al., 2017; Rey et al.,
2017; Webster et al., 2018). The UAV remote sensing is a low-altitude
remote sensing technology that equips unmanned aerial vehicles to
carry sensors (Honkavaara et al., 2013; Qin, 2014). The vehicles are
portable and suitable for various environmental conditions. The sensors
mounted on the UAV can be commercial digital cameras, multispectral
sensors, and radar (Bhardwaj et al., 2016; Colomina and Molina, 2014;
Feng et al., 2015). Considering their loading capacity and risk control,
the conventionally equipped sensors possess the characteristics of being

small-sized and low cost (Du and Noguchi, 2017; Honkavaara et al.,
2013; Hunt et al., 2010).

The raw images produced by digital cameras can only be used after
being processed by eliminating noises and errors (Chen et al., 2017b).
Then land use information can be extracted through image classifica-
tion, which is primarily pixel-based. It assumes that each pixel within
an image is independent, without any spatial association (Blaschke,
2001; Cleve et al., 2008; Feng et al., 2015). To solve the problem of
mixed pixel, linear spectral mixture analysis has been proven efficient
(Heinz et al., 1999; Liu et al., 2017; Wang et al., 2017). Among the
three main algorithms of linear spectral mixture analysis, the fully
constrained least squares (FCLS) algorithm is considered suitable for
pixel unmixing (Chen et al., 2010; Lu and Weng, 2006; Wang et al.,
2013; Weng and Lu, 2008). For fine resolution images, object-oriented
classification is more efficient than the single pixel-based classification
in capturing multi-pixel objects (Feng et al., 2015). The prior one di-
vides an image into adjacent patches with homogeneity, and identifies
each object according to classification rules and topological relation-
ships (Coulter et al., 2000). The object-oriented classification also
performs well in identifying landscape patterns (Cunliffe et al., 2016;
Jin et al., 2017; Puliti et al., 2017).

Based on these knowledge gap and taking advantage of the recently
developed remote sensing technologies, the objective of this study was
to characterize the spatial distribution pattern of pika holes at a land-
scape scale. In the meantime, the ecological consequences of pika hole
on the surrounding vegetation was explored. First, we gathered high
spatial resolution remote sensing images using a UAV. Then, the per-
formances of the above mentioned two image classification methods
(the decision tree classification based on FCLS (FDC) and the object-
oriented classification (OBC)) were compared in extracting pika holes
information. The research findings would significantly improve our
understanding on the relationships between pika activities and grass
coverage on the Tibetan Plateau. The related knowledge can be used as
basis for grassland management and wildlife protection on the Tibetan
Plateau.

Fig. 1. Flight sample in nagqu prefecture, Tibetan Plateau (TP), China.
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2. Study area and methods

2.1. Study area

The study area is located in Nagqu, TP (31°38.513′N, 92°0.921′E),
with an approximate elevation of 4600m (Fig. 1). The mean annual
temperature is −1.2 °C and the mean annual precipitation is circa
430mm. The air density is around 719 g/m3, resulting in an air pres-
sure of only 54.9 kPa. The oxygen density is roughly 166 g/m3,
equivalent to 59% of the sea level. The average annual wind speed is
37.1 m/s over the last 45 years (Luosang et al., 2017). The typical ve-
getation is alpine meadow, with a community height of 3–10 cm and
coverage of 70–90%. The dominant species is Kobresia pygmaea.

2.2. Acquisition of UAV images

We flew the quadrotor Phantom 4 Pro UAV (DJI-Innovations,
Shenzhen, China) at an altitude of 50m and in a breezeless and sunny
day. The flight path and image overlapping ratio are shown in Fig. S2.
We obtained a total of 78 raw images. Image correction and image
mosaicking were completed by the DJI-Innovations. The significant
performance parameters are listed in Table S1.

2.3. Sample selection

In accordance with the purposes of this study and image quality, we
used the middle part of the image and excluded those pixels tarnished
by the experimental facilities and roads (Fig. 2). The entire study area is
composed of two parts, with the upper part being the livestock grazing
area and the lower part being the non-grazing area within the fence.

2.4. The decision tree classification based on FCLS

The FCLS algorithm of the linear spectral mixture model was first
used to obtain the fraction maps of the three land categories. Firstly, the
Minimum Noise Fraction (MNF) was performed prior to calculating the
Pixel Purity Index (PPI). Then, an n-dimensional visualization window

was built to select pure endmembers (Table S2). Finally, the unmixing
process was performed.

After obtaining the fraction maps and satisfying the accuracy re-
quirement of mean RMS<0.02 (Fig. S3) (Tang et al., 2017), the de-
cision tree was applied to obtain the classification map (Zhong et al.,
2011). When the fraction of grass pixels exceeded 0.33, it was classified
as grass; when the fraction of pika hole pixels exceeded 0.70, it was
classified as pika hole. The Majority Analysis was used to eliminate
small broken-up patches in the image.

2.5. Object-oriented classification

The UVA image contains only three visible bands of red, green and
blue. To improve the classification accuracies, the original image was
first processed by HLS transformation and principal component analysis
(PCA) to construct a new image (Guo et al., 2017). The new generated
data contains a total of 7 bands, including the original three color
bands, three bands of HLS, and the band of the first principal compo-
nent.

The object-oriented image analysis software of e-Cognition was
applied in classifying the original data and the new generated data (Du
and Noguchi, 2017). In both processes, all parameters were set the
same. The main parameter of the scale factor was set as 15 using the
Estimation of Scale Parameters (ESP) (Fig. S4) (Drăguţ et al., 2014;
Drǎguţ et al., 2010). The other parameters of spectrum factor, shape
factor, smoothness factor and compactness factor were set as 0.9, 0.1,
0.5, 0.5, respectively (Cleve et al., 2008; Drăguţ et al., 2014).

Brightness, mean value of DN, shape index, length/width ratio and
vegetation indices of excess green index (EXG), green chromatic co-
ordinate (GCC) and visible-band difference vegetation index (VDVI)
were selected as the classification features (Jin et al., 2016; Toomey
et al., 2015). The nearest neighbor algorithm of standard neural net-
works was applied to complete the classification after calculating the
best feature combination.

=
− −

+ +

VDVI G R B
G R B (1)

= × − −EXG G R B2 (2)

=

+ +

GCC G
R G B (3)

where R, G and B represent pixel values of the red band, green band,
and blue band, respectively.

2.6. Accuracy assessment

The confusion matrix was used to evaluate the classification accu-
racy. The number of field validation points is strictly controlled, be-
cause their redundancy or inadequacy both affect the evaluation ac-
curacy (Foody, 2009). We first determined the number of validation
points according to Tortora’s theory (Tortora, 1978).

=n B b/4 2 (4)

where n is the number of validation points; B is the critical value of the
chi-square test (1− α/k) with 1-degree of freedom; α is the assessment
accuracy requirement; k is the number of classifications, and b is the
confidence error.

In this study, the assessment accuracy and confidence error were set
at 95% and 1%, respectively. Validation points were generated ran-
domly in ArcGIS10.5. The attribute class of each point was determined
by visual interpretation to form a matrix for accuracy assessment. A
total of 2550 random samples were selected, including 1026 falling in
grass, 1298 in soil, and 226 in pika holes.

Fig. 2. Image of the study area (Black patches indicate pixels of the experi-
mental facilities and road features).
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2.7. Landscape pattern analysis

The Fragstats 4.0 was used to explore the landscape pattern of the
pika holes (McGarigal et al., 2012). The landscape indices utilized in-
clude area, number of patches (NP), patch density (PD), shape index
(SHAPE), CLUMPY and COHENSION (Riitters et al., 1995). The dis-
tance between any two nearest pika hole patches was calculated and
recorded as Dnearest. Then, ten concentric buffer zones with a spacing of
5 cm were generated to study the rippling effects of pika holes on ad-
jacent landscapes. Based on their size distributions, we defined pika
holes smaller than or equal to 0.01m2 as small type and those larger
than 0.01m2 as large type. A 13× 14 grid was created using the tool of
fishnet in ArcGIS 10.5 to characterize landscape patterns of pika holes
in each grid (Fig. S5). Regression analysis was used to fit the relation-
ships between landscape indices of pika holes and grass coverage.

3. Result

3.1. Accuracies of the two classification methods

The new generated image contained additional color information,
including hue, lightness and saturation, and some noises were also
eliminated. The OBC results of the two images exhibited a high degree
of similarity, but a relatively higher accuracy for the new one (Table 1).
Both images produced a similar spatial pattern of grass and soil. In
terms of identifying pika holes, results from the newly generated image
exhibited much higher accuracies than the original image (Table 1).

The FDC result after the Majority Analysis effectively removed the
‘salt and pepper’ effects (Fig. 3), and the classification result was con-
sistent with the OBC results. The FDC produced an overall accuracy of
95.57% and a kappa coefficient of 0.92, both higher than those of OBC.

3.2. Performance of each method in microscale landscape recognition

The grass area produced by the OBC was smaller than that by FDC,
while the soil area was larger (Table 2). The patch number of each land-
use as produced by the OBC was less than that by FDC, while the mean
shape index of the prior one was greater than that of the latter
(Table 2). The two methods generated distinct patterns of pika holes,

although they both accurately located the position of pika holes. An
entire pika hole was likely to be classified as several broken patches by
the FDC. Relatively, the OBC can ensure the patch integrity and better
identify microscale landscape features, such as the shape and size of
pika holes.

3.3. Landscape pattern of the pika holes

The total number of pika holes for the entire study area was 4588
and covered a total area of 46m2 (Table 2). Pika hole sizes ranged from
0.002m2 to 0.074m2 and their average size was nearly 0.010m2. More
than half of the pika holes covered an area between 0.002m2 and
0.010m2 (Fig. 4). The density of pika holes was 2799/ha. The shape
index was 1.37, indicating their simple and regular shapes. The
CLUMPY index was close to 1 and the COHESION index was close to
100, suggesting their clustered distribution and high structural con-
nectivity among pika holes (Table 3). The distance between patch pairs
ranged from 0.01m to 4.27m, with a mean value of 0.79m. The Dnearest

showed their highest concentration within 0.10m and then followed an
abated frequency distribution to 1.20m (Fig. 4).

3.4. Interaction between pika holes and vegetation coverage

There was a significant correlation between the number of pika
holes and grass coverage (P < 0.01). When grass coverage was higher
than 60%, the number of pika holes enlarged with sparser grass cov-
erage. When the grass coverage was lower than 60%, the opposite trend
was observed (Fig. 5A). Grass coverage also influenced landscape
characteristics of pika holes. For each 10% increment in grass coverage,
the mean size of pika holes expanded by 5 square centimeters, the
CLUMPY index grew by 0.008, and the COHESNSION index rose by
0.31 (Fig. 3B–D).

Grasses exhibited a varied status in relation to the distance to pika
holes. Within 20 cm, grass coverage in each buffer ring ascended with
distance away from the pika hole, then eventually remained stable at
around 60%. The grass coverage in each buffer ring around large pika
holes was higher than that around small pika holes. Immediately ad-
jacent to pika holes, bare soil coverage was nearly twice that of grasses
(Fig. 6). Along further distance, cumulative grass coverage ascended
rapidly while cumulative bare soil coverage descended. At the distance
of approximately 14 cm from edges of the pika holes, grass coverage
was equal to that of soil, and then surpassed it. The distance where
grass coverage exceeded soil coverage was 12 cm for large pika holes
and 16 cm for small pika holes. The cumulative grass coverage differ-
ence was statistically significant between areas surrounding large and
small pika holes (t=20.286, df=9, p < 0.001).

4. Discussions

4.1. Efficient classification methods for high resolution images

This study compared two methods in classifying high spatial re-
solution images collected from UAVs. In addition, different sources of
data were employed to compare the efficiencies of the OBC. Relatively,
the FDC turned out higher classification accuracies than the OBC and
both methods achieved high classification accuracies exceeding 94%.
The traditional decision tree relies on vegetation indices for classifica-
tion. However, high spatial resolution images conventionally lack in-
frared band to produce vegetation indices (Sandino et al., 2017;
Toomey et al., 2015). The FDC method proposed in this paper first
obtains the percentage of different land categories in each pixel and
then determines the classification result according to their relative
contribution. This algorithm can get around the limitation of totally
relying on vegetation indices in classification and achieve improved
accuracies. The OBC embraces information on bands of hue, lightness,
saturation and the first principal component instead of texture

Table 1
Accuracy assessments of the object-oriented classification (OBC) and the deci-
sion tree classification based on FCLS (FDC).

Classification
method

Grass Pika hole Soil User's
Accuracy (%)

OBC of original
image

Grass 1001 5 141 87.27
Pika hole 7 196 56 75.97
Soil 18 25 1101 96.24
Producer's
Accuracy (%)

97.56 86.73 84.82

Overall
Accuracy (%)

87.17 Kappa 0.83

OBC of newly
generated
image

Grass 1017 0 129 88.74
Pika hole 0 222 7 96.94
Soil 9 4 1162 99.06
Producer's
Accuracy (%)

99.12 98.23 89.52

Overall
Accuracy (%)

94.16 Kappa 0.89

FDC Grass 1014 1 91 91.68
Pika hole 11 216 0 95.15
Soil 1 9 1207 99.18
Producer's
Accuracy (%)

98.83 95.58 92.99

Overall
Accuracy (%)

95.57 Kappa 0.92
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information, and the classification accuracy was also elevated. Com-
pared with the original image, the newly generated image can effec-
tively reduce misclassification of wet soil and pika holes, which in-
dicates the newly added bands can contribute extra details and widen
the separability among objects. This is because the HLS transformation
adjusts the expression model of colors, which is conducive to computer
processing. Also, the principal component transformation serves as
additional information enhancement (Dronova et al., 2015; Guo et al.,
2017).

The OBC exhibited better performances in recognizing shapes and
sizes of pika holes. Its segmentation algorithm ensures the shape in-
tegrity of each pika hole patch. However, the FDC likely leads to patch
fragmentation. This is mainly caused by their different operating unit.
The basic operation unit of the FDC is a pixel, thereby easily dis-
regarding the integrity of ground objects and inevitably resulting in
fragmentation (Cleve et al., 2008; Coulter et al., 2000; Feng et al.,
2015). In addition, a fragmented patch is composed of several small
broken parts and usually accompanied by simplified shapes (Heinz
et al., 1999; Wang et al., 2013). That is why the FDC produced a lower

Fig. 3. The object-oriented classification (OBC) and the decision tree classification based on FCLS (FDC) results and partially enlarged details. A: OBC result of the
original image, B: OBC result of the newly generated image, C: FDC result, D: image of the sample area, E: partially enlarged detail of OBC result of the original image,
E: partially enlarged detail of OBC result of the newly generated image, F: partially enlarged detail of FDC result.

Table 2
The characteristics of landscape structure under different classification
methods.

Source TYPE CA (m2) NP SHAPE_MN

OBC Grass 9118 20,294 1.91
Soil 7346 53,638 1.53
Pika hole 46 4588 1.37

FDC Grass 10,246 78,991 1.26
Soil 6228 205,154 1.25
Pika hole 36 15,571 1.12

Note: SHAPE_MN indicates mean value of shape index.

Fig. 4. Frequency distribution of pika hole sizes (A) and Dnearest (B).
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shape index. Collectively, the OBC is more suitable for identifying shape
and size of pika holes on the Tibetan Plateau.

4.2. Spatial pattern of the pika hole

For the meadow targeted in this study, the pika hole density is
2779/ha. This value is higher than those reported for fringe zones of the
Tibetan Plateau. The density of pika holes in Qinghai Province is circa
500–3600/ha, of which most studies reported a value of 1000–1600/ha
(Guo et al., 2012; Li and Zhang, 2006; Liu et al., 2014; Zhao et al.,
2013). The pika hole has an average size of approximately 0.01m2 and
their shapes are relatively simpler compared to those of grasses and
bare soil. The mean size value is in line with results obtained from field
surveys in other regions of the QTP (Ma et al., 2011; Pech et al., 2007b;
Wang et al., 1998).

This study further explored the landscape pattern of pika holes. A
value of the CLUMPY index closer to 1 represents the higher aggrega-
tion of the patch distribution. The CLUMPY index value of 0.81 in this
study indicated the clustered distribution of pika holes. Such a spatial
pattern is related to the limited resources available to pikas. They
mainly feed on grasses, sedges and legumes and prefer to live in en-
vironments with wide horizons (Chen et al., 2017a; Harris, 2010;
Marcfoggin, 2010). The inhomogeneous living conditions lead to their
tendencies of clumped presences. The landscape analysis also revealed
the high structural connectivity of pika holes, which facilitates pika
movements in escaping predators.

4.3. Influences of pika activities on meadow coverage

For the first time, this paper reported the effects of vegetation
coverage on pika holes at a landscape scale, and vice versa. The number

of pika holes varied unimodally with vegetation coverage. When grass
coverage increases or decreases from a certain threshold, the number of
pika holes abates. This interaction reveals that pika presence is more
likely to be affected by grass coverage, rather than the other way
around (Harris, 2010). Only when grassland degrades to a certain ex-
tent, the number of pika holes erupts. Mean area of pika hole patches,
CLUMPY index and COHENSION index all increase with elevated grass
coverage. This pattern may be explained by the resource carrying ca-
pacity. The enriched biomass caused by elevated grass coverage can
feed larger populations of pikas, which burrow an increased number of
pika holes, thereby causing their more clumped pattern (Badingquiying
et al., 2018; Liu et al., 2009).

The nonlinear relationship between the number of pika holes with
vegetation coverage is related to the living habits of pikas. They tend to
live in areas with lower grass height and open fields (Badingquiying
et al., 2018; Liu et al., 2013). Dense grasslands would undermine their
capability of escaping and boost the danger of being preyed (Liu, 2003).
Only when grasslands are degraded by other factors such as grazing and
human disturbance, can a wider horizon of vision be formed. The
growing population of pikas further exacerbates grassland degradation
(Harris et al., 2015), which downgrades food resources availability,
eventually declined pika populations.

Previous studies have proved that sole rodent control has low effi-
ciency in alleviating grassland degradation. The pika population can
still recover after ceasing of rodent control (Pech et al., 2007a). In-
creasing vegetation coverage may be a more feasible and ecological
pathway in practice management to control the pika population
(Fig. 5). By acting on environments, pika holes indirectly affect vege-
tation growth in the surroundings (Smith and Foggin, 1999; Zhao et al.,
2013). In the vicinity of pika holes, bare soil covered area is much
larger than by grasses. This pattern might be caused by two major
reasons. First, pika graze on and trample meadows (Chen et al., 2017a;
Zhao et al., 2013). Second, pika holes modify physical and chemical
properties of soils, consequently affecting grasses growth (Li and Zhang,
2006; Liu et al., 2012; Yu et al., 2017). Therefore, in areas closer to pika
holes, the lower is grass coverage. Along further away distance, en-
vironmental influences of pika holes fades, and grass coverage rises.
When the distance exceeds 20 cm away, their influences basically dis-
appear and grass coverage re-bounces to a normal level.

Table 3
Landscape characteristics of the pika hole.

PD (n/ha) Area_MN (m2) CLUMPY COHENSION

2779 0.01 0.81 87.67

Note: Area_MN indicates mean area of pika hole patches.

Fig. 5. Relationship between grass coverage and number of pika holes (A), mean area of pika holes (B), CLUMPY index (C) and COHENSION index (D).
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Different from conventional viewpoints, this study showed that
small pika holes exert greater influences on grass coverage in the sur-
roundings than large pika holes do. The reason is related to the ex-
istence duration of pika holes. Most of small pika holes are formed in
the current year and the effects of excavation behavior on the sur-
rounding vegetation still persist. While most of large pika holes are
developed from the initial small ones and have been already existed for
some periods. Vegetation around the large pika hole has been recovered
to some extents due to the gradually abated pika disturbance and suc-
cession of ecosystem (Komonen et al., 2003). Therefore, grass coverage
around large pika holes can be higher than that around small pika
holes.

5. Conclusion

For the first time this study investigated the landscape pattern of
pika holes and their effects on surrounding vegetation growth on the
Tibetan Plateau by utilizing high resolution data of UAVs. The pattern
of pika holes is an important factor affecting grasslands in northern
Tibet, and it is bound to be of great significance for understanding the
changes of the ecosystem. The following findings can be theory basis for
pika control and ecosystem management on the Tibetan Plateau. First,
the decision tree classification based on FCLS achieves the highest
classification accuracy of 95.57%. The object-oriented classification
performs best in identifying the shape and size of objects. Second, pika
hole density on the targeted meadow is higher than other parts of the
Tibetan Plateau. Third, pika hole presence is more likely to be con-
sequences of grassland degradation, rather than causing grassland de-
gradation.
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